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Abstract: This paper surveys the implementation of blockchain technology in cybersecurity in In-
ternet of Things (IoT) networks, presenting a comprehensive framework that integrates blockchain
technology with intrusion detection systems (IDS) to enhance IDS performance. This paper reviews
articles from various domains, including AI, blockchain, IDS, IoT, and Industrial IoT (IIoT), to identify
emerging trends and challenges in this field. An analysis of various approaches incorporating AI
and blockchain demonstrates the potentiality of integrating AI and blockchain to transform IDS. This
paper’s structure establishes the foundation for further investigation and provides a blueprint for the
development of IDS that is accessible, scalable, transparent, immutable, and decentralized. A demon-
stration from case studies integrating AI and blockchain shows the viability of combining the duo to
enhance performance. Despite the challenges posed by resource constraints and privacy concerns, it
is notable that blockchain is the key to securing IoT networks and that continued innovation in this
area is necessary. Further research into lightweight cryptography, efficient consensus mechanisms,
and privacy-preserving techniques is needed to realize all of the potential of blockchain-powered
cybersecurity in IoT.
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1. Introduction

The Internet of Things (IoT) has revolutionized computing and sensing across vari-
ous domains, offering ubiquitous connectivity and data exchange [1,2]. With industrial
networks embracing IoT on a massive scale, the interconnectedness of billions of devices
presents both opportunities and challenges [3]. This proliferation amplifies the potential
for vulnerabilities and intrusions, significantly expanding the attack surface. Consequently,
continuous monitoring becomes imperative to detect and mitigate security threats swiftly.
As IoT deployments continue to burgeon, ensuring the resilience of networks against cyber
attacks demands vigilant surveillance and proactive measures to safeguard sensitive assets
and critical infrastructure [4].

The IoT system’s security and privacy could be improved with the help of blockchain
technology [2,5], with open, unchangeable, and safe transactions [5], thereby enhancing
security and privacy by utilizing blockchain technology [6]. Integrating IoT ecosystems
with blockchain technology is a promising strategy to fortify cybersecurity measures in the
evolving digital landscape. This introduction elucidates the pivotal role of blockchain in
enhancing IoT cybersecurity, emphasizing its transformative capabilities and urgent rele-
vance in contemporary digital environments. As IoT systems proliferate and interconnect,
leveraging blockchain presents a compelling solution to address the escalating cyberse-
curity challenges. By elucidating the symbiotic relationship between IoT and Blockchain,
this discourse underscores the imperative for integrating these technologies to safeguard
digital assets and mitigate emerging threats effectively.

Artificial intelligence (AI) algorithms are essential for detecting intrusions and attacks
in IoT, providing advanced capabilities to secure IoT ecosystems [7]. These algorithms
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apply machine learning (ML) techniques to analyze real-time data from IoT devices and
identify anomalies and prospective security threats. By constantly observing network
activity, sensor data, and device behavior patterns, AI algorithms can identify unusual ac-
tivities indicative of malicious intent [8,9]. One widely used approach is anomaly detection,
where AI models learn normal device behavioral patterns and flag deviations as potential
threats [3]. Supervised learning algorithms are frequently employed and trained on labeled
datasets to distinguish benign from anomalous conduct. Convolutional and recurrent
neural networks (RNNs) are two examples of very effective deep learning techniques.
CRNNs are skilled at processing sequential data, which makes them helpful in identify-
ing intricate attack patterns, whereas CNNs examine structured data, such as network
traffic [9,10]. In addition, reinforcement learning algorithms can adapt and improve over
time by continuously interacting with the IoT environment and learning from feedback to
enhance intrusion detection capabilities. AI algorithms offer powerful tools for detecting
intrusions and attacks in IoT, enabling proactive security measures to mitigate risks and
safeguard IoT networks from cyber threats [11].

Blockchain technology has recently been used by researchers in intrusion detection
systems (IDSs) for improved monitoring and detection, prevention of malicious activities
or attacks, and tamper-proof transactions and storage in IoT devices and networks [2,12].
Blockchain immutability promotes security and efficient data storage for resource-constrained
systems. Despite offering decentralization, scalability, transparency, and immutability,
this technique has challenges compared to the existing IDS approaches [5,13]. Over the
past decade, the focus on IDS for securing IoT/IIoT has intensified, driven by the need
for stringent controls, ensuring real-time operation, data integrity, and compatibility with
limited telecommunication protocols [1,3,14]. While existing literature offers insights into
risks to security and critical surveillance, this paper provides a comprehensive unconven-
tional survey, explicitly exploring the fusion of blockchain and AI for fortified IoT/IIoT
IDS approaches.

Blockchain’s potential for IoT security lies in its decentralization, immutability, trans-
parency, and smart contracts. Integrating it with ML, encryption, and identity management
systems strengthens IoT security frameworks [15,16]. Industry interest and advancements
in blockchain align with current research priorities, but gaps exist in understanding its full
potential and scalability [15]. Analyzing blockchain’s current state and future trends guides
informed decisions and advancements, making it a crucial aspect of IoT security evolu-
tion [15]. This study explores the intersection of blockchain and IDS for IoT cybersecurity,
as blockchain’s features position it to enhance IoT security.

This article outlines blockchain research opportunities for IoT network cybersecurity,
trends, future direction, and challenges. First, we conduct a background study on IoT
and an overview of blockchain technology to provide context and clarity, followed by its
unique features and challenges, motivating a general-purpose IDS. We propose an IDS and
define its relationship to blockchain technology, forming a comprehensive blockchain-based
IDS framework. The presented results demonstrate the role of blockchain in improving
intrusion detection performance. Finally, we discuss research opportunities framed by our
blockchain-integrated IDS. This article provides a framework within which researchers can
better engage and collaborate in studying and exploring next-generation IDS for IoT net-
works with a vision toward ubiquitous, scalable, transparent, immutable, and decentralized
IoT networks. Notably, this review makes the following significant contributions:

1. Utilizing the preferred reporting items for systematic reviews and meta-analyses
(PRISMA) article collection approach, this study systematically gathers articles on AI,
blockchain, IDS, IoT, and IIoT, shedding light on challenges, trends, and emerging
review areas in IoT IDS designs for security.

2. Focusing on articles published between 2019 and 2024, this review captures recent ad-
vancements in AI and blockchain-based IDS designs, ensuring relevance and currency
of insights.
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3. Evaluation of various AI blockchain integration techniques prioritizes factors like fi-
delity, transparency, immutability, robustness, and compactness, providing a nuanced
understanding of their performance.

4. This study underscores blockchain’s pivotal role in fortifying IoT/IIoT security mea-
sures by showcasing its efficacy in enhancing intrusion detection performance.

2. Background Study

This section provides an essential framework for a clearer understanding of the dis-
cussion by elucidating the trends, limitations, and opportunities in IoT. It also provides
concepts pertinent to the current investigation of blockchain applications.

2.1. Exploring Evolving Opportunities, Trends, and Striking Demands in the Internet of Things

The IoT represents a significant breakthrough in connectivity by connecting billions
of internet-enabled devices, fostering intelligent interactions, and integrating physical
infrastructure with digital systems. IoT has expanded to encompass various industries,
including smart factories, healthcare, smart cities, and transportation [17]. Recent forecasts
indicated that IoT-connected devices exceeded 10 billion in 2021, and are expected to reach
41 billion by 2027, with smart home and factory devices driving the market [18]. Sensors
and actuators are vital to the Internet of Things as they gather data and manipulate actual
environments. However, IoT faces challenges like security vulnerabilities resulting from
resource constraints in sensor nodes and interoperability problems caused by diverse
communication protocols. Despite these obstacles, IoT’s convergence with data analytics
and AI enables real-time decision-making and predictive maintenance, leading to significant
process improvements. To ascertain the potentialities of IoT, it is necessary to address
privacy, security, data heterogeneity, and interoperability concerns.

The proliferation of IoT devices, the diverse nature of these devices, and the evolution
of communication protocols have led to a surge in enabling technologies from an engi-
neering standpoint [19]. AI and ML techniques have further enhanced the potential of
IoT by extracting insights from heterogeneous sensor data, thereby reshaping business
operations [18,20]. The modular design of IoT systems, which abstracts these systems into
separate components, enhances their adaptability and clarifies their architecture [20]. As
in Figure 1, the layered structure of IoT comprises the perception, transport, processing,
application, and analytics layers. The perception layer encompasses physical devices that
sense the environment and communicate data to higher layers, while the transport layer
facilitates communication between devices and cloud-based services. The processing layer,
typically hosted on edge or cloud platforms, provides storage and computation capabilities,
enabling scalability and interoperability. The application layer governs system operations,
interacts with users, and manages logical processes. Finally, the analytical layer offers
users actionable insights, enhancing decision-making. However, security challenges persist,
particularly in resource-constrained IoT devices and cloud-based middleware, highlighting
the need for robust security measures [20].

The IoT conceptual framework links billions of devices with internet access, allowing
data to interact with each other and their environment. The evolution of IoT has led to
ubiquitous data access, enabling real-time connectivity and interaction between physical
and digital systems across various domains. From its origins supporting radio frequency
identification (RFID) technology, IoT has expanded into diverse healthcare, transportation,
and smart factory/city applications [21]. Recent statistics indicate a significant rise in
connected IoT devices, with projections reaching 41 billion by 2027, translating to over
152,000 new connections per minute by 2025 [22,23]. This growth reflects a booming
market, with the global IoT market reaching USD 157.9 billion in 2021, primarily driven by
industrial applications and intelligent devices [22,23].

IoT presents opportunities to enhance productivity through real-time asset monitoring
and control. Industries make informed decisions by leveraging data from IoT devices, such
as sensors and actuators, improving operational efficiency. Additionally, IoT facilitates
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the development of smart applications in various sectors like factories, homes, cities, and
agriculture, leading to increased convenience and efficiency in daily operations.

Figure 1. IoT architectural layers.

2.2. IoT/IIoT Vulnerabilities and Attacks

Security remains a paramount concern in IoT and IIoT, given the potential safety
and risks associated with compromised systems. Vulnerabilities persist due to protocol
limitations, insufficient mitigation strategies, and challenges in real-time monitoring, as
highlighted by various studies [24–27]. Attacks target various substrata of the IoT frame-
work, often aligning with the Open Systems Interconnection (OSI) model [25,26].

A comprehensive examination of SCADA attacks reveals their significance within
the IIoT [24]. SCADA is a pivotal component of the IIoT infrastructure responsible for
monitoring industrial processes. SCADA systems integrate data acquisition, transmission,
and human–machine interface (HMI) techniques. HMIs serve as interfaces connecting indi-
viduals to devices, facilitating data visualization and real-time monitoring of production
processes, as well as machine input and output. SCADA architecture typically comprises
the master terminal unit/station (MTU/MSU), which functions as the control center, sub-
MSUs/sub-MTUs as secondary control centers, remote terminal units/remote station units
(RTUs/RSUs) acting as programmable logic controllers (PLCs) and intelligent end devices
(IEDs), used for sensor and actuator data monitoring. The authors looked at common
IoT/IIoT attacks, their methodologies, and frequently employed tools in IoT/IIoT [24,28]
as follows:
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1. Distributed denial-of-service and denial-of-service (DDoS/DoS) attacks deprive au-
thorized users of network resources, primarily targeting availability requirements [4].
In such scenarios, a compromised remote terminal unit (RTU) inundates the master
terminal unit (MTU) with arbitrary packets, causing network capacity depletion and
hindering the accessibility of resources for legitimate users. The RTU and MTU’s
communication ability is interfered with, impeding supervision and process tracking.
Low Orbit Ion Cannon (LOIC), Slowloris, Raksmart, Hulk, and Tor’s Hammer are
typically used attack tools [24,29,30].

2. The man-in-the-middle (MiTM) attack intercepts network traffic by infiltrating device
communication paths. It is achieved by observing the network, inserting irregularities
into transmissions, and relaying them to the intended recipient. Successful execu-
tion of this attack hinges on maintaining the session connection while keeping the
attacker’s presence concealed, using spoofed IPs to evade detection [28,31]. SSLStrip,
Evilgrade, and Ettercap are standard tools that enable MiTM attacks [24,32,33].

3. MTUs and sub-MTUs can access the wired or wireless network through passive or
active eavesdropping, allowing attackers to introduce spyware and exploit vulnerabil-
ities [28,34].

4. Masquerade attacks involve impersonating legitimate network users through fake
identities and IP spoofing, facilitating the theft of sensitive information. Attackers may
employ brute force tactics to exploit stolen passwords for unauthorized access [28,35].

5. Viruses, Trojan horses, and worms are deployed by attackers post-MitM or masquer-
ade attacks to infect MTUs. These malicious codes grant unauthorized access to the
infected system, allowing attackers to launch further assaults or propagate throughout
the network, potentially causing system instability or collapse [28].

6. Fragmentation attacks exploit weaknesses in packet reassembly processes, causing
MSU/MTU failure when transmitting oversized data, leading to system collapse [28].

7. Doorknob rattling involves preparatory actions, such as limited system access at-
tempts, to test security measures’ readiness and responsiveness before an attack [28].

8. Attacks known as reconnaissance aim to learn more about a network and its hardware
characteristics. Guarding sensor readings from the operational procedure is, therefore,
essential. Attacks such as response injection introduce deceptive inputs into a control
system, prompting control algorithms to make incorrect decisions. In a command
injection assault, fictitious control commands infiltrated the control system. Human
intervention may cause an improper control action, or bogus commands may be
injected and cause RTU and field device register values to be overwritten [24,28,36].

2.3. Overview of Blockchain Technology

A blockchain, originally designed to support cryptocurrencies, has evolved into a
disruptive force across various sectors. It serves as a decentralized ledger, ensuring secure
and transparent recording of transactions. Its distributed architecture and cryptographic
principles guarantee data integrity and resilience against tampering [37]. Security issues
with IoT devices, blockchain, and connecting IoT devices to blockchain networks are
cybersecurity concerns for blockchain-based IoT systems [2,38].

A blockchain operates as an open digital ledger on a peer-to-peer network, recording
timestamped transactions in immutable blocks. Each block is connected to the following
and encrypted, maintaining transparency and integrity without centralized control. It
encompasses public and private variants, with public blockchains offering universal access
and private ones restricting entry to authorized entities [38]. Transactions undergo digital
signing, grouping, and storage in a distributed electronic database, ensuring consensus and
verification to prevent tampering. This decentralized approach ensures data consistency
across all ledger copies. Figure 2 shows the blockchain data transmission approach within
the IoT networks.
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Figure 2. Blockchain transaction process.

2.3.1. Major Blockchain Security Features

1. Data immutability and integrity: Blockchain’s immutability guarantees that recorded
data remain unchangeable without network consensus, making it ideal for securing
critical IoT data like sensor readings, supply chain details, and device logs. This
feature is crucial for maintaining data integrity, a top priority in IoT systems requiring
accurate and unaltered data throughout storage and transmission [2,39].

2. Decentralization and transparency: Acting as decentralized and distributed ledgers,
transactions are recorded across numerous nodes, ensuring no single entity controls
the network. The decentralized architecture in IoT devices lessens the dependence
on central authorities and promotes transparent and tamper-resistant transactions.
It eliminates single points of failure and bolsters system resilience against cyber
threats [2,40].

3. Smart contracts: These self-executing agreements coded on the blockchain automat-
ically execute actions based on conditions, reducing reliance on intermediaries in
IoT transactions [41,42]. By automating predefined tasks, such as maintenance alerts
or data validation, smart contracts improve efficiency and minimize the need for
intermediaries and potential vulnerabilities in IoT transactions [40].

4. Consensus mechanisms: Consensus mechanisms are sets of rules and protocols used
in blockchain networks to achieve agreement among network participants regarding
the validity of transactions and the state of the distributed ledger [43]. This ensures
that all nodes in the network reach a consensus or joint decision about the current
state of the blockchain. Various consensus mechanisms facilitate agreement and trust
in decentralized networks by establishing rules for adding new transactions to the
blockchain and resolving conflicts among participants [44]. Some of these mechanisms
are as follows:

a. Proof of Work (PoW): Requires solving complex puzzles for transaction vali-
dation and block creation; ideal for highly secure IoT systems like industrial
control systems [42–44].

b. Proof of stake (PoS): Selects validators based on staked coins; offers energy
efficiency suitable for resource-constrained IoT devices like smart home sys-
tems [42,43].

c. Delegated proof of stake (DPoS): Uses elected nodes for transaction valida-
tion, ensuring high speed and scalability for real-time IoT applications like
smart cities.
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d. Proof of authority (PoA): Validators verify identity; benefits enterprise IoT de-
ployments like supply chain management and ensures accountability [42,43].

e. Practical Byzantine fault tolerance (PBFT): Focuses on low latency and high
throughput, making it suitable for financial IoT systems or autonomous ve-
hicles requiring rapid consensus. These mechanisms collectively ensure data
integrity, security, and trust in IoT, tailored to specific IoT application needs and
constraints [42–44].

5. Identity management and authentication: Blockchain-based identity solutions enable
secure and verifiable identity management in IoT to establish trust among themselves,
ensuring that only authorized devices participate in the network [45].

6. Encryption: Transactions and data stored on the blockchain are encrypted using
advanced cryptographic algorithms, ensuring that data remain private and secure,
and protecting sensitive IoT data against vulnerability [45].

7. Privacy and confidentiality: Private blockchains provide controlled access to data,
guaranteeing confidentiality and making them suitable for scenarios where sensitive
information needs secure sharing. IoT leverages private blockchains for securely ex-
changing critical data, such as patient health records or industrial process data [2,45].

Blockchain’s features contribute significantly to IoT cybersecurity by providing trust,
transparency, and robustness [2,5]. However, scalability remains a hurdle for expansive
IoT implementations due to energy-intensive consensus mechanisms. In addition, inter-
operability is needed across various blockchain and IoT protocols for seamless device
integration [5,38]. Researchers continue to explore innovative solutions to address chal-
lenges and enhance the synergy between blockchain and IoT. Figure 3 elucidates blockchain
integration with AI for intrusion detection.

Figure 3. A diagram of an example of the combination of blockchain and IDS, visually demonstrating
the benefits of intrusion detection [46].

2.3.2. Opportunities and Challenges in Blockchain–IoT Convergence

The convergence of blockchain and IoT presents a compelling synergy, combining
blockchain’s decentralized, transparent ledger with the interconnected network of IoT
devices [47,48]. Blockchain, known for its secure transaction data storage, has expanded
beyond cryptocurrencies like Bitcoin to include immutable data chains [49]. IoT, con-
versely, encompasses a vast array of interconnected devices exchanging data, facilitating
innovative interactions, and bridging physical and digital domains [47]. Integrating IoT
with blockchain networks presents opportunities to enhance data integrity, trust, and
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decentralization in IoT systems [2,50]. Through blockchain, IoT devices can securely trans-
mit data, ensuring immutable records of transactions [51]. This approach fosters trust
between devices, reducing dependence on central authorities and intermediaries, thus
enhancing security and resilience [51,52]. The intersection of IoT and blockchain faces
challenges in scalability, resource constraints, and privacy [2,21,50,52–57]. As IoT expands,
ensuring blockchain scalability while considering the limitations of IoT devices becomes
crucial [56]. Optimizing blockchain solutions for IoT devices’ computational and storage
constraints poses a challenge [58,59]. Balancing transparency and data privacy is also
complex, requiring innovative approaches to maintain the benefits of a transparent ledger
while safeguarding sensitive information.

2.3.3. Trends and Innovations in Blockchain and IoT Convergence

Several significant trends mark the convergence of blockchain and IoT [48]. Edge com-
puting is rising, boosting real-time processing for IoT devices and reducing latency, while
AI integration enables advanced decision-making and predictive analytics [54]. The deploy-
ment of high-speed 5G networks further empowers IoT applications [60], complemented
by developing communication frameworks like blockchain-enabled architectures to ensure
secure data exchange among IoT nodes [21]. However, navigating this landscape requires
addressing challenges and seizing opportunities to shape the future of interconnected
intelligent systems [21,54].

Blockchain technology has garnered attention for its secure transaction methods and
potential to address internet security issues. Recent innovations like federated blockchain
offer enhanced scalability and transaction privacy, exemplified by platforms like R3 and
Corda [21,61,62]. Blockchain-as-a-service (BaaS) simplifies blockchain app development
and maintenance, while Ricardian contracts provide legally valid electronic documents
linked to agreements [21,61,63]. Blockchain interoperability facilitates seamless data ex-
change and cross-chain transactions, while integration into social networking incentivizes
content creation through token rewards. Hybrid blockchains offer enhanced security and
flexibility by combining public and private blockchain elements [21,61–63].

2.3.4. Potential Use and Applications

The IoT industry is witnessing a surge in interest, focusing on integrating real-time
data analytics directly into IoT standards. Previously seen as a passive data monitor-
ing tool, IoT now empowers autonomous applications with real-time decision-making
capabilities, becoming a fundamental requirement in deployments [5,64]. For instance, inte-
grating real-time analytics with equipment monitoring systems in manufacturing facilities
has transformed predictive maintenance practices [2,21]. By combining sensor data with
advanced analytics, manufacturers can predict equipment failures proactively, minimiz-
ing downtime and optimizing production efficiency, especially in critical industries like
automotive manufacturing or semiconductor fabrication [2,64].

Meanwhile, the modern internet landscape is evolving to prioritize the availability
and security of connected resources. With its decentralized ledger system, blockchain
technology is reshaping transactions across sectors like finance, healthcare, and supply
chain management [2,21,51,65,66]. Blockchain enables smart devices to offer users greater
control and insights, while integrated sensors enhance real-time monitoring in supply
chains [65]. Smart contracts streamline agreement execution, reducing reliance on interme-
diaries [2]. Furthermore, blockchain applications extend to healthcare, electronic voting
systems, digital identity verification, and property registration, addressing governance and
asset management challenges [67]. In addressing global challenges such as the COVID-19
pandemic, blockchain, and IoT integration offer transparent and efficient solutions for
collective action [2].

The blockchain’s decentralized and impenetrable structure offers several benefits
when integrated into IoT systems. Some critical use cases and applications are as follows:
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1. Data integrity and immutability: Ensures data integrity from IoT devices, offering
an immutable ledger where data records are cryptographically linked, time-stamped,
and unalterable. Each transaction is securely stored, guaranteeing the authenticity
and reliability of IoT data [2,56,68].

2. Secure device identity and authentication: Verifies IoT device identities and prevents
unauthorized access. Blockchain-based digital certificates uniquely identify devices,
with smart contracts enforcing access control. Only authorized devices, validated
through cryptographic measures, can interact within the network [21,56,66].

3. Decentralized access control: Reduces reliance on central authorities and eliminates
single points of failure. Blockchain enables decentralized access control through smart
contracts, ensuring distributed permissions management. No single entity controls
the entire IoT network, enhancing resilience and security [2,21,56].

4. Supply chain transparency and traceability: Tracks the journey and origin of data
and records all transactions transparently and tamper-proof, providing an immutable
audit trail. This fosters trust and reduces the risk of anomaly [2,52,56].

5. Secure firmware updates: Ensures secure over-the-air (OTA) updates for IoT devices
and verifies the authenticity of firmware updates, allowing devices to validate soft-
ware integrity before installation. This safeguards against malicious updates and
ensures device security [2,21,56].

6. Distributed threat intelligence sharing: Collaborates on threat intelligence across IoT
networks and facilitates secure sharing of threat data among devices and organizations.
Malware signatures, attack patterns, and other threat intelligence can be exchanged,
enhancing collective defense mechanisms [2,21,56].

7. Privacy-preserving data sharing: Enables selective data sharing while protecting
privacy, employing privacy-preserving techniques like ZKPs to enable selective data
disclosure. Users can share specific data without revealing sensitive information,
ensuring privacy while promoting collaboration [2,21,56].

8. Smart contracts for automated security policies: Automates security policies and
responses. Smart contracts execute predefined security rules autonomously. For
instance, compromised devices can be automatically isolated from the network, pre-
venting further threats and maintaining network integrity [2,51,56].

2.4. Examining Blockchain’s Progression in the Quantum Age

Notwithstanding the industrial transformation by blockchain’s decentralized and
secure characteristics, the rise of quantum computing presents significant challenges to
the conventional cryptographic methods underpinning blockchain systems. Quantum
computers exploit quantum bits (qubits) to perform computations exponentially faster than
classical computers, potentially breaking widely used encryption algorithms like Rivest–
Shamir–Adleman (RSA) and elliptic curve cryptography (ECC) [69,70]. Shor’s algorithm
exemplifies this threat by efficiently factoring large numbers and exposing current encryp-
tion schemes [71]. Researchers are actively developing post-quantum cryptographic (PQC)
algorithms that resist attacks from classical and quantum computers to counter quantum
threats [71–73]. These PQC algorithms ensure long-term security for blockchain systems,
including lattice-based cryptography, code-based cryptography, hash-based signatures,
and multivariate polynomial cryptography [69,70].

Blockchain platforms are exploring the integration of post-quantum cryptography to
address these challenges [70]. This integration entails upgrading cryptographic primitives
such as digital signatures, key exchange protocols, and hash functions to PQC standards
while maintaining backward compatibility and transaction efficiency [72]. Adopting proac-
tive measures and fostering collaboration among blockchain developers, cryptographers,
and quantum computing experts are crucial for securely navigating this transition [70,71,73].
Implementing robust post-quantum cryptographic standards is paramount to upholding
the integrity and security of blockchain systems amidst quantum advancements [69,70,72].
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2.5. Analysis of Survey on Blockchain for Security Concerns of IoT/IIoT

Ferrag et al. [55] conducted a summary of existing studies on IoT network security
with blockchain and investigated blockchain-based security and privacy systems across
various types of IoT applications. The work compared consensus algorithms based on
nine properties and classified security analysis techniques into four categories. Finally,
they highlighted steps for constructing and assessing security systems built on blockchain.
Exploring blockchain’s potential beyond cryptocurrency, Padma et al. [53] focused on
its applications in IoT monitoring and supply chain management, proposing blockchain
integration as a viable solution and highlighting research challenges and opportunities in
leveraging blockchain for IoT advancement. Abubakar et al. [57] conducted a thorough
survey on integrating blockchain with IoT, outlining limitations, benefits, and architectural
insights across various IoT domains, addressing challenges, exploring solutions, and
proposing future research directions.

Ankit et al. [38] systematically surveyed recent IoT security technologies, empha-
sizing session keys, blockchain integration, AI-based authentication, and authentication,
stressing the need for ongoing improvements and collaboration in security mechanisms
to address evolving threats and inspire future research in IoT security. Blockchain’s de-
centralized nature offers promising solutions for enhancing IoT security, as explored by
Banda et al. [74], who reviewed security enhancements facilitated by blockchain for IoT,
including identity management, authentication, and data privacy, and examined its role in
enabling end-to-end food traceability. Alam et al. [21] investigated blockchain integration
with IoT architecture, evaluated academic research, discussed issues of interoperability and
stability, and explored trends and advantages of combining blockchain with IoT.

Mathew et al. [12] analyzed blockchain’s capabilities in IIoT, identifying vulnerabilities
and proposing blockchain integration with collaborative IDS to enhance trust in IIoT
networks. Shamar et al. [58] concluded that integrating blockchain with IoT presents
significant security challenges and emphasized the need for pre-validation of data, security
measures in public spaces, and tailored lightweight blockchain-powered solutions for IoT
requirements. Alzoubi et al. [56] evaluated the state of blockchain-integrated IoT, examining
challenges, proposed solutions, future research directions, and emerging trends, aiding
practitioners and researchers in navigating integration complexities. A new paradigm
investigated the possibility of handling security and privacy concerns, particularly in IDS
for IIoT networks employing a combination of federated learning (FL) and blockchain [59].
Exploring the potential of blockchain in FL for enhancing IDS in monitoring IIoT network
traffic offered recommendations for effective implementation. It also discussed concerns
and potential avenues for future study in the duo for cybersecurity and intrusion detection
for IIoT.

2.6. An Overview of Related Works and Areas for Research

The review mentioned above in blockchain and IoT integration shows that the ap-
plicability of blockchain to IoT cybersecurity has not yet been thoroughly studied. This
evaluation effort boldly depicts the connection between explainable AI (XAI) and IoT secu-
rity. Although there are surveys on the integration of blockchain and IoT for cybersecurity,
as far as we know, research has yet to consider demonstrating the role of blockchain in
improving intrusion detection performance. However, despite the multiple surveys regard-
ing the security of IoT and blockchain, a limited survey is available on integrating both
technologies for intrusion detection in IoT. Thus, this is the first attempt to comprehensively
review incorporating blockchain and IoT for secure intrusion detection in IoT networks.
Table 1 summarizes the research on blockchain technology’s role in IoT cybersecurity, fo-
cusing on its limitations and the advancements proposed in this research. Existing studies
offer valuable insights into how blockchain can enhance IoT security, particularly in IDS.
This research guides future investigations, suggesting avenues for further integration and
exploration in this field.
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Table 1. Summary of the review of the literature highlighting the key findings of each paper (Yes:
√

,
No: χ).

Author Year Systematic Review Methodology IoT Blockchain Integration IDS Use Case Demonstration

[75] 2018 χ
√

χ χ χ

[53] 2019 χ
√

χ χ χ

[74] 2019 χ
√ √

χ χ

[68] 2019
√ √

χ χ χ

[54] 2019 χ
√

χ χ χ

[76] 2020 χ χ χ χ χ

[77] 2020 χ
√ √ √

χ

[78] 2020 χ
√ √

χ χ

[55] 2021 χ
√ √

χ χ

[58] 2021 χ
√

χ χ χ

[12] 2022
√ √ √ √

χ

[38] 2022 χ
√

χ
√

χ

[57] 2022 χ
√

χ χ χ

[56] 2022 χ
√

χ χ χ

[52] 2022 χ
√ √

χ χ

[65] 2022
√ √ √

χ χ

[79] 2022 χ
√ √

χ χ

[21] 2023 χ
√ √

χ χ

[80] 2023 χ
√ √ √

χ

[59] 2024
√ √ √ √

χ

This Study 2024
√ √ √ √ √

3. Review Methodology

This section presents a methodical illustration utilized for the in-depth evaluation.
The ‘mentefacto conceptual design’ [81] and the meta-analysis (PRISMA) [82,83] served as
inspiration for the creative reviewing methodologies used in this work. Articles released
between 2019 and 2024 were given precedence during the selection process. However,
the year of publication becomes inconsequential in the event of a historical context in the
evaluation. Ref. [84] states that the following databases are the best places to find research
about computer science and engineering: IEEE Xplore, ScienceDirect, Springer, a few social
media sites like Academia and Google Scholar, ResearchGate, and Sage. Furthermore, we
only considered papers prepared in English for our final evaluation. Table 2 summarizes
the lists of documents based on the database source using the critical search terms AI’,
‘CYBERSECURITY’, ‘BLOCKCHAIN’, ‘IDS’, ‘IoT’, and ‘IIoT’. Similarly, Figure 4 displays
the flow diagram for PRISMA used for the comprehensive analysis and the criteria for
choosing the last set of papers. For IDS, only AI-BLOCKCHAIN integrated documents
were used for quantitative analysis. As a result, a thorough narrative analysis enabled a
systematic summary and described the findings of the screened literature. The following
are the requirements for inclusion of papers in the survey:

1. The articles must be original works released as conference proceedings, journals, or arXiv.
2. The final discussion does not consider background and history; only papers published

between 2019 and 2024 are included.
3. Only articles that discuss the problems and challenges of integrating AI-BLOCKCHAIN

for cybersecurity are considered for the qualitative study.
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4. To be eligible for comparison, this review paper must address blockchain and AI
integration for IDS and security compared to other recent review works.

5. English must be used to write all of the papers.
6. Finally, publications with access restrictions are excluded because the writers could

not access the databases.

Figure 4. PRISMA flow illustrates how the final 111 papers at the reference were chosen and the
10 publications that specifically addressed combining blockchain with AI for IDS in IoT.

Table 2. Publications employed in this study.

Database Source No. of Documents % Freq

IEEE Xplore (Journals) 30 27.03

IEEE Xplore (Conferences) 10 9.01

MDPI 18 16.22

Springer 18 16.22

ACM 3 2.70

arXiv Pre-print 2 1.80

Google Scholar 5 4.50

Hindawi 1 0.9

Frontiers 2 1.80

Taylor & Francis 1 1.09

ScienceDirect (Elsevier) 12 10.81

Other Sources (Blogs, Reports, and Websites) 10 9.01

Total 111 100.00
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Table 2 and Figure 4 contain the usage summary and document searches, respectively.
A total of 189 (130 + 59) publications were found throughout the search. Screening out
22 papers due to duplication left 167. Following a relevancy screening and removing
papers with open abstracts but restricted access to the full text, 20 were eliminated. With
the above inclusion criteria, 20 of the 129 left documents were eliminated. For the survey,
111 publications in all were used. Of these, 101 were used for qualitative analysis, and
the remaining 10 (see Table 3) were only articles on AI and BLOCKCHAIN integration
implementation for cybersecurity. Thus, they were used for the particular review.

Table 3. Articles on blockchain-based IDS techniques for IoT/IIoT.

Study Technique Focus Achievement Year

[85]

Proposed a combination of
blockchain and CNN for
Software-defined network
(SDN)-based IIoT architectures

To detect and prevent security
threats in the application and
network security layers of the
SDN-based IIoT architectures.

Minimized the impact of attacks on
SDN-based IIoT architecture layers. 2023

[86]

Creation of an IDS powered by ML
algorithms and blockchain to
improve the privacy and security of
IoT devices.

Aims to encrypt interactions
between IoT devices.

Simulation results could improve
privacy and security by providing a
tamper-proof decentralized
communication system.

2023

[87]
Deep learning with blockchain
orchestration for safe data transfer
in IoT-enabled healthcare systems.

The approach ensures secure data
transmission and integrity by
exploiting the zero-knowledge
proof (ZKP) scheme

Using the Ethereum smart contract
to handle data security concerns
with the interplanetary file system
(IPFS) for off-chain storage to
alleviate the problem of data
storage costs.

2023

[88] A hybrid decision tree method To integrate ML with blockchain for
anomaly detection

Predict attack within the shortest
time with high detection accuracy. 2023

[89] A lightweight blockchain security
model driven by AI.

To guarantee the security and
privacy of cloud-based IIoT
systems.

Improved performance in anomaly
detection when compared with
other models.

2023

[90] A secure aggregation mechanism
for FL based on blockchain

By ensuring secure aggregation,
local device data masking stops
hostile servers from compromising
and reconstructing training data.

The technique minimizes resource
waste and quickens the global
model’s convergence rate by
synchronizing clients with an
antiquated model.

2023

[91]
A blockchain network is used in the
proposed system for a safe FL
model aggregation.

To safely carry out the FL-based
aggregation and produce a global
model.

According to experimental results,
the framework’s processing time
was nearly identical to that of the
original FL model.

2023

[92]

Multi-signature authentication is
used to confirm the integrity of the
global ML model and TEE is used
to safeguard each client’s local
model training.

To give a verifiable ML model and
guarantee the participant’s local
model training security.

The training on the secure enclave
resulted in a slight drop in accuracy,
according to the experimental
findings. Additionally,
multi-signature execution time has
no discernible impact on blockchain
network speed.

2023

[93] A blockchain-driven edge
intelligence methodology

Incorporates blockchain based on a
reputation for decentralized
transaction recording and
verification, guaranteeing privacy
and data protection.

The simulation findings validate
the approach’s efficiency and
robustness over state-of-the-art
cyberattack detection methods.

2022
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Table 3. Cont.

Study Technique Focus Achievement Year

[94]
A security architecture that
combines SDN and blockchain
technology.

To defend industrial control
processes from counterfeit
commands and stop misrouting
attacks on OpenFlow rules in
industrial IoT systems with SDN
enabled.

The assessment’s findings confirm
the suggested security measures’
effectiveness and efficiency.

2019

The rapid IoT expansion, connecting billions of devices, faces several critical chal-
lenges, including counterfeit hardware, communication security, system management
complexities, and data privacy issues. Although in its infancy, studies have shown that
the emergence of blockchain technology, known for its decentralization, transparency, and
security, aims to enhance resilience against single points of failure. Immutable records
enable transparent data sharing and auditing with cryptographic mechanisms to improve
data integrity and authentication while automating processes and enforcing rules within
the IoT network. Table 3 highlights some attempts at blockchain-based intrusion detection
systems for IoT. The next section spotlights this study’s findings on blockchain applications
for IoT intrusion detection.

4. Findings and Discussion
4.1. Role of Blockchain in Enhancing IDS Security

Blockchain enhances IDS security by ensuring the integrity and reliability of security
data through its immutable and decentralized architecture [85–87,95]. Timestamping
and cryptographically linking data blocks enable secure and tamper-proof logging of
IDS events, mitigating the risk of data manipulation or deletion [91,92]. Additionally,
blockchain’s distributed consensus mechanism eliminates single points of failure in IDS
networks. It provides a transparent audit trail of security events, enhancing reliability
and fault tolerance against cyber threats [87,90], and strengthening IDS security. The
immutability of blockchain prevents unauthorized alterations once data are recorded, while
distributed nodes fortify resilience and resistance against attacks [88,89,94]. Encryption
further safeguards identity data, making any attempts to alter data detectable due to
the blockchain’s transparent nature [87,93]. Existing implementations and case studies
validate blockchain-based decentralized identity management systems, with key players
like IBM spearheading advancements in various sectors using blockchain technology [96].
The decentralized identity management systems empower consumers with control over
their data, ensuring enhanced privacy, security, and interoperability while fostering a
user-centric approach [96]. Overcoming challenges and effectively adopting blockchain
can lead to developing safer and more respectful digital identity management systems [96].

Integrating blockchain technology with ML holds immense potential for strengthen-
ing security in IoT networks. It offers tamper-resistant and transparent data integrity and
transaction verification, which enhances intrusion detection capabilities [16]. This synergy
enables real-time monitoring, pattern identification, and anomaly detection, facilitating
efficient resource management and proactive maintenance [97]. Combining optimiza-
tion techniques yields a robust and scalable solution for intrusion detection, boosting
efficiency and security in interconnected environments [98]. Improves process efficiency,
reducing spatiotemporal scenarios and enabling smart manufacturing processes while
facilitating extensive data analysis in industrial IoT networks [12]. Combining blockchain’s
immutable nature with ML’s resilience enhances IDS accuracy, trustworthiness, and trans-
parency, ensuring data integrity, eliminating single points of failure, and providing au-
ditable and tamper-proof logs and audit trails for better monitoring and accountability in
security incidents.
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Some studies have explored the integration of blockchain and ML for intrusion detec-
tion, as in Table 3. These attempts showed significance in the various applications. Figure 5
demonstrates the combination of blockchain and IDS in a federated learning approach.

Figure 5. Illustrating the integration of blockchain and machine learning-based intrusion detection.

4.2. Security of IoT Devices

IoT systems encounter security risks like data breaches and malware due to the
sensitive nature of stored information, leading to identity theft and fraud. Exploring IoT
and blockchain security delves into blockchain’s potential applications in enhancing IoT
security. IoT devices are fundamental components of IoT systems, yet they face significant
security challenges due to resource constraints and diverse deployment environments.
Authentication and authorization methods for IoT devices in blockchain-based systems
must be lightweight and scalable to accommodate limited resources while ensuring security
and privacy. Additionally, ensuring firmware integrity and facilitating secure updates are
critical but complex tasks in IoT device security, which blockchain smart contracts and
consensus mechanisms can address. Moreover, securing communication channels and data
privacy and addressing physical security concerns are essential to protecting blockchain-
based IoT systems from various threats [2,5,52].

4.3. IoT Network Security

In blockchain-based IoT systems, network security is paramount for ensuring system
reliability. Challenges include mitigating DDoS attacks, where the distributed network’s
nature amplifies risks, and addressing Sybil attacks through identity verification mech-
anisms. Detecting and mitigating rogue devices is crucial, facilitated by blockchain’s
tracking capabilities and anomaly detection algorithms. Additionally, interoperability
challenges between IoT devices and blockchain networks necessitate standardized com-
munication protocols and APIs [68]. Furthermore, as IoT device interconnections grow,
adopting blockchain can streamline data flow by enabling direct device interactions without
centralized servers, enhancing system efficiency and security [5,21,75].
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4.4. Blockchain Security in IoT

Blockchain technology, fundamental to blockchain-based IoT systems, introduces
unique cybersecurity challenges. Consensus mechanisms, crucial for transaction validation,
pose challenges due to IoT device constraints, requiring lightweight and energy-efficient
solutions. Scalability and performance issues arise from the high transaction volume,
demanding scalable blockchain solutions tailored to IoT requirements. Privacy concerns
necessitate privacy-preserving techniques like ZKPs, while smart contracts require rigor-
ous security measures to mitigate vulnerabilities. Achieving consensus and governance
among diverse stakeholders and navigating regulatory complexities further underscore the
multifaceted security challenges in blockchain-based IoT systems [2,51].

IoT devices face security risks like data breaches and malware due to design flaws,
interoperability, and remote deployment. Blockchain integration offers encryption, au-
thentication, access control, and vulnerability management to bolster IoT security [2,66].
Although XAI enhances accountability, debugging, adaptation, and deterrence against
attacks in blockchain-based IoT systems [83,99,100], additional methodologies such as
blockchain, feature attribution, model summarization, counterfactual justifications, and
causal modeling enhance system accountability and transparency [100,101]. Despite limita-
tions such as standardization, data privacy, and computational complexity, the potential
benefits of XAI in blockchain systems merit further exploration [83,100]. Table 3 sum-
marizes the solutions and challenges across various integration approaches of blockchain
for IoT network cybersecurity, highlighting the importance of leveraging blockchain se-
curity features to fortify IoT systems against threats and safeguard their operations and
data integrity.

4.5. Blockchain Application in IoT

The implementation of blockchain has a lot of possibilities to improve the functional-
ity and security of IoT, particularly in smart factories/cities, by ensuring increased trust,
transparency, and efficiency [2]. Critical blockchain applications in IoT systems include
data integrity and security, achieved through tamper-resistant ledgers distributed across
multiple nodes. These are crucial for managing vast data generated in intelligent sys-
tems [2,76,80]. Blockchain-based identity management ensures secure access to devices and
services by assigning unique cryptographic identities stored on the blockchain, establishing
a trustworthy framework for managing IoT ecosystem entities [76,102,103]. Smart contracts
automate transactions and processes in smart cities, enabling efficiency and transparency
in areas like energy trading and supply chain management [2,55,59]. Blockchain-based
IoT networks with decentralized infrastructure and interconnectedness have fewer inter-
mediaries and single points of failure, increasing security and reliability and boosting
resilience for industrial applications [55,104,105]. Moreover, blockchain enables micro-
payments and value exchange between IoT devices, simplifying transactions in scenarios
like automated processes in smart factories [77,80]. While this integration promises to
revolutionize industrial processes, scalability, interoperability, and governance must be
addressed for large-scale IoT deployments [2]. Data transparency and the need for security,
availability, and trustworthiness have motivated blockchain technology in IoT. The perfor-
mance, methodology, and year of publication of a few recent research on blockchain-based
IDS for IoT are summarized in Table 3.

The surge in cybersecurity attacks presents a significant challenge for protecting IoT
networks due to their inherent vulnerabilities and resource constraints. Integrating IoT with
AI has gained traction to bolster security by leveraging AI’s analytical capabilities to detect
attack patterns across network traffic [65,78]. However, centralized AI-based approaches
face trust and scalability issues, making them incompatible with the decentralized nature
of IoT. By facilitating safe data flow between untrusted nodes and offering decentralized
defense strategies, blockchain promises to improve IoT security. Despite its potential,
blockchain solutions encounter challenges such as limited insight into IoT networks and
scalability issues [65,106]. More efficient and intelligent decentralized defense solutions are
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needed to overcome these hurdles, with AI and blockchain emerging as promising allies,
combining AI’s analytical prowess with blockchain’s decentralized architecture.

A blockchain-based training scheme, a secure support vector machine, was presented
by Shen et al. [107] to protect IoT data privacy in smart city applications. By leveraging
blockchain, the model enables secure data sharing among IoT data providers without
depending upon a trusted agent, utilizing a Paillier cryptosystem and encryption methods
to guarantee data ownership, integrity, and privacy during training. IoT devices transmit
encrypted data to data providers through a unified blockchain ledger, which is stored
securely. The proposed approach, evaluated with real-world datasets like the heart disease
and breast cancer Wisconsin datasets, maintains SVM classifier accuracy while preserving
IoT data privacy.

BlockIoTIntelligence is a framework developed to improve big data analytics by com-
bining blockchain and AI [67]. It consists of four layers: cloud intelligence, fog intelligence,
edge intelligence, and device intelligence. Each layer uses blockchain and AI to process
and analyze data. The suggested approach proved highly accurate in tackling IoT security,
confidentiality, storage capacity, and data flow concerns via qualitative and quantitative
analysis, offering a more effective solution than conventional IoT schemes.

4.6. Case Study of AI-Blockchain Integration and Result Evaluation

To solve the security and privacy issues with IIoT systems, the works of [89] com-
bine blockchain with AI. In addition, the framework achieves improved classification and
detection accuracy with reduced execution time. The anomaly detection performance is
improved when auto-encoder-based transformation and blockchain authentication are
combined, as seen by the suggested model’s ability to combine high security and compu-
tational efficiency compared to alternative methods. However, the major obstacle is the
computational complexity of the consensus mechanism.

In [90], researchers utilized blockchain in an FL framework to protect end device data
from malicious servers. They introduced a callback mechanism to streamline communica-
tion between FL servers and devices, addressing issues like stragglers and dropouts while
ensuring secure aggregation of masked models to minimize complexity and resource usage,
especially for IoT devices. Despite the computational complexities inherent in blockchain,
this method enhanced computational efficiency and ensured secure communication within
the federated network. However, using an aggregator/server limits the system to a single
point of failure, which is quite concerning.

Blockchain was introduced by Kalapaaking et al. [91] to provide safe FL localized
model aggregation in IoT networks. Every blockchain node performed secure aggregation
activities using a trusted execution environment (TEE) based on Intel Software Guard
Extensions (SGX). Experiments showed comparable processing times to the original FL
model and a slight 2% decrease in accuracy. Further practical improvements are needed,
such as support for diverse jobs in blockchain-based FL with TEE-based secure aggregation,
even though a hash-based consensus mechanism assures model fidelity.

Similarly, a subsequent study by [92] presented a secure and verifiable FL framework
for IoT systems, utilizing a TEE and multi-signature scheme to protect the training process
and ensure model integrity. Participants trained local models within the TEE, which were
verified by the blockchain aggregation manager before aggregation by blockchain nodes.
The resulting global model was stored in tamper-proof storage, verified through multi-
signature, and distributed to FL participants for subsequent rounds, ensuring the integrity
of the FL process. Despite the achievement, the approach still requires enhancing the
security and speed of the training process within the secure enclave.

Recently, a study integrated blockchain to secure data privacy during aggregation
and transmission, ensuring model update integrity and transparency through smart con-
tracts [46]. This combination minimized global model loss with improved detection accu-
racy against adversarial perturbation, with average latency for training and aggregation,
respectively, enhancing security, scalability, and participant trust.
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4.7. Practical Implementation and Evaluation Results

Monitoring and optimizing the performance of the IoT systems is essential for in-
telligent industrial operations, with accurate attack prediction key for effective security
management. IoT devices serve as crucial sensors and data collectors in monitoring in-
dustrial processes, with real-time data used to train ML models for cybersecurity threat
detection, bolstering critical infrastructure security against attacks. However, sharing
sensor data centrally raises concerns about privacy and security. FL shows promise in
addressing these issues by conducting ML model training on the clients but faces a vulner-
ability in model parameter aggregation, leading to sensitive information leakage through
aggregated model updates.

This study includes exploratory results of a blockchain implementation to secure
model aggregation to tackle this challenge. The proposed system integrates blockchain with
FL, utilizing a private Ethereum platform to establish a blockchain network. FL, executed
through a Solidity-based smart contract, incorporates data encryption and aggregation
facilitated by the web3.py Python library for blockchain communication. Training involves
a convolutional neural network model with enhanced security via adversarial training,
fortifying the model against attacks. This methodology combines blockchain platforms,
smart contracts, and ML algorithms aided by the application binary interface (ABI), as
demonstrated in Figures 6–9. This results in a robust FL system with strong privacy
guarantees and resistance to adversarial attacks.

Figure 6. Screenshot showing the compilation of the smart contract.

Figure 7. Screenshot showing the connection of the smart contract ABI.

Figure 8. Screenshot showing the connection between Python and Ganache.

Figure 9. Screenshot showing the blockchain interaction function.
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The smart contract, built on the Ethereum blockchain platform, automates contract
terms enforcement and facilitates the transmission of FL-trained models to the blockchain.
Development involved using Remix IDE (https://github.com/ethereum/remix-project,
accessed on 1 February 2024) and Solidity linters for accuracy and robustness checks, ensur-
ing adherence to best practices and security standards. Complementing the blockchain, the
InterPlanetary File System (IPFS) [108] offers distributed file storage and sharing, enhancing
decentralization and data availability. The Web3.py (https://github.com/ethereum/web3
.py, accessed on 1 February 2024) Python library enables interaction with the Ethereum
blockchain, simplifying smart contract handling and providing tools for development
and testing. Challenges in storing model updates on the blockchain due to high gas fees
and scalability constraints are addressed by utilizing IPFS for secure storage, minimizing
the blockchain’s burden. Interaction functions, such as register(), facilitate client par-
ticipation in FL by initiating registration transactions, and send_data_transactions() and
send_data_blocks() functions ensure transparency by visualizing transaction details and
blockchain interaction blocks in the FL process. Table 4 illustrates the performance eval-
uation of blockchain–FL integration for securing model aggregation against adversarial
attacks [46,109].

Table 4. Comparison of the blockchain–FL integration performance between Edge-IIoT and IoT
Network intrusion datasets.

Edge-IIoT Dataset IoT Network Intrusion Dataset

Local Model Global Model Local Model Global Model

Clients Accuracy
(%) Loss Train

Time (s)
Accuracy

(%) Loss Aggregation
Time (s)

Accuracy
(%) Loss Train

Time (s)
Accuracy

(%) Loss Aggregation
Time (s)

1 81.72 0.7359 580 84.80 0.5895 501 94.11 0.2205 486 95.74 0.1551 401

2 82.59 0.7538 572 85.09 0.5892 555 93.88 0.1685 475 95.68 0.1579 445

3 80.69 0.7475 563 84.77 0.5873 564 93.82 0.2270 464 95.47 0.1638 456

4 79.60 0.7619 420 84.97 0.5871 599 94.03 0.2215 388 95.57 0.1603 548

5 82.79 0.7326 389 84.80 0.5990 530 93.84 0.2311 400 95.94 0.1568 509

Simulation results show the possibility of integrating blockchain and FL to enhance
secure model aggregation, resulting in higher accuracy and reduced loss values. It supports
the advocated strategy of blockchain integration to safeguard model aggregation in FL
against adversarial attacks. Efficient data transfer and aggregation are crucial, especially in
FL frameworks with blockchain, considering network conditions and model complexity.
Network latency becomes a critical factor in scenarios involving dispersed IoT devices.

This study validated its concepts using the Edge-IIoT set (https://ieee-dataport.org/
documents/edge-iiotset-new-comprehensive-realistic-cyber-security-dataset-iot-and-iiot-
applications, accessed on 2 November 2023) and IoT network intrusion detection (https:
//ieee-dataport.org/open-access/iot-network-intrusion-dataset, accessed on 2 November
2023) datasets, featuring 62 predictors, 15 classifications, and 157,800 observations in the
Edge-IIoT set. The IoT environment covered by these datasets includes a variety of network
attack types, including DoS, unauthorized commands, MiTM, reconnaissance, command
injection and backdoor attacks, metadata, event data, device identifiers, communication
protocols, and regular traffic. Particular sensor data, selected for their applicability in
representing communication in a highly vulnerable IIoT network, are included. The sensor
data include attributes like IP addresses, ports, protocols, packet length, flow time, and
statistics. On an Intel(R) Core(TM) i5-8500 CPU @ 3.00 GHz PC with 8 GB RAM running
Windows 11, the experimentation environment consisted of Visual Studio Code, Ganache
v2.7.1, Solidity v0.8.22, and Python 3.6.13.

https://github.com/ethereum/remix-project
https://github.com/ethereum/web3.py
https://github.com/ethereum/web3.py
https://ieee-dataport.org/documents/edge-iiotset-new-comprehensive-realistic-cyber-security-dataset-iot-and-iiot-applications
https://ieee-dataport.org/documents/edge-iiotset-new-comprehensive-realistic-cyber-security-dataset-iot-and-iiot-applications
https://ieee-dataport.org/documents/edge-iiotset-new-comprehensive-realistic-cyber-security-dataset-iot-and-iiot-applications
https://ieee-dataport.org/open-access/iot-network-intrusion-dataset
https://ieee-dataport.org/open-access/iot-network-intrusion-dataset
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4.8. Blockchain-as-a-Service (BaaS): IoT Cybersecurity Perspective

Blockchain-as-a-service (BaaS) in IoT has gained significant attention due to its poten-
tial to address cybersecurity concerns [2,50,54,79]. By integrating blockchain technology
into IoT networks, BaaS offers several advantages in enhancing cybersecurity:

1. Data integrity and immutability: Providing a tamper-resistant and immutable ledger
ensures data integrity stored within IoT networks. Due to the cryptographic links
between every transaction on the blockchain and earlier transactions, it is nearly
complicated to change past data without the network’s participants’ consent [90].

2. Secure data exchange: Enables safe, direct, peer-to-peer data transfer between IoT
devices [46,91,92]. To reduce the danger of data modification or illegal access, smart
contracts and programmable self-executing agreements on the blockchain enable
automatic and safe data exchanges based on established conditions [46].

3. Decentralization and resilience: Its decentralized architecture eliminates single points
of failure, enhancing the resilience of IoT networks against cyberattacks. With no cen-
tral authority controlling the network, blockchain ensures that data remain accessible
even in node failures or malicious attacks [46,91–93].

4. Identity and access management: It makes it possible for IoT devices to have strong
identification and access control systems, mitigating the risk of unauthorized ac-
cess and identity spoofing. By confirming the identity of network participants,
BaaS improves the security of IoT devices using decentralized authentication proce-
dures [67,107].

5. Audibility and transparency: Real-time auditing of transactions within IoT networks
is made possible by the transparent nature of blockchain technology. Data exchange
and operations recorded on the blockchain are traceable to their origin, enabling
forensic analysis and accountability in case of security breaches [51,89].

While promising solutions are available to improve cybersecurity in the IoT by offer-
ing data integrity, decentralized control, and transparency, resolving identified issues is
necessary to utilize BaaS in IoT network security fully.

4.9. Open Issues and Future Direction

In IoT deployments, devices’ limited computational power, memory, and energy pose
challenges for integrating blockchain solutions [110]. Running full blockchain nodes on
resource-constrained devices is impractical, and BaaS introduces additional latency and
strain on such devices due to network communication and consensus requirements [110].
Moreover, the transparency of public blockchains raises privacy concerns, necessitating
privacy-preserving techniques for sensitive IoT data [79]. Integrating BaaS with IoT systems
requires careful planning to address interoperability and data synchronization complexi-
ties [79]. As researchers explore lightweight cryptographic schemes and efficient integration
methods, it is crucial to balance the security benefits of blockchain with the computational
demands imposed on IoT devices.

While BaaS offers benefits for IoT, it faces challenges in scalability, consensus mech-
anisms, and latency, given the volume of interconnected devices. The overhead costs of
blockchain operations, including transaction fees and infrastructure, may limit its feasi-
bility in resource-constrained IoT environments. Additionally, the immutable nature of
blockchain transactions raises privacy concerns, necessitating privacy-preserving tech-
niques like ZKPs or private blockchains to protect sensitive IoT data [2,54,79].

Layer-2 protocols, such as lightning networks, boost blockchain scalability by han-
dling transactions off-chain and settling periodically on the main chain. Bridging diverse
blockchains via standards like Polkadot and Cosmos fosters seamless communication
among IoT networks [54,65]. PoS offers energy efficiency compared to PoW, which is
particularly beneficial for power-intensive IoT mining activities [54,111]. Directed acyclic
graphs provide scalability and energy efficiency, aligning well with IoT needs. Hybrid
models merging blockchain with traditional databases ensure security and efficiency by
storing metadata on-chain while keeping raw data off-chain [54]. Blockchain-driven edge
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computing enables edge devices to manage a lightweight blockchain locally, reducing
latency and enhancing privacy.

The ongoing advancement of quantum computing underscores the importance of forti-
fying blockchain against quantum attacks through research on quantum-safe cryptographic
algorithms [69–71]. Addressing blockchain’s energy consumption requires focusing on
energy-efficient consensus protocols like PoS or PoA [54]. Scalability solutions such as
sharding, sidechains, or off-chain protocols are critical for large-scale IoT deployments.
Future exploration areas include interoperability standards, privacy-preserving mecha-
nisms like ZKPs, and integrating AI/ML with blockchain for robust cybersecurity [54,65].
Real-world testing, regulatory compliance frameworks, and collaborative industry efforts
are pivotal for validating and implementing blockchain-based IoT security solutions [2,54].

This study reveals that to uphold blockchain integrity and security against quantum
threats, it is crucial for blockchain platforms to seamlessly integrate algorithms like PQC
while upgrading cryptographic primitives like digital signatures, key exchange protocols,
and hash functions to PQC standards [71–73]. There is a need to maintain reverse col-
laboration to enhance transaction efficiency. Collaboration among blockchain developers,
cryptographers, and quantum computing specialists is necessary to navigate this quantum
transition safely [71–73].

5. Conclusions

This paper comprehensively reviews blockchain applications for cybersecurity in IoT
networks, presenting a robust framework for integrating blockchain into IDS within IoT
networks and addressing crucial research avenues, current trends, and notable challenges.
The study illuminates emerging areas in IoT security through a systematic analysis of
articles spanning AI, blockchain, IDS, IoT, and IIoT. By evaluating recent advancements
and diverse AI blockchain integration methods, this research underscores the pivotal role of
blockchain in bolstering intrusion detection performance. This framework offers a roadmap
for collaborative exploration, aiming to advance IDS for universally accessible, scalable,
transparent, immutable, and decentralized IoT networks, driving innovation in IoT cy-
bersecurity. Simulation results from highlighted case studies demonstrate that—despite
resource constraints and privacy issues—blockchain’s intense presence in IoT networks
ensures ongoing progress toward a more secure and resilient IoT landscape, necessitat-
ing further research into lightweight cryptography, efficient consensus mechanisms, and
privacy-preserving techniques to overcome existing barriers.
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