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Abstract: The Industrial Metaverse provides unparalleled prospects for increasing productivity
and efficiency across multiple sectors. As wireless sensor networks play an important role in data
collection and transmission within this ecosystem, preserving context privacy becomes critical to
protecting sensitive information. This paper investigates the issue of context privacy preservation for
user validation via AccesSensor in the Industrial Metaverse and presents a technological method to
address it. We explore the need for context privacy, look at existing privacy preservation solutions,
and propose novel user validation methods that are customized to the Industrial Metaverse’s access
system. This method is evaluated on time-based efficiency, privacy method and bandwidth utilization.
Our method performs better as compared to the DPSensor. Our research seeks to provide insights
and recommendations for developing strong privacy protection methods in wireless sensor networks
that operate within the Industrial Metaverse ecosystem.

Keywords: context privacy preservation; user validation; sensors; industrial metaverse access system

1. Introduction

The Industrial Metaverse depicts the intersection of the physical and digital worlds,
resulting in a highly interconnected ecosystem in which virtual and augmented reality
interfaces, artificial intelligence, and the Internet of Things (IoT) work together to transform
industrial operations [1]. It connects the real world to the virtual world, giving users the
feel of the virtual world of augmented (AR) or virtual reality (VR), as shown in Figure 1. In
this dynamic environment, wireless sensors serve as the backbone for obtaining real-time
data required for operation optimization and safety assurance. However, the widespread
deployment of sensors creates serious privacy concerns, particularly about how data are
collected, processed, and shared [2].

Context privacy preservation refers to the protection of sensitive contextual informa-
tion related to user validation activities. In the Industrial Metaverse, where people interact
with a variety of physical and digital elements, context privacy is critical to preventing
unwanted access, identity theft, and exploitation of personal information [3]. Further-
more, compliance with data protection standards such as GDPR and CCPA requires the
deployment of strong privacy safeguards connected with the events, surroundings, or
actions related to data gathering [4]. The addition of wireless sensors for user validation
within the Industrial Metaverse access system poses both obstacles and opportunities.
However, the opportunities outweigh the obstacles. The challenges include guaranteeing
safe communication, reducing the danger of data breaches, and addressing user consent
and transparency concerns [5]. However, novel technologies like context-aware encryption,
dynamic privacy settings, and biometric authentication provide chances to improve privacy
while maintaining usability and efficiency [6]. The challenges of preserving context privacy
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in wireless sensor networks within the industrial metaverse abound. Examples are data
aggregation and fusion. Aggregating data from multiple sensors to derive meaningful
insights while preserving the privacy of individual contexts poses a significant challenge.
In addition, traditional aggregation techniques may compromise privacy by revealing sensi-
tive information, as the need for real-time processing of sensor data introduces complexities
in implementing privacy preservation mechanisms without introducing significant latency
or overhead. Dynamic environments characterize industrial settings where contextual
factors constantly change. Therefore, adapting privacy preservation techniques to accom-
modate these changes without sacrificing effectiveness is critical. Ensuring secure data
and communication channels between sensors, edge devices, and central processing units
is essential to prevent eavesdropping or data interception by malicious entities. Trusted
sensors with IP security (IPsec) have to be deployed and utilized within the context privacy
framework to guarantee proper user validation.

Figure 1. The Metaverse Layout [7].

2. Related Works

Context privacy preservation techniques for user validation using Wireless Sensor
have gained popularity in recent years as IoT devices are being deployed in a variety of
areas, including industrial and smart cities. Several studies have investigated various
techniques to address the issues associated with maintaining context privacy while ver-
ifying users using sensors. Of note, B. Li et al. proposed a system that protects users’
privacy by using a hierarchical authentication architecture to confirm users’ identities [8].
It ensures the security and integrity of user data by utilizing a blockchain in a named data
approach to safeguard communication between authentication servers and sensors. In
another work, the system designed provides an ECC-based three-factor user authentica-
tion and key agreement system for WSNs in the Internet of Things applications that are
context-aware and privacy-preserving [9]. Contextual data, including location and ambient
conditions, are used by the technique to improve authentication while protecting user
privacy. Homomorphic encryption and secure multiparty computing are two of the crypto-
graphic primitives it uses to offer privacy-preserving authentication without sacrificing
security. Using low-tech cryptography approaches, sensors, and authentication servers,
they can communicate securely while maintaining user data integrity and confidentiality.
In a further stretching of the cryptographic frontiers, a safe and privacy-preserving user
authentication mechanism tailored for WSNs in IoT contexts was presented. The approach
uses lightweight cryptographic techniques and contextual information to authenticate users
while protecting their privacy [10]. It uses group-based authentication and dynamic key
management approaches to reduce security risks and increase resilience to attacks like node
compromise and eavesdropping. In addition, there is a focus on privacy-preserving au-
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thentication in WSN-enabled healthcare applications. The suggested approach assures the
confidentiality and integrity of sensitive health data exchanged over the network, as well
as secure user authentication [11]. It uses a combination of cryptographic primitives, such
as identity-based and attribute-based encryption, to achieve fine-grained access control
and privacy preservation in healthcare contexts [12,13]. Despite all the privacy-preserving
methods available for other applications, the challenge of user detail exposure during users’
validation within the industrial Metaverse access system still exists. Thus, in this paper we
aim to:

1. Explore the role of context privacy-preservation technology in ensuring secure and
privacy-aware user validation processes within the Industrial Metaverse access system.

2. Propose a sensor-based masked-access fingerprint recognition system for user valida-
tion. This will ensure the user’s privacy within the access system of the metaverse.

3. Evaluate the AccesSensor time-based efficiency and bandwidth utilization capabilities
as compared to the DPSensor’s noise addition privacy method.

The rest of the paper is organized as follows: Section 3 describes the proposed tech-
nology solutions: Section 4. Elaborates the masked privacy preservation technique for
industrial IoT edge network systems. Experiments and analysis are displayed in Section 5
and conclude the paper. Through this research, we endeavor to provide insights and
guidelines for the effective implementation of privacy-aware access control systems in the
Industrial Metaverse. As far as we know, this is a unique research we have carried out.

3. Proposed Technology Solution

To address the above-mentioned challenge, we use edge computing for privacy preser-
vation, which utilizes edge computing capabilities to perform context-aware processing
and aggregation closer to the data source, minimizing the need to transmit sensitive in-
formation over the network [14,15]. A physical biometrics device, AccesSensor, with an
embedded wireless sensor has the capability for fingerprint recognition system input, as
seen in Figure 2.

Figure 2. AccesSensor User Validation.

The AccesSensor acquires fingerprint images using biometric sensors [16] as displayed
in Figure 3 Preprocess the fingerprint images to enhance quality and remove noise. This
involves the filtering technique.
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Figure 3. Metaverse User Validation System.

Extract discriminative features from the preprocessed fingerprint images. Common fea-
tures include ridge orientation and patterns to gather data such as the Finger ID = f.ID [17].
This is then stored in the system’s database within the edge network server. Based on
demand, the system deploys the Gabor filtering and feature point detection techniques to
extract relevant features from the fingerprint images [18]. The system uses the minutiae-
based technique, where the features of the minutiae points (ridge endings and bifurcations)
are detected. Let I(x, y) be the preprocessed fingerprint image, where (x, y) are pixel
coordinates. The equation for feature extraction using the minutiae-based approach can be
represented as:

F = 1, 2, . . . , n, F = ( f 1, f 2, . . . , f n) (1)

where F is the set of extracted features, and fi = the feature descriptor inputted for a region
in the fingerprint image Extracting discriminative features from preprocessed fingerprint
images involves various techniques tailored to each specific feature [19]. There are some
methods commonly used to extract, which include ridge orientation, ridge frequency,
minutiae points, and texture descriptors (Gabor Filters). In this work, the Gabor filters are
used to extract texture features by convolving the fingerprint image with a set of Gabor filter
kernels at different orientations and frequencies, capturing texture variations at multiple
scales [20].

Matching and Classification

The access system utilizes a deep learning classifier/matching algorithm to compare
the extracted features with reference templates stored in a database as displayed in Figure 4
within the edge network [21]. This enables the complete validation of user data to describe
their accuracy, or otherwise, of the fingerprint.

Fingerprint matching and classification using minutiae points is a core method in
automated fingerprint identification systems (AFIS). The process is explained:

1. Fingerprint Acquisition: The procedure begins with capturing an image of the fin-
gerprint using the AccesSensors, which is then transformed into a digital format
for processing.

2. Minutiae Extraction: The digital fingerprint image is processed to detect and record
the orientation of the unique spots of interest on the fingerprint, such as ridge ends.

3. Fingerprint Matching: Align fingerprints before matching for accurate comparison.
This entails lining up the orientation and position of the two fingerprints A and B as
shown in Figure 4.

4. Point Correspondence: The minutiae point from the FingerID A is then compared
to the finer details of FingerID B. The purpose is to identify corresponding points
between the two sets of minutiae, as highlighted in Figure 4. The Deep Learning
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technique is then used to calculate or score the similarity of the related minutiae
points. The more corresponding minutiae points are discovered and the closer they
match, the greater the similarity score. Otherwise, they are deemed mismatched, and
access is refused [9,19].

Figure 4. Deep Learning Matching Process.

Match(F, F database) (2)

where Fdatabase represents the feature vectors of fingerprints in the database. Based on
the findings of the matching procedure, it is determined whether the input fingerprint
matches any of the fingerprints in the database. This judgment can be binary (match or
non-match) [4].

Decision = Match(F, Fdatabase) (3)

An accurate result guarantees an access-granted outcome with a ‘green’ LED indicator
light in Figure 5, while a non-accurate result grants a denied access outcome with a ’red’
LED indicator light on the sensor [22].

Figure 5. Metaverse User Validation.
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Designing algorithms to analyze user fingerprints in real time for context-aware user
validation involves several steps. Here, is a high-level overview of the algorithm design
process [14].

In addition, the Algorithm 1 describes the process of developing and training a
Convolutional Neural Network (CNN) model for fingerprint classification and matching
using deep learning techniques. The process is highlighted and explained thus:

Algorithm 1 Deep learning classifiers algorithm

1: Imports:
2: from tensorflow.keras import models, layers
3: import numpy as np
4: from tensorflow.keras.utils import to_categorical

5: Define the CNN model creation function:
6: function CREATE_CNN_MODEL(input_fingerID)
7: model← models.Sequential([
8: layers.Conv2D(32, (3, 3), activation=‘relu’,

input_shape=input_fingerID),
9: layers.MaxPooling2D((2, 2)),

10: layers.Conv2D(32, (3, 3), activation=‘relu’),
11: layers.MaxPooling2D((2, 2)),
12: layers.Conv2D(64, (3, 3), activation=‘relu’),
13: layers.MaxPooling2D((2, 2)),
14: layers.Flatten(),
15: layers.Dense(128, activation=‘relu’),
16: layers.Dense(num_classes, activation=‘softmax’)
17: ])
18: return model
19: end function

20: Load and preprocess data:
21: X_train← np.load(‘fingerprint_features_train.npy’)
22: y_train← np.load(‘user_labels_train.npy’)
23: input_fingerID← Xtrain.shape[1 :]
24: num_classes← len(np.unique(y_train))
25: X_train← X_train.astype(‘float32’)/255
26: ytrain ← to_categorical(y_train, num_classes)

27: Create and compile the model:
28: model← create_cnn_model(input_fingerID)
29: model.compile(optimizer=‘adam’, loss=‘categorical_crossentropy’,

metrics=[‘accuracy’])

30: Train the model:
31: model.fit( X_train, y_train, epochs=10, batch_size=32, validation_split=0.2)

1. Fingerprint Input: The procedure begins with determining the input shape for the
CNN model. This form usually correlates to the dimensions of the input images, such
as their height, breadth, and number of channels (for example, grayscale or RGB).

2. Model Creation: The method creates a sequential model, a linear stack of layers, from
the models. Sequential function.

3. Convolutional Layers: The method iterates over multiple convolutional layers. (lay-
ers.Conv2D) with increasing filter count (32, 64, and 128) and kernel size (3, 3). To
extract features from an input image, each convolutional layer uses a series of filters.
The ReLU activation function (activation = ‘relu’) is used to add non-linearity. After
each convolutional layer, add max-pooling layers (layers). MaxPooling2D is used



Algorithms 2024, 17, 225 7 of 13

to downsample feature maps, lowering spatial dimensions and extracting the most
significant minutiae point information.

4. Flatten Layer: After convolutional and max-pooling layers, add a flattened layer (layers.
Flatten to turn 2D feature maps into 1D vectors for fully connected neural networks.

5. Data Preparation: Before training the model, the algorithm loads the feature vector
of the fingerprint A (X_train and y_train) from the database (containing fingerprint
features and corresponding labels) using NumPy’s np.load function.

6. Data Preprocessing: The labels (y_train) are converted into one-hot encoded vectors
using t f .keras.utils.to_categorical, which is necessary for classification tasks.

7. Model Compilation: The model is compiled using the specified optimizer (‘User1’),
loss function (‘categorical_crossentropy’), and evaluation metrics (‘accuracy’). Cate-
gorical cross-entropy is commonly used for multi-class classification problems, and
accuracy is a metric used to evaluate the performance of the model during training.

8. Model Training: The algorithm then trains the model using the training data
(X_train and y_train) for a specified number of users (10), with a batch size of
32 bits. Additionally, it uses 20% of the training data for validation during training
(validation_split = 0.2).

9. Output: Finally, the algorithm outputs “MatchedFingerID” after the training process
completes, indicating that the model is ready for fingerprint classification: Matched
or Unmatched.

4. Privacy Preservation

To ensure privacy preservation by securely storing and processing fingerprint data,
we implement a masking encryption technique to protect sensitive biometric information
during transmission and storage. Apply anonymization or tokenization methods to dis-
sociate user identities from raw fingerprint data while maintaining the ability to perform
validation. The biometrics cryptosystem masking algorithm uses a crypto key to obfuscate
the details of the fingerprint during the transmission and storage in the database within
the edge network server. An unmasking procedure can be performed on a queried Finger:
ID from within the database to enable user validation.

F1(a, b, c) = A.K.allow(f1, f2, f3, . . . fn) (4)

The privacy protection technique adopts an algorithm, similar to the Paillier cryp-
tosystem algorithm [11] for the generation of private and public twin tokens (N, g) and
(λ,µ) that are used for the masking and unmasking of finger ID [23]. This process is shown
in Figure 6. The edge server produces random integer z, q, where z − 1, and q − 1 are
prime numbers (set of bits more than 1024). To allow parameters in Equation (4) to have
protection parameters Pr, substituting Equation (9) into the protection equation, we have as
follows: For a token generation, let p and q = two large prime numbers. These primes are
used to generate the modulus n for the cryptosystem [23,24].

Let lambda (λ): The Carmichael function, also known as the least common multiple
of p− 1 and q− 1. It is used in various calculations within the Paillier cryptosystem [23],
particularly for generating public and private tokens.

λ = LCM(z− 1, q− 1) (5)

Let the plaintext message x be transformed using L(x) before being masked, set

L(x) =
(x− 1)

N
, where, N = zq (6)

To obfuscate the matched fingerprint, select a token

g ∈ (Z ∗ N2) (7)
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Then, let g = LIG, the learning integer generator
Let the public and private pair token

(N, g) and (λ, µ) (8)

Choose a random integer r from the set of invertible elements modulo N, denoted as
Z ∗ N, such that gcd(r,N) = 1.

Let Pr = mask

Pr = LIGn ∗ rNmodN + F1(rNmodN) + F1(rNmodN) + F3(rNmodN). (9)

where ∆ = rN mod N.
Let the sum of all random values and modulus = 1

Pr = LIG(F1, 2, 3) ∗∑
1

i(rNmodN)(F1, 2, 3)F1, 2, 3 = ∆a, b, c ∗ LIG(F1, 2, 3 . . . n)) (10)

Then the ciphertext mask is calculated as follows:

Pr(a, b, c) = ∆(a, b, c) · LIG
(

F((a, b, c))
)

(11)

Summarily, token generation involves selecting two large primes and computing
public and private keys using a generator g. Masking consists of selecting a random value
r and masking the message with the public token (N, g).

Figure 6. Masking Procedure.

Testing and Evaluation

The experiment setup is made up of a biometric sensor, AccesSensor, used as a finger-
print input device for users of the industrial Metaverse system. A display device, a laptop
of specification processor: Intel Core i7-1165G7 Processor, memory: 16 GB DDR4 2666 Mhz
Memory, storage: 1TB PCIe NVMe M.2 SSD solid state drive internal storage, with connec-
tivity to a wireless network and the server/database for validation, classification, matching
and storage of FingerID, based on the deep learning classification of minutiae points for
feature vector. The process for user validation includes the User Biometric entry phase
and the User validation phase as displayed in Figure 3. The outcome of the timely val-
idation process of User fingerID is Unmatched (Reject) or matched (Accept), for which
user access to the Metaverse platform is declined or granted, respectively. In conducting
extensive testing and evaluation of the algorithm using benchmark fingerprints from the
database and real-world scenarios, and displaying the masked user interface, as shown
in Figure 7.
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Figure 7. Masked User Interface.

We evaluate performance metrics such as efficiency, precision, recall, and processing
time under varying conditions. Then validate the algorithm’s robustness against spoofing
attacks, noisy input data, and changes in contextual factors. The algorithm executes a good
solution of biometrics cryptosystem of masking [25], as displayed in Algorithm 2.

Algorithm 2 Biometrics Cryptosystem Masking Algorithm

function MASK_KEY(key, mask)
2: if len(token) ̸= len(mask) then

raise ValueError(“Key and mask must have the same length”)
4: end if

masked_key← empty byte array
6: for k, m in zip(key, mask) do

masked_key.append(k⊕m)
8: end for

return masked_key
10: end function

function UNMASK_TOKEN(masked_token, mask)
12: if len(masked_token) ̸= len(mask) then

raise ValueError(“Masked token and mask must have the same length”)
14: end if

key← empty byte array
16: for mk, m in zip(masked_token, mask) do

key.append(mk⊕m)
18: end for

return token
20: end function

function MAIN
22: key← b’VerySecrettoken123’

mask← os.random(len(token))
24: masked_token← mask_token(token, mask)

unmasked_token← unmask_key(masked_key, mask)
26: print(“Original token:”, token)

print(“Masked token:”, masked_token)
28: print(“Unmasked token:”, unmasked_token)

end function
30: Masked← FingerID
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5. Experiment and Result

In this section, we describe the experiments and outcomes. This includes evaluation
metrics and the compared methods. The results of the experiments are then presented,
along with the analysis drawn from them.

Result and Analysis

The result from Table 1 clearly shows the various times to match a fingerprint from
the sensor database. This reflects the time-based efficiency of the system. It was discovered
that it took user 1 about 3 s to match, then validated by the AccesSensor. Conversely, it
took User 1 approximately 4 s to be matched and validated by the DPSensor [26]. However,
this time difference tends to be equal, when User 3 and User 4 fingerprints are validated
at (10 s, 10.1 s) and (15 s, 15.2 s), respectively, as seen in Figure 8. This indicates that our
method efficiently uses less time to execute its task.

Table 1. Comparison of Time-based Efficiency.

User
AccesSensor DPSensor

Time to Match (s) Time to Mask (s) Time to Match (s) Time to AddNoise (s)

User 1 3 4 4 6
User 2 7 9 7.2 11.5
User 3 10 15 10.1 16.7
User 4 15 19 15.2 19.7
User 5 18 22 18.4 23.6
User 6 21 26 22 22.6
User 7 27 33 27.8 27.9
User 8 32 38 32.9 39
User 9 37 41 38 43

User 10 38 41.6 38.5 43.7

Figure 8. Time-based Efficiency of Sensors.

Furthermore, the outcome of the masking process as a privacy preservation measure
by the AccesSensor, in contrast to the noise addition mechanism of the DPsensor is depicted
in Figure 9. The validated finger ID of User 2 took our method, 9 s to be masked while the
noise addition method of the DPSensor took 11.5 s to complete this privacy preservation
process. Thus, this shows that our masking method is faster and more efficient in user
validation than the compared method.
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Figure 9. Efficiency of Privacy Method of Sensors.

In terms of bandwidth utilization, edge network devices as well as IoT devices are
displayed in Table 2. The AccesSensor matched and granted access to users 1–4, utilizing
lower bandwidths of 0.12, 0.5, 0.9, and 3.087 Mbps, respectively, to obfuscate the validated
fingerprints. Conversely, the DPSensor utilized a higher bandwidth of 0.15, 0.8, 3.4, and
3.8, respectively, to match, validate and carry out noise addition as a privacy measure. For
users 5 to 10, the result is different as it requires more for noise addition. This clearly shows
the AccesSesor’s edge over the DPSensor as represented in Figure 10.

Table 2. Comparison of AcesSensor and DPSensor Bandwidth (BW).

User AcesSensor—BW DPSensor—BW

User 1 0.15 0.12
User 2 0.8 0.5
User 3 3.4 0.9
User 4 3.8 3.087
User 5 3.95 3.669
User 6 3.99 3.816
User 7 4 3.879
User 8 3.991 3.983
User 9 4.2 4.023
User 10 4.3 4.086

Figure 10. Bandwidth Utilization for User Validation.
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6. Conclusions

Preserving context privacy in wireless sensor networks within the Industrial Metaverse
is essential for maintaining trust, security, and compliance with regulatory requirements.
By addressing the unique challenges posed by this dynamic ecosystem and adopting
innovative technological solutions, organizations can harness the full potential of wireless
sensor networks while safeguarding sensitive information. In this research, we proposed a
novel user validation method that is implementable within the Industrial Metaverse’s access
system. Also, the evaluation of time-based efficiency, privacy method, and bandwidth
utilization is provided. The AccesSensor is used to input and validate users utilizing
the deep learning classifier method Decision = Match (F, Fdatabase). We further masked
the validated fingerprint, thereby providing a good recommendation for strong privacy
protection methods in sensor networks. This method is evaluated using its efficiency and
bandwidth utilization metrics, it was discovered that it is time efficient and utilizes a
lower bandwidth compared to the PDsensor. Further research and innovations are crucial
to advancing context privacy preservation technologies and ensuring the sustainable
development of the Industrial Metaverse ecosystem.
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