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ABSTRACT The current study presents a novel, non-invasive method for estimating both systolic and
diastolic blood pressure by combining photoplethysmogram (PPG) signals with physiological data, such
as sex, age, weight, height, heart rate, and BMI, using two Gated Recurrent Units (GRUs) models. The
first model processes dynamic patterns in PPG signals, while the second model incorporates physiological
parameters. Both models are connected through a series of dense layers. To prepare the datasets for the
GRU framework, rigorous preprocessing was conducted. This resulted in a robust architecture capable of
accurately predicting systolic and diastolic blood pressure. The proposed method achieved a Mean Absolute
Error (MAE) of 1.458 for systolic and 1.164 for diastolic blood pressure. These findings demonstrate the
potential of this approach for continual and non-intrusive blood pressure monitoring in wearable health
technology. The study’s results also make a significant contribution to the field of medical monitoring
technology. The proposed solution addresses a major limitation in traditional blood pressure measurement
practices and paves the way for advancements in personalized health monitoring, particularly for managing
hypertension and cardiovascular conditions.

INDEX TERMS Blood pressure, deep learning, gated recurrent units (GRU), neural networks,
photoplethysmography (PPG).

I. INTRODUCTION
Estimating blood pressure (BP) accurately is crucial for
monitoring and managing cardiovascular health [1]. Tradi-
tional techniques for measuring blood pressure (BP) typically
involve invasive methods that, while highly accurate, may
pose certain risks such as infection, local bleeding, and
vascular injury, particularly when continuous monitoring is
required [2]. Non-invasive methods have been developed to
address these limitations, with photoplethysmography (PPG)
emerging as a promising alternative to estimate BP without
causing harm. PPG signals, obtained through optical sensors
that measure the light reflected from blood vessels, provide
information about the volume changes in blood that occur
during the cardiac cycle [3], [4], [5], [6].

The associate editor coordinating the review of this manuscript and
approving it for publication was Manuel Rosa-Zurera.

Machine learning and deep learning methods have greatly
improved the analysis of blood pressure using PPG sig-
nals. These methods utilize the structural features and
frequency components of PPG signals to predict blood
pressure with a high level of accuracy that is close to
clinical standards. However, the practical application of
electrocardiography (ECG) signals in blood pressure mon-
itoring is hindered by artifacts caused by non-constrained
environments, such as motion, electrode misplacement,
and baseline wander. Although machine learning models
and advanced signal processing techniques have been pro-
posed to address these issues, challenges remain, includ-
ing large mean absolute error (MAE) values and the
time-consuming task of manually tuning hyperparameters
in deep learning models, which can lead to potential
performance inefficiencies and increased computational
demands [7], [8].
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In light of the previouslymentioned difficulties, we suggest
a novel strategy that employs dual Gated Recurrent Unit
(GRU) models to process PPG signals together with demo-
graphic data, including age, gender, weight, height, heart rate,
and body mass index (BMI), with the goal of improving
blood pressure (BP) prediction. This method addresses the
issues of hyperparameter tuning and computational efficiency
by incorporating automated hyperparameter optimization
techniques. Moreover, we propose that the integration of
demographic information enhances the model’s capacity to
capture individual physiological variations that affect BP
readings.

Our proposed models are assessed against the rigorous
standards established by the Association for the Advance-
ment of Medical Instrumentation (AAMI), the British
Hypertension Society (BHS), and the Institute of Electrical
and Electronics Engineers (IEEE), ensuring that our results
align with recognized guidelines for medical devices and
algorithms. This study aims to advance the field of BP
monitoring by presenting a method that not only simplifies
the process of BP estimation but also improves its reliability
and applicability in daily healthcare management.

II. RELATED WORKS
The non-invasive blood pressure estimation landscape is
constantly evolving, and recent research has heavily relied on
PPG signals due to their potential for continuous monitoring
applications. Hasanzadeh et al. proposed a machine learning
model that emphasized the morphological features of PPG
signals for BP estimation by focusing on characteristics
such as systolic and diastolic peaks. This approach resulted
in substantial improvements in accuracy, demonstrating the
importance of extracting detailed signal features for precise
blood pressure prediction [9].

Ibtehaz et al. proposed a novel approach using the
PPG2ABP model, a cascaded deep learning framework
designed for continuous arterial blood pressure waveform
estimation from PPG signals. This method eliminated the
need for handcrafted features, a common limitation in
previous studies, and adhered to BHS and AAMI standards,
demonstrating its potential for clinical applications [10].

Mahardika et al. investigated the potential of a convolu-
tional long short-termmemory (CNN-LSTM) neural network
by employing grid search for hyperparameter optimization.
Their research, which utilized the MIMIC III dataset,
exhibited impressive accuracy in estimating systolic and
diastolic BP, meeting the criteria set by BHS, AAMI, and
IEEE. However, the study emphasized the need for larger
datasets to validate long-term monitoring [11].

Slapnicar et al. developed a deep neural network with
residual connections to analyze PPG signals and their
derivatives, using data from the MIMIC III database. The
study achieved notable accuracy in BP estimation but
highlighted the need to personalize models for improved
results, despite the high computational demand [12].

The research conducted by Zhang et al. highlights the sig-
nificance of non-invasive ambulatory blood pressure (ABP)
monitoring in averting cardiovascular diseases, while simul-
taneously acknowledging the shortcomings of current ABP
devices, such as their cost, discomfort, and inaccuracy. As an
alternative, the authors propose a machine learning-based
approach that employs Support Vector Machine (SVM) for
nonlinear regression analysis of ABP from PPG signals.

To build a reliable and effective prediction model, the
researchers examined over 7000 samples from the University
of Queensland Vital Signs Dataset. They successfully mini-
mized the number of PPG feature parameters from 21 to 9,
enhancing accuracy and streamlining algorithm complexity.
Although the study achieved reasonable results in blood
pressure estimation using SVM, further improvements in
accuracy are required to satisfy medical standards. Future
work will concentrate on acquiring more standardized PPG
signals, optimizing the SVM-training model with larger
datasets, and implementing outlier removal techniques to
improve prediction accuracy [13].

The potential use of GRU models in health-related
situations, particularly in predicting blood pressure (BP)
from PPG signals and patient demographic information,
is a promising area for further investigation. Although
GRU models have shown their ability to work with time-
series data, their potential for interpreting PPG signals and
patient-specific information for BP prediction has not yet
been fully realized [14], [15]. This gap in research presents an
opportunity for our dual-GRU model approach, which aims
to integrate PPG signal analysis with patient-specific data
to address the limitations identified in previous studies and
advance the field of non-invasive BP monitoring.

III. METHODOLOGY
A. DATA COLLECTION
The dataset provided by Liang et al. in their study is a valuable
resource for non-invasive CVD detection, encompassing
657 data segments from 219 individuals. This dataset, which
encompasses a wide age range and includes conditions
such as hypertension and diabetes, was carefully collected
at the Guilin People’s Hospital in China under controlled
experimental conditions. The aim of this dataset is to
investigate the quality of PPG signals and to explore
their inherent connection to cardiovascular health, providing
new opportunities for early and non-invasive screening of
common CVDs like hypertension and diabetes, as reported
in [16].

The custom-designed portable hardware platform, which
integrated a PPG sensor probe, microcontroller, and compat-
ible application, was utilized to acquire data. This platform
enabled the simultaneous collection of PPGwaveform signals
and arterial blood pressure, ensuring high precision and
quality of the PPG signals, which are crucial for accurate
blood pressure estimation using only PPG signals. The PPG
sensor utilized two LED lights at specific wavelengths and
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transmitted the data through Bluetooth. The PPG detection
probe used infrared light and transmission method to obtain
fingertip PPG waveform data, which were then assessed for
quality before being saved.

In addition to the dataset by Liang et al., PPG signals
and corresponding patient information were collected from
25 patients in the MIMIC III matched subset and clinical
database for comparative analysis. The use of the MIMIC
III data, which involves a matched subset of patients, allows
for a comprehensive comparison between datasets, offering
insights into the variability of PPG signal quality and its
implications for Blood Pressure estimation across different
populations and clinical settings.

The controlled environment in which the comprehensive
data collection process was conducted was critical to obtain
authentic, high-precision, and high-quality PPG signals. This
stringent approach to data collection and signal quality
evaluation was necessary to ensure that the dataset contained
complete heartbeat cycles with minimal noise and artifacts.
However, the study acknowledges the challenges in acquiring
rich PPG signals and extracting subtle characteristics that
may indicate various physiological states or conditions.

B. PREPROCESSING
The preprocessing phase is a critical component of our
research, as it entails refining both PPG signals and personal
data ahead of the application of Gated Recurrent Unit (GRU)
models. Prior to analysis, raw PPG waveforms derived
from the PPGBP Database undergo a custom-designed
bandpass filter, which employs a combination of high-pass
and low-pass Butterworth filters. These filters are specifically
calibrated to the frequency characteristics of the PPG signals
to ensure optimal filtering.

The high-pass filter has a lower cutoff frequency set at
0.5 Hz, which is designed to eliminate low-frequency noise,
such as baseline wander, that can obscure the true PPG signal.
Conversely, the upper cutoff frequency for the low-pass filter
is set at 15.0 Hz, which is chosen to eliminate high-frequency
noise, such as electronic interference and motion artifacts,
while preserving the essential components of the PPG signal
related to blood pressure fluctuations. These filter settings
are carefully selected based on the sampling frequency of
the PPG data, which is 1000 Hz, to ensure that the filtering
process is optimized for the accurate detection of blood flow-
related features.

The output of the bandpass filtering process is a series of
PPG signals with an enhanced signal-to-noise ratio, which are
necessary for the subsequent feature extraction and pattern
recognition stages. Moreover, the personal data, such as sex,
age, height, weight, heart rate, and BMI, are normalized to
establish a consistent scale for analysis. The normalization
process is determined using equation (1). The preprocessed
data is then divided into separate datasets for training,
validation, and testing, as illustrated in Figure 1. This step
ensures that the GRU models are trained on diverse data
(60%), validated (25%), and tested (15%) on unseen data,

FIGURE 1. Schematic representation of the data preprocessing and GRU
model evaluation pipeline.

FIGURE 2. GRU-based model architecture for blood pressure estimation.

which is important for assessing themodels’ performance and
generalizability.

XNormalized =
X − Xmin

Xmax − Xmin
. (1)

C. MODEL ARCHITECTURE
The proposed model’s architecture is depicted in Figure 2.
Our study introduces a novel dual-input model design that
incorporates Gated Recurrent Units (GRUs) to forecast
systolic and diastolic blood pressure using preprocessed PPG
signals and personal demographic data. This architecture is
carefully crafted to seamlessly handle the time-series nature
of PPG signals and the static nature of personal data, thereby
effectively merging these diverse data types to deliver a
comprehensive estimation of blood pressure.

The architecture of the current model is designed to handle
temporally complex PPG data, which requires sequential data
processing to capture the underlying patterns associated with
Blood Pressure (BP). To achieve this, the model is composed
of a series of Gated Recurrent Unit (GRU) layers. The PPG
pathway specifically starts with a one-dimensional (1D) input
vector of size (2100, 1), which contains the signal’s time-
steps and features. This input vector is then fed into three
successive GRU layers, each consisting of 64 units, which
employ Rectified Linear Unit (ReLU) activation functions to
introduce non-linearity and facilitate the learning of intricate
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patterns within the data. The choice of GRU layers is
motivated by their ability to mitigate the vanishing gradient
problem, which is common in recurrent networks, thereby
enhancing the model’s ability to learn from long sequences.

Moreover, in addition to processing the PPG signals, the
model also processes personal demographic data, including
sex, age, height, weight, heart rate, and Body Mass Index
(BMI), through a separate input vector of size (6,1). This
input vector is directed through a distinct series of five GRU
layers, each comprising of 32 units, to capture the nuanced
effects of these demographic variables on blood pressure.

Using separate processing paths, the output of both the
gated recurrent unit (GRU) streams is combined through
a concatenation layer, integrating the extracted features
from PPG signals with demographic data. This concatenated
output then undergoes a series of dense, fully connected
layers, gradually decreasing in the number of units (64, 32,
16, and ultimately 8). These layers play a crucial role in
recognizing patterns and making decisions, transforming the
learned representations into accurate predictions for systolic
blood pressure (SBP) and diastolic blood pressure (DBP).

The final layer of the architecture consists of two units,
each corresponding to one of the target variables: SBP and
DBP. This layer represents the culmination of the model’s
design and provides blood pressure estimates based on
the complex relationship between PPG-derived features and
personal demographic information. This advanced architec-
ture demonstrates the potential of hybrid neural networks
in tackling intricate biomedical prediction tasks, such as
non-invasive blood pressure estimation.

D. HYPERPARAMETER FOR TRAINING
The training procedure for our proposed dual-input GRU-
based model was rigorously developed to ensure effective
learning from both PPG signals and demographic data. This
process involved a deliberate selection of hyperparameters to
balance the model’s ability to discern complex patterns and
avoid overfitting, as detailed in Table 1.

Employing the Adamax optimizer, renowned for its
resilience in situations involving sparse gradients, our model
profits from adaptive adjustments to the learning rate that
address the ever-changing requirements of the data, thereby
promoting stable convergence. By setting the learning rate at
0.005, we achieved an optimal balance between expeditious
training and accurate weight modifications.

Our primary loss function, Mean Squared Error (MSE),
demonstrates exceptional proficiency in evaluating the degree
of discrepancy between forecasted and actual blood pressure
measurements, placing a premium on precision, which is
of paramount importance in medical contexts where the
tolerance for error is narrow.

Our analysis revealed that a batch size of 128 strikes
an optimal balance between computational efficiency and
sample size sufficiency for precise gradient estimation
through vectorized operations, thereby ensuring a more
seamless training process.

TABLE 1. Hyperparameter proposed model.

The output layer of our model employs a linear activation
function, which is ideally suited for regression tasks that
involve predicting continuous variables like systolic blood
pressure (SBP) and diastolic blood pressure (DBP). This
function enables the model to generate a wide range of blood
pressure values.

The incorporation of a comprehensive training regimen
consisting of 500 epochs was crucial in providing the model
with ample opportunity to learn from the data thoroughly.
Additionally, a callback function was employed to monitor
the validation loss and preserve only the best weights, which
correspond to the highest accuracy on the validation set.
This strategy is effective in mitigating overfitting by halting
training when the model’s performance on the validation set
ceases to improve, thereby signifying convergence.

After concluding the training phase, the model was
subjected to extensive testing on a previously unseen dataset
to evaluate its ability to generalize and its suitability for
implementation in real-world clinical settings. This final
evaluation is critical in confirming the model’s predictive
capabilities and its preparedness for use in non-invasive blood
pressure monitoring.

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL SETUP
Our experimental setup was carefully designed to ensure
the dependability and reproducibility of our results.
We employed a structured approach to dividing our dataset,
which consists of three subsets: Training, Validation, and
Testing. Each subset serves a specific purpose in the
development and assessment of our model. The Training set,
comprising 60% of the total data, is used to fit the model
and adjust the neural network’s weights. The Validation set,
representing 25% of the data, is used to fine-tune the model
parameters and prevent overfitting, acting as a pseudo-test
set to provide an early indication of the model’s performance
during the training phase. Finally, the Testing set, also
15% of the data, is used to evaluate the model’s predictive
power. This separation ensures that the model is assessed on
entirely unseen data, providing an impartial measure of its
generalization capabilities.

To evaluate the performance of our proposed model,
we have selected a comprehensive set of metrics based on
three well-established standards: IEEE, BHS, and AAMI
standards, providing a thorough analysis of its predictive
accuracy and dependability.
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1) IEEE STANDARD
The Institute of Electrical and Electronics Engineers (IEEE)
standard is focused on the accuracy and dependability of
cuffless, wearable blood pressure monitoring devices. In this
study, we utilize the following metrics in accordance with
the IEEE standard. The Mean Absolute Error (MAD) is
determined using equation (2), which calculates the average
magnitude of errors between predicted and actual values,
without regard to their direction. Furthermore, the Mean
Absolute Percentage Difference (MAPD) is calculated using
equation (3), which provides a normalized measure of
error relative to the magnitude of the true values, enabling
comparisons across various scales [17].

MAD =
1
n

n∑
i=1

∣∣yi − ŷi
∣∣ . (2)

MAPD =
100%
n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ . (3)

2) BHS STANDARD
The British Hypertension Society (BHS) uses a standardized
grading system to assess the accuracy of blood pressure
measurement devices by determining the proportion of
readings that fall within predetermined error thresholds.
The BHS employs the equation (4), which calculates the
cumulative percentages (CP), to reflect the percentage of
predictions that fall within specific margins of error relative
to the true blood pressure values. This established standard
allows for a precise evaluation of the precision of blood
pressure measurement devices [18].

CP =
CummulativeFrequency

n
× 100. (4)

3) AAMI STANDARD
The Association for the Advancement of Medical Instrumen-
tation (AAMI) standard provides guidelines for the mean and
variability of blood pressure measurement errors. In order to
comply with this standard, we focus on calculating the Mean
Error (ME) and Standard Deviation (SD) using formulas (5)
and (6) respectively [19].

ME =
1
n

n∑
i=1

(
yi − ŷi

)
. (5)

SD =

√√√√1
n

n∑
i=1

(
yi − ŷi −ME

)2
. (6)

4) OTHER PERFORMANCE METRICS
As part of our comprehensive evaluation, we also computed
the Mean Relative Error (MRE) and Root Mean Squared
Error (RMSE) [20], [21], [22], [23].

The Mean Relative Error (MRE), expressed as a per-
centage, is a measure of the average relative error between
predicted and actual values, as indicated by equation (7).

TABLE 2. Performance requirements for blood pressure estimation
models according to IEEE, BHS, and AAMI standards.

This metric offers valuable information regarding the model’s
relative accuracy across varying scales of measurement.

MRE =
1
n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ × 100 (7)

TheRootMean Squared Error (RMSE), as calculated using
equation (8), is a commonly employed metric that reflects
the square root of the average squared differences between
the predicted and actual values. It offers a comprehensive
measure of the magnitude of the model’s prediction error.

RMSE =

√√√√1
n

n∑
i=1

(yi − ŷi)2. (8)

The inclusion of these additional metrics provides a
comprehensive assessment of the model’s performance,
incorporating both absolute and relative error measures.

Table 2, outlines the grading criteria for blood pressure
estimation models as defined by the IEEE, BHS, and AAMI
standards. According to the IEEE standard, model accuracy
is classified into grades A to D, with Grade A requiring
a Mean Absolute Error (MAE) of less than 5 mmHg and
Grade D indicating a MAE higher than 7 mmHg. The BHS
standard grades models based on the Cumulative Percentages
(CP) of predictions within 5, 10, and 15 mmHg of the true
blood pressure values, with a minimum of 60% of predictions
within 5 mmHg required for Grade A. Lastly, the AAMI
standard sets a pass threshold for the Mean Error (ME) of
less than 5 mmHg and the Standard Deviation (SD) of errors
to be less than 8 mmHg, ensuring that the model’s predictions
are both accurate and consistent.

B. RESULTS
Table 3 provides a thorough assessment of the performance
of various machine learning models in estimating Systolic
Blood Pressure (SBP) and Diastolic Blood Pressure (DBP)
using Photoplethysmography (PPG) signals. The table show-
cases an extensive range of neural network architectures and
machine learning methods, such as Convolutional Neural
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Networks (CNN)-Long Short-Term Memory (LSTM), Sup-
port Vector Machines (SVM), Residual Neural Networks
(ResNet), Artificial Neural Networks (ANN), Recurrent
Neural Networks (RNN), and U-Net, as well as ensemble
methods like AdaBoost. The evaluation of performance
is based on Mean Absolute Error (MAE) and Standard
Deviation (SD) metrics, which are indicative of the models’
accuracy and consistency, respectively. Each entry in the
table offers specific information about the study, including
the machine learning method, the input data type (PPG), the
dataset used for evaluation (including MIMIC III, MIMIC II,
Queensland, UCI), and the MAE and SD for both SBP and
DBP.

The concluding entry in the table showcases the proposed
model, which incorporates a dual GRU network and an
ANN, and employs both PPG and demographic data.
This model was initially evaluated on the PPGBP dataset,
achieving notably low mean absolute error (MAE) values for
systolic blood pressure (SBP) and diastolic blood pressure
(DBP) of 1.45 and 1.16, respectively. The corresponding
standard deviation (SD) values for SBP and DBP were
2.658 and 1.628, respectively, indicating improved accuracy
and consistent performance.

The GRU and Dense model displayed mean absolute error
(MAE) values of 5.74 for systolic blood pressure (SBP) and
6.72 for diastolic blood pressure (DBP) when applied to the
MIMIC III dataset. The standard deviation (SD) values for
SBP and DBP were 6.97 and 8.93, respectively. These results
indicate a decline in performance compared to the PPGBP
dataset, but they provide useful information about themodel’s
ability to generalize and potential areas for improvement.
The higher MAE and SD values suggest that further model
adjustments may be necessary to account for the unique
characteristics of the MIMIC III dataset, which may include
a more diverse patient population or distinct PPG signal
patterns.

Furthermore, the versatility and robustness of the proposed
model have been substantiated through additional results
from the MIMIC III dataset, which demonstrate an average
absolute error (MAE) of 1.42 for systolic blood pressure
(SBP) and 1.97 for diastolic blood pressure (DBP), alongwith
standard deviation (SD) values of 2.38 for SBP and 2.97 for
DBP. These findings highlight the model’s generalizability
and its potential to provide accurate blood pressure estimates
across various datasets. The slight increase in SD when
applied to the MIMIC III dataset indicates a variation in
the estimates that may necessitate further investigation to
improve the model’s predictive consistency.

Figure 3 illustrates a set of scatter plots contrasting the true
versus estimated blood pressure (BP) levels for both systolic
(SBP) and diastolic (DBP) readings. Each plot comprises
individual data points portraying the actual BP recorded
versus the BP predicted by a model.

In the first plot dedicated to SBP (left side), the blue dots
represent individual predictions, with the x-axis representing
the actual SBP and the y-axis showing the predicted SBP.

FIGURE 3. Scatter plots of actual vs. Predicted blood pressure values: SBP
(left) and DBP (right).

The dashed trend line indicates a strong positive correlation
between the actual and predicted values, signifying that the
model demonstrates exceptional accuracy in predicting SBP
across a broad spectrum of measurements.

The second plot on the right shows individual predictions
for DBP, represented by red dots on the graph. The x-axis
represents the actual DBP values, while the y-axis represents
the predicted DBP values. The trend line in the plot displays
a strong positive correlation, indicating that the model’s
predictions for DBP are accurate as well.

The alignment of the data points along the trend lines
in both plots, which are nearly 45 degrees, suggests that
the model’s predictions are close to the actual values. This
implies that the model performs well for both SBP and DBP
predictions.

However, it is important to note that without numerical
data or statistical analysis (e.g., correlation coefficients, R-
squared values), we cannot quantify the exact accuracy or
potential discrepancies between the predicted and actual BP
readings. Although the plots do not show any extreme outliers
or systematic bias, a comprehensive evaluation of the model’s
performance requires analyzing the plots in conjunction with
the actual numerical results.

The figure presented in Figure 4 offers a comprehensive
examination of a blood pressure estimation model’s perfor-
mance through two Bland-Altman plots and two histograms.
Regarding the SBP, the Bland-Altman plot displays a
mean difference of 0.84 mmHg between the actual and
predicted values, which indicates a negligible average bias
in the model’s forecasts. The upper limit of agreement is
6.05 mmHg, and the lower limit is −4.37 mmHg, as depicted
in Figure 4a. These boundaries represent the range within
which 95% of the differences between the actual and
predicted SBP values can be found. The relatively small mean
difference and narrow limits of agreement suggest that the
model demonstrates a high level of precision in predicting
SBP, with most discrepancies falling within a clinically
acceptable range.

The Bland-Altman plots show that the model’s predictions
for DBP are highly accurate, with a mean difference of
only 0.04 mmHg, indicating a negligible bias. This suggests
that the model’s predictions are, on average, very close to
the actual DBP measurements. The upper and lower limits
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TABLE 3. Comparison of performance metrics evaluation with the existing works in estimating SBP and DBP.

FIGURE 4. Comprehensive analysis of blood pressure estimation accuracy.

of agreement for DBP are 3.23 mmHg and −3.15 mmHg,
respectively, as shown in Figure 4b. These limits are
tighter than those for SBP, indicating higher precision in
the model’s DBP predictions. Overall, the Bland-Altman
plots demonstrate the model’s high accuracy and reliability
in estimating both SBP and DBP, making it a promising
candidate for non-invasive blood pressure monitoring in
clinical settings.

The Bland-Altman plots are supplemented by histograms,
which visually depict the distribution of prediction errors.
The shape, central tendency, and spread of the histograms
provide valuable information about the error characteristics
of the model. A symmetrical histogram centered on the
zero-axis suggests that the model is unbiased, equally likely
to overestimate or underestimate the blood pressure. Con-
versely, if the histogram is skewed or deviates from the center,
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TABLE 4. Performance metrics for systolic and diastolic blood pressure
prediction.

it indicates systematic overprediction or underprediction. The
width of the histogram indicates the range of errors and
reflects the accuracy and dependability of the model.

These plots allow for a comprehensive evaluation of the
model. They show not only the average difference between
the predictions and the true values (bias), but also the range
and precision of the predictions. They are particularly useful
for determining the reliability of the model at different blood
pressure levels and identifying any systematic errors that need
to be addressed to improve the model’s accuracy and clinical
applicability.

Table 4 presents key performance metrics of the proposed
model for predicting Systolic Blood Pressure (SBP) and
Diastolic Blood Pressure (DBP). The model achieves a
Mean Absolute Error (MAE) of 1.459 mmHg for SBP and
1.165 mmHg for DBP, indicating a low average absolute
difference between predicted and actual values. The Mean
Relative Error (MRE) is 1.114% for SBP and 1.687%
for DBP, reflecting a small relative difference between
predictions and actual measurements. Additionally, the Root
Mean Squared Error (RMSE) is 2.787 mmHg for SBP and
1.628 mmHg for DBP, demonstrating the model’s precision,
with slightly higher variability in SBP predictions. These
metrics highlight the model’s accuracy and reliability in
predicting blood pressure values, showing low error rates and
high consistency in its performance.

Table 5 provides a comprehensive assessment of the
proposed technique for predicting SBP and DBP, evaluated
against threewidely-acknowledged benchmarks: IEEE, BHS,
and AAMI, using a range of precision metrics. The IEEE
Standard’s Mean Absolute Error (MAE) and Mean Absolute
Percentage Difference (MAPD) measurements demonstrate
the model’s accuracy. With an SBP MAE of 1.459 mmHg
and DBP MAE of 1.165 mmHg, the model easily surpasses
the demanding criteria of the standard. As a result, the model
is awarded an ‘A’ grade for both SBP and DBP, along with
MAPD values of 1.114% for SBP and 1.687% for DBP.

In accordance with the BHS Standard, which assesses the
precision of blood pressure projections through Cumulative
Percentages (CP) at intervals of 5, 10, and 15 mmHg, the
model’s predictions for SBP and DBP exceed 96% and
98% accuracy, respectively, within a 5 mmHg margin. This
performance results in a perfect score of 100% for both SBP
and DBP predictions within the 15 mmHg range, and thus,

the model earns another set of ‘A’ grades for its accuracy in
predicting both SBP and DBP.

Evaluations conducted in accordance with the AAMI
Standard, which assesses the Mean Error (ME) and the
Standard Deviation of the error (SD), indicate a minimal bias
with ME values of 0.84 mmHg for SBP and a noteworthy
0.041 mmHg for DBP. The SD values reflect the consistency,
with 2.658 mmHg for SBP and 1.628 mmHg for DBP. These
results align with the AAMI Standard’s criteria, suggesting
the model’s dependability for clinical application.

Upon analyzing the PPGBP dataset, the model demon-
strates impressive accuracy and reliability, as evidenced by its
adherence to established standards. Furthermore, extending
the model’s assessment to the MIMIC III dataset reinforces
its effectiveness; it displays a comparable mean absolute
error of 1.429 mmHg for SBP and 2.385 mmHg for DBP.
Although there is a slight increase in the MAPD and SD
values–1.523% and 2.38 mmHg for SBP, and 4.208% and
2.97 mmHg for DBP, respectively—the model still maintains
a consistently high level of performance, achieving an ‘A’
grade across the board. These additional metrics from the
MIMIC III dataset underscore the model’s versatility and its
potential as a precise and accurate tool for non-invasive blood
pressure monitoring.

V. DISCUSSION
Our investigation’s outcomes indicate that the proposed dual-
input GRU-based model demonstrates high accuracy and
reliability in estimating blood pressure, as shown by the
performancemetrics assessed against IEEE, BHS, and AAMI
standards. The Mean Absolute Error (MAE) and Mean
Absolute Percentage Difference (MAPD) for both systolic
and diastolic blood pressure estimation were well within the
stringent requirements of the IEEE standard, earning a grade
of ‘A.’ This suggests the model’s high precision and minimal
bias, which aligns with the IEEE’s emphasis on accuracy for
wearable, cuffless blood pressure monitoring devices.

Furthermore, the model’s predictions were validated
against the BHS standard, showing that over 96% of systolic
and 98% of diastolic readings fell within a 5 mmHg range,
with 100% within a 15 mmHg range. This exceptional
performance earned the model a grade of ‘A’ under BHS
criteria and emphasizes its potential for clinical application,
considering that BHS grading is a recognized benchmark in
evaluating the clinical utility of blood pressure monitoring
devices.

The model in question has effectively fulfilled the AAMI
standards, showing minimal bias as demonstrated by its
ME values and consistent predictions as shown by its SE
values across measurements. These results suggest that the
model has the potential to be a dependable clinical tool for
monitoring blood pressure, especially in situations where
non-invasive, continuous measurement is preferred.

The model’s exceptional accuracy and reliability can be
attributed to its ability to account for temporal dependen-
cies within PPG signals and its integration of personal
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TABLE 5. Performance evaluation of the proposed method for SBP and DBP prediction based on the IEEE, BHS, and AAMI standards.

demographic data, which provides a more comprehensive
understanding of the individual’s cardiovascular health. The
use of a dual-input system enables the model to learn
from both PPG waveforms that change over time and
personal health data that remains static, resulting in a more
sophisticated approach to blood pressure estimation that
surpasses many single-input models.

The outcomes of this study contribute to the expanding
body of research on non-invasive methods for monitoring
blood pressure and support the practicality of utilizing
machine learning models, particularly those that incorporate
GRU networks, for this application. However, it is essential
to recognize potential limitations, such as the need for further
validation on larger andmore diverse datasets, and to evaluate
the model’s performance in real-world situations beyond
controlled clinical environments.

Future research will concentrate on addressing these
limitations by refining the model through additional fea-
ture engineering and exploring the integration of other
physiological signals to enhance prediction accuracy. The
ultimate goal is to develop a sturdy, non-invasive blood
pressure monitoring system that can be implemented in
various healthcare settings, from critical care to home-
based monitoring, potentially improving patient outcomes
and healthcare delivery.

VI. CONCLUSION
The research presented in this paper highlights the promising
potential of machine learning, particularly Gated Recurrent
Unit (GRU) networks, in improving non-invasive blood
pressure monitoring technologies. Our dual-input GRU
model, which integrates PPG signals and personal demo-
graphic data, has demonstrated a high level of accuracy and
reliability. The model’s performance, as evaluated against
the IEEE, BHS, and AAMI standards, showcases its ability
to accurately estimate systolic and diastolic blood pressure,
as indicated by the low Mean Absolute Error (MAE), high
Cumulative Percentages (CP) within clinically acceptable
ranges, and compliance with the Mean Error (ME) and
Standard Deviation (SE) criteria set by the AAMI standard.

The results of the study, demonstrated by the model’s
exceptional performance at the BHS standard and its
fulfillment of the AAMI criteria, offer great potential for the
field of wearable health technology and telemedicine. The
successful integration of time-series PPG data with static

personal health metrics into a cohesive model showcases the
innovative use of GRU networks in medical diagnostics.

Moving forward, our findings establish a strong base for
the ongoing development and refinement of non-invasive,
continuous blood pressure monitoring systems. The practical
applications of such advancements hold significant promise
for enhancing patient care, allowing for more proactive and
personalized healthcare management, especially for individ-
uals with hypertension or those at risk of cardiovascular
diseases.

This study offers valuable insights into the potential of
advanced neural network architectures for monitoring vital
signs. Additionally, it paves the way for future research that
could result in the widespread application of these methods in
clinical settings. Nevertheless, it is essential to conduct thor-
ough and extensive testing of the model on various datasets
to confirm its dependability and to assess the potential
advantages of incorporating additional physiological factors
that could enhance its predictive capabilities.
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