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Bandit Learning based Stable Matching for
Decentralized Task Offloading in Dynamic Fog
Computing Networks
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Abstract—This paper deals with the task offloading problem
in the dynamic fog computing networks (FCNs) that involves the
task and resource allocations between a set of task nodes (TNs)
having task computation needs and a set of helper nodes (HNs)
having available computing resources. The problem is associated
with the presence of selfishness and rational nodes of these nodes,
in which the objective of TNs is to minimize the task completion
time by offloading the tasks to the HNs while the HNs tend
to maximize their monetization of task offloading resources. To
tackle this problem, we use the fairness and stability principle of
matching theory to assign the tasks of TNs to the resources of HNs
based on their mutual preferences in a decentralized manner.
However, the uncertainty of computing resource availability of
HNs as well as dynamics of QoS requirements of tasks result in
the lack of preferences of TN side that mainly poses a critical
challenge to obtain a stable and reliable matching outcome. To
address this challenge, we develop the first, to our knowledge,
Thompson sampling based multi-armed bandit (MAB) learning
to acquire better exploitation and exploration trade-off, therefore
allowing TN to achieve the informed preference relations of HNs
quickly. Motivated by the above considerations, this paper aims
at design a bandit learning based matching model (BLM) to
realize the efficient decentralized task offloading algorithms in
the dynamic FCNs. Extensive simulation results demonstrate the
potential advantages of the TS based learning over the e-greedy
and UCB based baselines.

Index Terms—Decentralized task offloading, exploitation and
exploration dilemma, fog computing network, multi-armed ban-
dit, stable matching, Thompson sampling.

I. INTRODUCTION

A. Context and Motivations

RACTICALLY, the Internet of things (IoT) has become
an integral element for realizing smart practical systems
such as smart cities [1], smart factories [2], smart logistics,
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and supply chain [3], [4]. The fundamental aspect of IoT-
based systems is to connect all devices through the Internet
protocol to exchange high volume data and process them to
create smart services and applications. Owing to limited com-
putation resources, network, storage, and energy, IoT devices
are inadequate for executing all computational tasks, especially
tasks with huge volumes and complex data structures. So far,
cloud computing still has been an essential solution to this
problem because it provides powerful resources to support
the task computation efficiently through different on-demand
services (i.e., PaaS, IaaS, SaaS) [5], [6]. Nevertheless, cloud
computing-based solutions may be inadequate to satisfy the
expected quality of service (QoS) and quality of experi-
ence (QoE) requirements for certain types of latency-sensitive
applications because of the long physical distance between
the IoT devices and the remote cloud servers, scarce spectrum
resources, and intermittent network connectivity.

This context has led to an integration of fog computing
networks (FCNs) in middle between the end devices and cloud
layer to process and offload most tasks on behalf of the cloud
servers, thereby allowing for the QoS and QoE requirements to
be satisfied [7], [8]. Besides providing the cloud like services
to end devices, the fog computing potentially improves the
performance of fog-based systems such as reduction of service
delay [9] and energy saving [10].

However, to realize these benefits of fog computing
paradigm, there requires efficient resource allocation strategies
to perform task offloading operations [11] that is known as
multi-task multi-helper (MTMH) problem in the FCNs [12]. A
critical issue to be solved in this problem is how to efficiently
map multiple tasks into multiple helper nodes in order to de-
crease the service latency. Indeed, there are many factors that
challenge the design and development of effective offloading
strategies such as the heterogeneity of fog nodes, various types
of computational tasks with different QoS requirements [13],
and time-varying nature of fog node capabilities. There are
a large number of centralized optimization techniques and
algorithms proposed in the literature to provide optimal solu-
tions to the aforementioned resource allocation problems [14].
However, these solutions require a centralized control to gather
the global system information, thus incurring a significant
overhead and computation complexity of algorithms. This
complexity is further amplified by the rapidly increase of
density and heterogeneity of FCNs [15] when dealing with
combination integer programming problems [16].

Obviously, the aforementioned limitations of global opti-

Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

1229-2370/24/$10.00 © 2024 KICS



TRAN-DANG AND KIM.: BANDIT LEARNING BASED STABLE MATCHING ...

mization approaches in such the complex environment leads to
a fundamental shift from the traditional centralized mechanism
toward decentralized one. The existing literature has acknowl-
edged a class of game theory based decentralized task of-
floading (DTO) solutions developed to avoid the cost-intensive
centralized resource management as well as substantially re-
duce the complexity of algorithms [17], [18]. Despite their
potentials, these approaches pose several shortcomings. First,
classical game theoretical algorithms such as best response
require some information regarding actions of other play-
ers [19]. Correspondingly, many assumptions are introduced
in the game theory based algorithms to simplify the system
models that, in some case, are impractical. Second, most game-
theoretic solutions, for example, Nash equilibrium, investigate
one-sided stability notions in which equilibrium deviations are
evaluated unilaterally per player [20]. In addition, the stability
must be achieved by both sides of players (i.e., TNs and HNs)
in the context of fog computing environment to handle the
selfishness and rationals of individual players.

Recently, matching theory (MT) has emerged as a promising
technique for solving offloading problems in the fog comput-
ing because it can alleviate the shortcomings of game theory
and optimization-based schemes [21], [22]. Basically, match-
ing theory provides mathematically tractable solutions for the
combination problem of matching players in two disjoint sets,
depending on the individual information and preference of
each player. Following the deferred acceptance (DA) proce-
dure [23], the matching game between the two sides of players
achieves the stability in a distributed manner. However, most of
MT-based algorithms assume that the full preferences of agents
are known a priort, which is not realistic in the context of the
dynamic FCNs. For instance, TNs are likely to be uncertain
about the computing capability (i.e., CPU frequency, queuing
delay) of HNs at time of offloading decision making since it
is time varying. As a results, the preference relation of TN
to HNs are unpredictable. Therefore, to address this issues,
the TNs must interact iteratively with the HNs to learn their
unknown preferences.

Multi-armed bandit (MAB) is a common strategy to model
this type of learning process, which aims to solve the exploita-
tion and exploration dilemma [24]. Several algorithms includ-
ing e-greedy, upper confidence bound (UCB), and Thompson
sampling (TS) are proposed for the player (i.e., learner) to
select the optimal arm, which offers the highest cumulative
reward [25]. Basically, the e-greedy algorithm is simple to
implement with low complexity but heavily relying on the
random choice, thus occurring the long convergence. TS is
Bayesian method [26], in which the player keeps a posterior
distribution over the expected arm rewards, and at each round
takes a sample from each arm’s posterior, and then, plays
the arm with the largest sample. Reward observed from the
played arm is then used to update its posterior. This sampling
strategy allows the arm to frequently select the arms whose
probabilities of being optimal are the highest based on their
posteriors and to occasionally explore inferior arms to refine
their posteriors. Meanwhile, the UCB strategy is to play
the arm with the highest UCB index to tradeoff exploration
and exploitation, which is usually composed of sample mean
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reward of an arm plus an exploration bonus that accounts
for the uncertainty in the arm’s reward estimates [27]. Unlike
TS, performance of this type of policies heavily rely on the
confidence sets used to compute the exploration bonus [28].
This together with the superior performance of TS evaluated
in numerous applications [29] motivate us to investigate a TS
based learning for our problem.

B. Paper Contributions

In consideration of the aforementioned issues, this paper
aims at developing a DTO algorithm for the heterogeneous dy-
namic FCNs that combines the matching theory and TS-based
bandit learning method. Generally, the main contributions of
this work are summarized as follows:

o We model the task offloading problem of MTMH scenar-
ios as a two-sided matching game between TNs and HNs,
in which the preference relations are unknown a prior to
TNs.

e To deal with the uncertain information of HNs (i.e.,
computing capability, queuing waiting), we propose TS-
based bandit learning that allows TNs to obtain the
preference relation quickly.

« Based on the achieved preference relations of TNs, we
propose a bandit learning-based matching model called
BanLeMat to assign the tasks to the HNs in a distributed
manner.

o Through extensive simulations, we present the feasibility
and advantages of proposed BanLeMat model compared
to existing state-of-the-art solutions.

C. Paper Organization

The rest of this paper is organized as follows. Section II
highlights the typical related works regarding the bandit
learning-based DTO algorithms in different fog computing
environments. Section III introduces the system model and
formulates the task offloading problem for the heterogeneous
dynamic FCNs. Section IV proposes and describes the design
of BanLeMat model. Section V shows the simulation results
and comparative analysis. Section VI concludes the paper and
discusses the open directions to extend the current work.

II. BACKGROUNDS AND RELATED WORKS
A. TS for MAB

TS is a popular probabilistic algorithm used in the context of
multi-armed bandit problems. In the context of MAB problem,
a player is faced with a row of K arms, each with an unknown
probability distribution 6, of providing a reward. The goal is
to maximize the total reward over a series of pulls.

TS introduces a Bayesian approach to the exploration-
exploitation dilemma inherent in such problems. The algorithm
maintains a probability distribution over the possible reward
distributions for each arm. After each pull, the probability
distribution is updated based on the observed reward. The next
arm to be pulled is then chosen based on a sample from the
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Algorithm 1: TS Algorithm for MAB Problem

Input: K arms
QOutput: Sequential arms to pull
1 Imitialization: Vk € {0,---, K}, ap = b, = 1.
2 fort=1,2,--- do
3 for k=1,2,---, K do
4 L Sample 6;, =~ Beta(ag, [i)

5 Pull arm £ if it has maximal value of 6,
6 Observe the reward 7 (t)
7 Update: (o, Bi) « (ag + (L), Br + 1 — ri(t))

updated distribution. Algorithm [?] shows the procedure code
to implement TS for MAB as following steps.

o Step 1 (Initialization): The algorithm starts with a prior
distribution for each arm. Commonly, a Beta distribution
is used as a conjugate prior for Bernoulli-distributed
rewards. For each arm k, it maintains two parameters
ay, (number of successes) and 35 (number of failures).

e Step 2 (Sample): For each arm, sample a value from its
current distribution.

o Step 3 (Select arm): Choose the arm with the highest
sampled value 6.

o Step 4 (Pull arm): Pull the chosen arm and observe the
reward.

o Step 5 (Update): : Update the parameters of the distribu-
tion for the chosen arm based on the observed reward.
For a Bernoulli reward, increment «;, for success and [y
for failure.

« Step 6 (Repeat): Go back to step 2 and repeat the process.

For non-stationary bandit with time changing reward distri-
bution 6, the TS algorithm is applicable to achieve the im-
proved performance compared to UCB or greedy method [29].

B. Related Works

This section presents a review of recent literature on using
the bandit learning method to design the task offloading
algorithms in the fog computing environment.

The principle of bandit learning techniques can be used in
a family of bandit convex optimization (BCO) algorithms to
solve convex optimization problems in which the objective
functions and constraints are time varying [30], [31]. These
similar features are prevalent in the computation offloading
optimization problems of fog-based IoT systems where the
function of accumulated network delay (need to be minimized)
and long-term workload balancing constraints are variant over
time. Based on this investigation, the studies [32], [33] pro-
poses a method for managing the task offloading problems
in the large-scale and dynamic IoT systems using BCO.
Concretely, a family of online bandit saddle-point (BanSaP)
schemes are developed, which adaptively adjust the online
operations based on (possibly multiple) bandit feedback of
the loss functions, and the changing environment. The authors
demonstrate the effectiveness of the proposed method through
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simulations, showing that it can simultaneously yields sub-
linear dynamic regret and fit in cases that the best dynamic
solutions vary slowly over time. In particular, numerical exper-
iments in the fog computing offloading tasks corroborate that
the proposed BanSap approach offers competitive performance
relative to existing approached based on gradient feedback.

Concerning the execution of hard real-time tasks within
fixed deadlines in the IoT systems, the paper [34] introduces
a two-tiered framework to offload the tasks using the fog and
cloud computing instead of sensor nodes (SNs). To facilitate
the task processing, a directed acyclic task graph (DATG)
is formed by breaking down high-level tasks into smaller
subtasks. The tasks are initially offloaded to a nearby FN using
a greedy selection to avoid the combinatorial optimizations at
the SN, thus saving time and energy. As IoT environments are
dynamic, adaptive solutions are necessary. An online learning
scheme called e-greedy nonstationary MAB-based scheme
(D2CIT) is proposed for task allocation among FNs. D2CIT
enables the selection of a set of FNs for subtask distribution,
parallel execution with minimum latency, energy, and resource
usage. Simulation results show that D2CIT reduces latency by
17% and offers a speedup of 59% compared to existing online
learning-based task offloading solutions in fog environments
due to the induced parallelism.

The paper [35] develops an online task offloading strategy
that minimizes the long-term cost that takes into account
factors such as latency, energy consumption, and switching
cost in dynamic FCNs characterized by the abrupt change of
system parameters at unknown times. Additionally, the fact
that queried nodes can only provide feedback on process-
ing results after task completion is considered. To address
these challenges, an effective bandit learning algorithm called
BLOT is proposed to solve the non-stationary stochastic
programming problem under a bandit model. The research
also demonstrates the asymptotic optimality of BLOT in a
non-stationary fog-enabled network and presents numerical
experiments to justify the superior performance of proposed
algorithm compared to the baseline approaches. However, the
performance of algorithm is only evaluated in the small-scale
network with one TN and nine HNs, thus inapplicable for
large-scale networks where the matching conflicts can occur.

The paper [36] proposes a learning-based approach for task
offloading in fog networks with the goal of reducing latency
for delay-sensitive applications. The approach integrates Com-
binatorial MAB (CMAB) which is a generalization of the
classical MAB problem to find the best set of arms to pull
together, rather than finding the best single arm to pull [37].
Initially, the algorithm being suggested acquires knowledge of
the shared computing resources of fog nodes, with minimal
computational expenses. Next, the objective is to reduce the
time taken for task offloading by simultaneously refining the
task allocation decision and spectrum scheduling. Ultimately,
simulation outcomes reveal that the proposed approach sur-
passes the conventional UCB algorithm with regards to delay
performance and maintains extremely low offloading delays in
a dynamically evolving system.

The authors in [38] also tackle the task offloading issues but
consider the case of vehicular fog computing (VFC). The VFC
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environment with diverse modes of mobility introduces un-
predictability with regards to the availability of resources and
their demand, which create unavoidable obstacles in making
optimal decisions for offloading. Moreover, these uncertainties
pose additional challenges for task offloading in the face of
an oblivious adversary attack and the risks associated with
data privacy. The authors then have developed a novel algo-
rithm for adversarial online learning with bandit feedback that
leverages the principles of the adversarial MAB theory. This
algorithm is designed to facilitate efficient and simple decision
making for offloading by optimizing the selection of FNs,
with the goal of minimizing costs associated with offloading
services such as delay and energy usage. Fundamentally, the
proposed approach involves implicitly adjusting the explo-
ration bonus during selection, and incorporating assessment
rules that account for the volatile nature of resource supply
and demand. Theoretically, the input-size dependent selection
rule allows for the selection of an appropriate FN without
the need to explore sub-optimal actions. Additionally, the
appropriate score patching rule facilitates quick adaptation
to changing circumstances, reducing variance and bias, and
ultimately achieving a better balance between exploitation and
exploration. Simulation results demonstrate the effectiveness
and robustness of the proposed algorithm.

The authors in [39] consider the task offloading in the fog
computing network with time-varying stochastic time of arrival
tasks and channel conditions. Due to the unavailability of
global knowledge of all fog nodes in practice, the problem is
modeled as a CMAB problem, without prior information about
channel conditions and stochastic task arrival characteristics.
To address this problem, the paper proposes the WFCUCB
algorithm, which extends the classical CMAB problem to
include one i.i.d. variable and one non-stationary random
variable. The paper’s numerical results demonstrate that the
WFCUCB algorithm is capable of fast learning and achieves
superior performance compared to other possible strategies.

Due to the highly dynamic environment of the vehicular
network, it is challenging to ensure that task offloading delay is
minimized. To address this issue, task replication is introduced
into the VEC system as proposed in the study [40], where
multiple replicas of a task are offloaded simultaneously to
several vehicles, and the task is considered completed once the
first response among the replicas is received. The impact of the
number of task replicas on the offloading delay is examined,
and the optimal number of task replicas is determined through
a closed-form approximation. Using these findings, a learning-
based task replication algorithm (LTRA) is developed using
CMAB theory. The LTRA algorithm is designed to operate
in a distributed manner and can adapt automatically to the
VEC system’s dynamics. The proposed algorithm’s delay
performance is evaluated using a realistic traffic scenario. The
results show that, under the simulation settings, the optimized
LTRA algorithm with a specific number of task replicas can
decrease the average offloading delay by more than 30%
compared to the benchmark without task replication while also
improving the task completion ratio from 97% to 99.6%.

The authors in [41] also study the task offloading in the VFC
systems with uneven workload distribution and the reliability
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of the communication between the FNs. In the work, they
utilized the concept of CMAB to facilitate the selection of
task offloading destinations in a distributed manner, without
overburdening system resources. This is achieved by replicat-
ing tasks across multiple destination nodes and selecting the
optimal number of replicating nodes to ensure reliability and
minimize delay in a vehicular resource-sharing environment.
This approach also reduces overall system residence time
and enhances task delivery ratio by reducing task failures.
Additionally, redundant tasks are eliminated from node queues
after receiving the first response from candidate nodes in the
surrounding area. They compared their solution with other
baseline approaches based on several performance metrics,
such as task residence time, end-to-end delays, delivery rate,
and utilization ratio. The simulation results demonstrate that
the proposed learning-based task offloading solution effec-
tively utilizes resources and ensures its effectiveness over other
approaches compared to the algorithms presented in [40].

The study presented in [42] addresses the problem of data
offloading in heterogeneous and dynamic fog computing-
enabled wireless sensor networks. The authors model the data
offloading problem as a contextual MAB problem that uses
the heterogeneity of sensor nodes (SNs) as contextual infor-
mation. The proposed algorithm for dynamic node movement
in urban environments has been enhanced to ensure stable
performance of the collaborative system despite the complex-
ities and changes of the urban environment. By analyzing
and simulating human movement data in such settings, the
proposed approach can effectively minimize offloading delay
and increase the success rate of offloading.

The work [43] presents the combination of learning and
matching to design a learning-matching algorithm for task
offloading and resource allocation in the VFC systems. Con-
sidering the uncertainty of information of systems, the algo-
rithm proposes a pricing based model iterated over time slot to
learn the uncertainty as well as handle the matching conflict.
Evaluated by extensive simulations, the proposed algorithm
can achieve bounded deviation from the optimal performance
without the availability of global information.

ITII. SYSTEM MODEL
A. Fog Computing Network

In the general system architecture, a FCN consists of M
TNs and N HNs co-existing in an area to support computing
various types of tasks as shown in Fig. [?]. Without the loss
of generality, this paper considers the FCN with an equal
number M of TNs and HNs to investigate the performance of
distributed task offloading in form of one-to-one matching with
bandit learning integration. Notably, scenarios with unequal
number of TNs and HNs can be deduced or extended from the
current network configuration. For example, as M > N, a part
of tasks that are unable to be processed by HNs are managed
by the cloud. Indeed, as M < N, there exist M HNs with the
most ample computing capability selected for offloading the
tasks from M TNs. Furthermore, as a HN is able to process
multiple tasks via, for example, parallel virtual machines, it is
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Task Node (TN)
{[‘E——j Computation Task
Helper Node (HN)

Bidirectional
Communication

Offloading Request

Fig. 1. An illustrative model of FCN with two types of FNs including TNs
and HNs.

worth to investigate the many-to-one matching model for task
offloading as extension works.

In this work, we define the set of TNs and HNs as
T =A{Ty, - T;, -, Tas} and H = {Hy,---, Hj,---, Hy},
respectively. FNs are heterogeneous in terms of computing
capability, storage, and connectivity technology. In addition,
we assume that all the FNs can connect together through
wireless links. We adopt a time-slot model where the total time
period is divided into K discrete intervals, the set of which is
denoted as S = {1,---,¢,---, K}. At the ¢! slot, each TN i
generates a corresponding task 7; (), which is represented by a
tuple T;(t) = {L;(¢),T;(t), D"**(t)}, where L;(t) is the task
size (bits), T';(¢) is the computation complexity of task (CPU
cycles/bit), and D7**(t) is the maximum permitted latency
for the task 7; at time slot ¢. The specification of task varies
across different slots. In addition, the tasks are assumed to be
split arbitrarily, thus each task 7; should be either allocated as
one whole piece to one neighboring HN or processed locally.

The unfinished tasks are summed to be cached in a first-in
first-out (FIFO) queue at each FN. Due to the limited com-
putation and storage resource within one individual FN, the
tasks processed locally usually experience high latency, which
degrades QoS and QoE. To enable low-latency processing,
TNs may offload some of its computation burdens to the
nearby HNs. These HNs typically posses more computation
and storage resources and are deployed to help other TNs on
demand.

In accounting for the dynamic of fog computing environ-
ment, the computing capability of a HN H; is represented
through CPU frequency f;(t) (cycles/s), and CPU processing
density p;(t) (cycles/bit), which are assumed to vary over
different time slots.

Table I summarizes the key variables and notations used in
this paper.

B. Problem Formulation

Denote the set of task offloading decisions between M TNs
and M HNs as a(t) = {w;;(t)}, where each element is a
binary variable, ie., c;;(t) € {0,1}. a;;(t) = 1 means that
the task T; is decided to be offloaded by H; in the time slot
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TABLE I

NOTATIONS AND VARIABLES.
Symbols Definitions
FN, TN, HN  Fog Node, task node, helper node
T, H Set of TNs (tasks), set of HNs
M Number of TNs, number of HNs in FCN
T;, Hj TN 4, HN j
t The ¢ time slot
Ti(t) The task generated by TN 4 in time slot ¢
fi(t) CPU frequency of Hj in time slot ¢ (cycles/s)
pj(t) Processing density of H in time slot ¢ (cycles/bit)
L;(t) The task size of T;(¢) (bits)
(1) Computation complexity of T;(t) (cycles/bit)
Do (t) Maximum permitted latency for T5(¢)
D;j;(t) Latency for executing T;(t) by HN H;
0 Transmission delay from T} to H;
R;;(t) Data rate between T; and H;
8% (¢) Waiting delay in the queue of Hj
Q;(t) Queue length of H in time slot ¢ (bits)
6§’i(t) Delay to process T; by H;

t; a;;(t) = 0, otherwise. D;;(¢) is the total delay when Hj is
assigned to process 7; and is calculated as follow:

Dji(t) = 65 (t) + 07 () + 0%, (t), Q)

where 677 (t) is the transmission delay, 65’(t) is the waiting
delay in queue of H,(t), and 5§i(t) is the processing delay
by H;(t). Given the data rate R;;(t) (bits/s) between T; and
Hj at time slot ¢, we can achieve 0;7(t) = L;(t)/R;;(t). The
processing delay is derived as:

(1) = Li%“). @

The waiting delay is measured by H; as follow:

Q;()p;(t)

8 () = = 3)
! fi(t)
where @;(t) is the queue length (bits) of H; in the time slot
t.

For TNs, the objective of offloading their tasks to HNs is
to minimize the long-term average delay D, which is defined
as follow:

K M M

— 1
D= lim - DD i) D). “4)

t=1 i=1 j=1

Practically, the FNs are managed by different service
providers which aim at maximizing the revenue by providing
the best services (PaaS, IaaS, and SaaS) for task offloading
operations. Therefore, the preference relation of HN is based
on the pay-off that it receives to process the tasks. For each
H; € H, the cost to process a bit of task T; is denoted as
cji- The total pay-off received by H; when offloading T; is
expressed as Cj;(t) = g;z&? ¢;;L;(t). For HNs, the objective
of offloading their tasks from TN is to maximize the average
pay-off C' over time slots, which is defined as follow:

K M M
.1

t=1 i=1 j=1
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Definitely, the task offloading optimization problem is for-
mulated as follows:

P: minD & maxC
a;;(t) ai;(t)
S. t. Cl : Oéij(t) S {0, 1},V{Z,j, t} S {T,H,S},

T
Og:Zaij(t)gl,Vje’H,VteS, (6)
=1

H
Cs: > ai(t) <L Vie T, VteS.
j=1

Here, the constraints C7, Cs, and C5 guarantee that at each
time slot ¢, a TN’s task can be offloaded to only one HN, and
a HN can process at most one task of TN.

There are two difficulties in solve the above problem. First,
it is a stochastic programming problem. The exact information
about the delay D;;(t) is not available before the task T;(t) is
completed. In addition, event if D;;(¢) is estimated a priori,
this problem is still a combinatorial optimization problem and
the complexity is in the order of O(M?X). This is due to the
fact that the previous offloading decisions determine the queue
length in each HN and further affect the decisions of future
tasks.

IV. BLM MODEL DESCRIPTION
A. OTO Matching Model for MTMH Problems

Given the constraints C and C5 of problem P, the task
offloading problem can be modeled as an one-to-one (OTO)
matching game between players of two sets: 7 and H, which
is defined as follow.

Definition 4.1: The OTO matching is a function M: T UH
— T UH such that the three following constraints are satisfied:

o Forany T; € T, M(T;) € HU{T;},

o Forany H; € H, M(H;) € T U{H,},

o Forany T; € T and H; € H, T; = M(H;) if and only

if H; = M(T;).

In the OTO matching model, each agent 7; can only be
matched with one agent H;, and 7; remains unmatched if
M(T;) = T;. The objective of matching is to reach the stable
status for all pairs.

Definition 4.2: A matching M is pairwise stable if there is
no block pair (7;, Hj).

Definition 4.3: (T;, H;) is a block pair for a matching M
if three following conditions are satisfied:

o M(T3) # Hj,

« H j Ty M(E),

o 1; H; M(H j),
where ~7, and >, represent two preference relations allow-
ing the TNs and HNs from each of the two sets to express
preferences over the opposite nodes.

Each node builds a ranking of other nodes in the opposite
side individually using this preference relation, and then
creating its own preference list (PL). With the full connected
FCNs, each node has a complete PL over the nodes on the

opposite side. Assume that each 7; € T has a PL denoted as
,P(T;) = (HQ, H4, . -,Hj, Ty, H]\/hﬂ). This means that Ti
prefers agent Hy to Hy (i.e., Hy =7, Hy).

To achieve the PL, each node is based on its preference
values when matching with all the nodes of opposite set.
These values are usually determined by utility functions taking
account the objective of matching game. In this paper, for
each Tj, its preference value for H; is quantified by an
unknown value z;; € [0,1]. For two different H; and H;,
Zi; > xy; implies that H; 7, Hj. For the objective of
delay minimization, the preference value taking into account
the capability of HNs to processing the tasks serve as the
reward offered by HN. Furthermore, to limit the rewards to
the range (0,1), we use the sigmoid function and is calculated
as follow:

(1) = ! 7
ng( ) = 1+ e— (Do (t)—Dy;(t) )

Similarly, denote y;; as the preference value of H; for Tj.
For two different player T; and T/, y;; > y;, implies that H;
prefers T to 1. The ranking for the reference of each H; is
known after it receives all the offloading requests sent from
players (TNs). We use C;(t) to express the preference values
of T; for H; (ie., y;;(t) = Cji(t)). For any two tasks T;
and T requested to be offloaded by a HN H, the preference
relation is as follow: T; > g, Tis if and only if y;; > y;4r.

B. BLM Model and Algorithm

Due to the dynamic nature of fog computing environment
characterized by the time-varying capabilities of HNs and QoS
requirements of tasks, x;;(¢) are unknown a priori and must
be learned by MAB learning. In this context, TNs and HNs
plays roles as players and arms, respectively.

Ateachround r =1,2,---, Rof time slot t =1,2,---, K,
each player T; attempts to pull an arm H;. When multiple
player attempt to pull the same arm, a matching conflict
occurs and only the player preferred most by this arm is
accepted. If a player 7; wins the matching conflict, it will
receive a random reward x;; (¢, r) derived from (7). Otherwise,
if failing the conflict, T} is unmatched in this round and receive
z;j(t,r) = 0. Over R round, the average reward X;;(t)
received by 7; when attempting an arm H; is estimated as
follow:

YooY @i (t,7)
Zf:a "
where 7 € (0,1) serves as the discount factor.

Fig. 2 illustrates BLM model including the MAB learning
and resource competition for matching.

Algorithm 2 presents the procedures to implement the
preference learning and matching conflict handling.

The algorithm takes the player set 7 and arm set # as input.
For each player T; and arm H, the algorithm maintains a Beta
distribution Beta(a;;, b;j) for the preference value. Initially,
the distribution is Beta(1,1) corresponding to the uniform
distribution on [0, 1]. It will be later updated based on observed
feedback and tend to concentrate on the mean value X ;;(t).

Xi(t) = ; ®)
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Fig. 2. Bandit learning based two-sided matching.

Algorithm 2: BLM algorithm

Input: Player set 7, arm set H, parameter A € (0,1).
Output: A stable matching M = {(T;(K), H;(K))}
where T;(K) = M(H;(K))
1 Initialization: V{7;, H;} € {7, H}, random matching
att =0: M(TZ(OD = Hj(O), Qjj = bl‘j =1.
2fort=1,2,---, K do

3 forr=1,2,---,R do

4 for T; € T do

5 VH; € H, sample 0;;(t) ~ Beta(a;j, bi;)
6 Independently draw 7;(t) ~ Bernoulli(\)
7 if 7;(¢t) = 0 then

8 Construct potential matching set of T;
9 P(t) := {Hj : y;i(t) > ;i (t)} where
10 M(Ty(t—1)) = H;

11 Pull H;(t) € argmaxy, cp, () 04 (t)
12 else

13 | Pull H;(t) = M(Ti(t — 1))

14 if p; wins matching confict then

15 Hj(t) = M(Ti(t))

16 T; received an instant reward z;; (¢, )
17 dervied from (7)

18 Update X;;(t) as (8)

19 Draw w(t) ~ Bernoulli(X;(t))

20 Update a;;(t) < a;;(t) + w(t)

21 Update b;;(t) < b;;(t) + (1 —w(t))
22 else

23 M(Ti(t)) = Ti(t)

24 T; received a reward z;;(¢,7) =0

25 Update X ;;(t) as (8)

In round 7 of slot ¢, the algorithm samples an index 6;;(r)
from Beta(aij, b;j) to represent the current estimation.

To avoid the frequent conflicts, each player constructs a
potential matching set to exclude arms that already reject it
in the previous round. We assume that the successful matched
players are public at the end of each round. However, players
can still simultaneously pull same arms for next round. To
address this issues, we incorporate a random delay mechanism
with hyper-parameter A. Accordingly, each player first draws a
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TABLE 11
PARAMETERS FOR SIMULATION.
Parameters Values
Network size (2 x M) 10, 20
Task size, L(t) U[1,15] KB

Maximum permitted latency, D™%* (¢)
Data rate 7;

Processing density of FNs, ~(t)

CPU frequency of FNs, f(t)

{0.1, 0.2, 0.3, 0.4} s
U[0.5,1] MBps
U[500,1000] cycles/bit
{1.0, 1.5, 2.0, 2.5} GHz

Bernoulli random variable 7;(t) with expectation A. If m;(t)
0, T; still attempts to pull the arms with the largest index in
the potential set; otherwise, it follows the last-round choice.

When all players decide which arm to pull in this round,
arms will determine which player to accept according o their
rankings. If player T; wins the conflict, it updates the average
reward and the corresponding Beta distribution.

C. Complexity Analysis

The proposed BLM algorithm is based on iteration learning
mechanism for obtain the optimal solution within each time
slot, thus incurring an additional delay to reach the global
optimum (i.e., stable matching). Regarding the computational
complexity of the algorithm, in each iteration, the preference
list of TNs and temporary fairing between TNs and HNs is
updated and their stable matching is evaluated based on the
DA algorithm. The number of rounds R and the network
dimension M % N determine the number of calculations
required to update the TN-HN matching outcome. Given that
M = N in our proposition, the proposed algorithm has an
overall complexity of order O(R * M?) per time slot.

V. SIMULATION RESULTS AND EVALUATION ANALYSIS
A. Simulation Environment Configuration

We evaluate the proposed algorithms in the fog environ-
ments where the network size (2 x M) includes 10 and 20
nodes. Table II summarizes the important parameters and
values for the simulation scenario, where U[X,y] indicates the
uniform distribution on interval [X, y]. In each scenario, we run
all algorithms for &' = 1000 time slots and all results averaged
over 100 independent runs. Given the network configuration,
we performed a large number of trial processes (10000 trials)
to measure the response delays (offloading delays) offered by
HNs. With the range of obtained offloading delays (0.087
to 0.45 s), we accordingly selected the maximum permitted
latency for all tasks as in the set {0.1, 0.2, 0.3, 0.4} (s) to
evaluate the proposed algorithms.

B. Comparative Algorithms

Since the most of the existing solutions focus on bandit
learning algorithm use e-greedy and UCB, we compare our
results with these two techniques used in the works [34]-[36].
Notably, the OTO algorithm in [36] use UCB based CMAB
learning concept for selecting the efficient arms (i.e., HNs). In
addition, the DTO-based matching solutions in the literature
assume that the preference lists of two sides of matching game
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Fig. 3. The average delay offered by three different bandit learning based task
offloading algorithms.

are unknown, thus easily to produce the stable matching by
the DA mechanism. We also compare our algorithms with the
matching with available global information.

C. Evaluation Metrics

We evaluate the performance of proposed algorithms in
three key metrics including average offloading delay, cumu-
lative learning regret, ratio of optimal arm selection, and
cumulative matching unstability.

D. Evaluation Analysis

Fig. 3 depicts the average offloading delay achieved by dif-
ferent bandit learning approaches (i.e., e-greedy, UCB, CMAB,
and proposed TS) over time slots. Notably, our TS-based BLM
algorithm can achieve the sub-optimal result compared to the
optimal solutions obtained when the information of network is
available. This presents the efficiency of the proposed bandit
learning using TS to deal with the dynamic environment of
fog computing networks.

In addition, the TS-based learning technique presents its
out-performance over e-greedy and UCB due to the principle
of posterior distribution estimation. Meanwhile, e-greedy and
UCB tend to assign the best HNs to tasks in a greedy manner.
Notably, the CMAB learning-based algorithm performs a little
worse than the proposed TS-based learning. When the network
experiences a large number of time slots, the performance gap
between the comparative algorithms are smaller because the
network achieves more stable states. As more observations
collected over time slots allow TN to select the optimal HNs
efficiently. Similar observations regarding the performance of
the comparative algorithms can also found when the network
size increases. However, they take more time slots (over
200) to achieve the robust performance because the learning
methods need to explore more to get the accurate estimations
of network statues.

We also analyze the delay performance of proposed al-
gorithms through learning regret LR metric, which is the
expected difference between the delay achieved with the
information availability and the delay achieved under the
information unavailability. Mathematically, LR is defined as
follow:

S

M
(ij (1) Dij(t) — aij= (t) Dij= (t))}, (9)

j=1

LR=E{)

K
t=1 14
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Fig. 4. Cumulative regrets obtained by different bandit learning policies used

in the three task offloading solutions.
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where T; = M(H,) under the matching with learning support
and T; = M(H,-) under the matching without learning (i.e.,
information availability).

The out-performance of the proposed algorithm is enabled
by TS-based learning technique. Fig. 4 shows the comparison
of cumulative regret obtained by four algorithms.

The e-greedy strategy uses a constant to balance exploration
and exploitation. This is not ideal when the hyperparame-
ter may be hard to tune. Also, the exploration is done in
100% randomly, such that we explore bandits equally (in
average), irrespective of how promising they may look. The
UCB strategy, unlike the e-greedy, uses the uncertainty of
the posterior distribution to select the appropriate bandit at
each round. It supposes that a bandit can be as good as it’s
reward distribution. The UCB-based CMAB learning method
is better than the pure epsilon-greedy and pure UCB learning
since it can learn the reward distribution of multiple arms
(HNs) simultaneously, thus having greater chance to estimate
the optimal HNs. However, the CMAB learning converges
slower than the TS-based learning because the action space
includes a large number of arm combinations. Finally, TS
uses a very elegant principle: to choose an action according
to the probability of it being optimal. In practice, this makes
for a very simple algorithm by taking one sample from each
reward distribution, and choose the one with the highest value.
Despite its simplicity, TS achieves state-of-the-art results,
greatly outperforming the other algorithms. That is because
TS promotes efficient exploration: it explores more where it
is promising, and quickly discards bad actions. In addition,
when more players pull multiple arms in the CMAB learning,
there is a large probability of collisions. When the network
size is large (20), the collision rate is higher, resulting in more
explorations needed and thus the regret gaps between CMAB
and TS learning are larger as shown in Fig. 4.
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Fig. 5 presents the probability of selecting the optimal
HNs. The results show that the matching conflicts occurred
during the resource competition have a severe impact on
the ratio of optimal selection for the greedy and UCB-based
learning algorithms. Meanwhile, our proposed algorithm using
TS technique and especially the developed matching conflict
avoidance mechanism can efficiently handle the issues. It
naturally incorporates the uncertainty or stochasticity in the re-
ward distribution by sampling from a probability distribution.
This helps balance exploration and exploitation effectively.
While the greedy method tends to be overly exploitative,
always choosing the action with the highest estimated value,
which may lead to suboptimal decisions if the estimates are
inaccurate. Finally, UCB can be overly optimistic and might
converge to suboptimal actions.

Fig. 6 reports the cumulative matching unstability, which is
defined as the number of unstable matchings over time slots.

As shown in the simulation results, our TS-based learning
algorithm shows the least matching unstability. Meanwhile,
the greedy and UCB based learning solutions converge much
slower and explore more to find a stable matching. The CMAB
learning enables better performance than the greedy and UCB
approach due to learning multiple arm distributions simultane-
ously. Particularly, the TS algorithm explicitly models uncer-
tainty by sampling from a distribution of possible values for
each arm. This allows it to adapt to changes in the environment
and handle situations where the true reward distributions are
not well-known. In the presence of uncertainty, the greedy and
UCB based learning approaches rely on point estimates of the
mean or upper confidence bound, respectively, which may lead
to suboptimal decisions if the estimates are inaccurate.

VI. CONCLUSIONS

This paper introduces the TS-based bandit learning for
distributed task offloading in the dynamic fog computing-
based system. In principle, the algorithm applies the MAB
learning empowered by Thompson sampling method to effi-
ciently learn the uncertainty of fog computing environment,
thus allowing TN to select the optimal HN for task offloading
over time slots. Extensive simulation results demonstrate the
the proposed algorithm outperform the benchmark algorithms
using e-greedy and UCB learning methods.
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VII. FUTURE WORKS

The superior performance of TS-based bandit learning
demonstrated in the simulation results open many opportu-
nities for future works. Firstly, it is worthy to investigate the
proposed algorithms in a general setting of FCNs, in which
the set of TNs and HNs has different number of nodes and
the network is not fully connected. Secondly, several matching
models would be notably investigated such as many-to-many
(MTM) and many-to-one (MTO), in which multiple TNs can
be matched with multiple HNs and single HN, respectively.
Furthermore, other dimension of dynamic fog networks also
need to be investigated such as the mobility of fog nodes as
well as the volatile of HNs. The other research issue is to
evaluate the performance of the proposed algorithm when the
hard deadlines of tasks are concerned.
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