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Abstract: In recent years, there has been growing interest in the development of metal-free, envi-
ronmentally friendly, and cost-effective biopolymer-based piezoelectric strain sensors (bio-PSSs) for
flexible applications. In this study, we have developed a bio-PSS based on pure deoxyribonucleic acid
(DNA) and curcumin materials in a thin-film form and studied its strain-induced current-voltage
characteristics based on piezoelectric phenomena. The bio-PSS exhibited flexibility under varying
compressive and tensile loads. Notably, the sensor achieved a strain gauge factor of 407 at an applied
compressive strain of −0.027%, which is 8.67 times greater than that of traditional metal strain
gauges. Furthermore, the flexible bio-PSS demonstrated a rapid response under a compressive strain
of −0.08%. Our findings suggest that the proposed flexible bio-PSS holds significant promise as
a motion sensor, addressing the demand for environmentally safe, wearable, and flexible strain
sensor applications.

Keywords: DNA; biopolymer; graphene; strain sensor; gauge factor

1. Introduction

In recent years, flexible devices have attracted significant interest in future electron-
ics/optoelectronics, which has notably boosted their commercial value [1]. These devices
are continually being introduced in an array of advanced functional devices with sensing
mechanisms, facilitating the emergence of wearable human–machine systems, soft robotics,
and energy harvesting [2–4]. Strain-controlled flexible devices can be broadly classified into
optical, resistance-based, and piezoelectric devices [5]. Among these, piezoelectric-based
flexible devices stand out due to their rapid response time, superior sensitivity, and robust
durability. Typically, an electrical strain sensor functions by converting mechanical energy
into a specified quantity of electrical energy.

The development of strain-controlled sensors incorporating nanomaterials such as
nanowires, nanotubes, nanoparticles, and thin films has attracted significant interest [6,7].
For instance, strain-controlled sensors comprising zinc oxide nanowires, graphene, and
carbon nanotubes are potential alternatives for the fabrication of new strain-controlled
sensors owing to their appealing properties [7–10]. In graphene-based strain-controlled
sensors, the electrical conductance and principal vibrational frequency of graphene actively
depend on its topological structure, which can be controlled by applying strain, making it
useful for high-sensitivity strain detection [11,12]. Nanomaterials can serve as structural
components and be modified to function as both multifunctional and multidirectional
strain sensors at the nanoscale while exhibiting high gauge values. The electromechanical
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characteristics of these strain-controlled sensors exhibit outstanding functionalities com-
pared to conventional strain sensors, attributed to the combined effects of their excellent
electrical properties and large stretching moduli.

Recently, conduct polymers (CPs) have been used in the fabrication of sensors [13,14].
Specifically, they are used in different forms such as particles, films, fillers, and matrices.
They are also used in the combination of CPs with additives and composites such as
polyurethane, cotton, fabric, PDMS, Velostat, Ecoflex, and MXenes [13]. The development
of a non-toxic and biocompatible multifunctional strain sensor that fulfills the requirements
of high flexibility, mechanosensitivity, and robustness remains a challenge. Many biocom-
patible materials, including carbon dots, fluorescent proteins, and deoxyribonucleic acid
(DNA), have been previously explored [15–17]. However, these biocompatible materials
present limitations such as the extraction processing methods and protocols for carbon dots
and fluorescent proteins. Nonetheless, the development of biocompatible strain-controlled
sensors using DNA as the strain-sensing material remains a promising approach [18,19].
Moreover, it is possible to modify the electrical properties of thin-layered DNA-based bio-
materials for applications in innovative electronic devices [20,21]. Because of their unique
advantages, including molecular wires, variable nanoscale lengths, and self-assembly,
DNA biomaterials are excellent alternatives for cutting-edge biocompatible device tech-
nologies [22]. Stemming from their wide energy bandgap (4.7 eV), DNA biomaterials
exhibit diverse transport modes such as tunneling (super-exchange), long-range hopping
(multi-step), and hopping (single-step) [23,24]. Compared to inorganic materials, DNA
has many benefits such as light weight, low-cost preparation protocols, fabrication, and
flexibility [25,26]. Several researchers have developed high-performance electronic devices
based on DNA biomaterials [27–29]. DNA may act as a hole transport and electron-blocking
agent at the interface of the heterojunction, realizing the conversion of detected photons
into electron–hole pairs with a huge conversion efficiency [23]. Moreover, DNA-based
strain-operated devices employing mechanical forces at the nano/micro scale in modern
bioscience technology, such as attachable and movable sensors in the human body, have
been recently investigated.

Curcumin, the most economically accessible material globally, is a naturally occurring
yellow-orange compound extracted from the roots of Curcuma Longa. It finds widespread
use in food spices, traditional medicines, and cosmetics in Asian countries [30]. Renowned
for its potent anticancer, antitumor, antibacterial, and antioxidant properties [31], curcumin
is also used as a chromophore that generates efficient luminescence in biohybrid light-
emitting diode technology [29]. Researchers have extensively explored the incorporation of
curcumin into hydrophilic or biocompatible polymers to produce bioactive polymer com-
posites. The loading of curcumin onto polymeric materials to form electrospun nanofibrous
scaffolds or mats has also been pursued [32]. Interestingly, the mechanical properties of
electrospun materials mainly depend on the composition of the polymer matrix and the
concentration of curcumin [33].

In this study, we fabricated a biopolymer-based strain sensor (bio-PSS) using a con-
temporary pure DNA biopolymer endowed with high feasibility, flexibility, and strain
sensitivity. To fabricate the bio-PSS device, we utilized a pure DNA biopolymer extracted
from salmon fish sperm and a solvent extract of turmeric (i.e., curcumin). To our knowl-
edge, there are no existing reports on DNA-curcumin biopolymer sensors integrated into
polyethylene terephthalate (PET) substrates for the fabrication of flexible bio-PSS devices.

2. Materials and Methods
2.1. DNA Extraction Protocols

Frozen DNA powder was extracted from salmon fish sperm, and cationic CTMA
surfactant was purchased from Sigma-Aldrich. Curcumin powder, extracted from turmeric,
was purchased from an Indian supermarket. To obtain the DNA-curcumin biopolymer, we
followed the following protocol: 10 g of DNA powder was mixed with 1 L of deionized (DI)
water in a glass beaker and stirred using a magnetic stirrer for 6 h to prepare an aqueous
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DNA solution (Figure 1a). In addition, curcumin (2 g) was mixed with 1 mL of dimethyl
sulfoxide (DMSO, Sigma-Aldrich, Saint Louis, MO, USA). This mixture was added to an
aqueous DNA solution and stirred for 6 h. During this process, a greenish-yellow aqueous
solution of DNA-curcumin was obtained. Here, curcumin nanomolecules particularly bind
at minor groove positions of DNA, as distinctly shown in Figure 1b. Similar characteristics
such as curcumin binding to the DNA biomolecule with the minor groove were previously
reported [27,34,35]. Using an ion-exchange reaction procedure, the CTMA surfactant was
treated with an aqueous solution of DNA-curcumin and formed like DNA-curcumin-CTMA
(Figure 1c). At this moment, the Na ions in CTMA combined with the DNA base pairs
owing to the precipitation of DNA-curcumin-CTMA at the bottom of the glass beaker with
the NaCl-containing solution. The combination of CTMA and DNA-curcumin precipitate
was separated from the glass beaker and oven-dried overnight at 65 ◦C, yielding the bio-
crystalline form of DNA-curcumin-CTMA precipitate. The product was then scraped and
powdered. As the produced powder was insoluble in water and organic solvents, butanol
was chosen as the solvent to prepare the target solution for the DNA-curcumin-CTMA
biopolymer (hereafter DNA-curcumin biopolymer).
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Figure 1. Processing protocols of DNA-curcumin-CTMA aqueous solution; (a) DNA; (b) DNA-
curcumin; and (c) DNA-curcumin-CTMA.

2.2. Graphene Transfer and Device Fabrication

A graphene layer was grown on a Si wafer (graphene/Ni/SiO2/Si) using the chemical
vapor deposition (CVD) method. The graphene/Ni/SiO2/Si wafer was dipped in buffer-
oxide-etch (BOE) solution to etch the SiO2 layer. The graphene/Ni layer was then rinsed
in FeCl3 solution to etch the Ni layer. The PET substrate was then positioned in a glass
container with DI water to transfer the graphene layer onto the PET substrate (i.e., the
first graphene layer transfer). During this process, to further device fabrication, the DNA-
curcumin biopolymer was spin-coated on the surface of the graphene layer (i.e., one portion
of the graphene layer). The DNA-curcumin/graphene/PET wafer was then oven-dried for
3 h at 65 ◦C. Subsequently, Ag-metal contacts were applied to the surface of the graphene
and DNA-curcumin layers. Thus, the desired Ag/DNA-curcumin/graphene/PET device
was fabricated (Figure 2a).
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Figure 2. (a) Schematic illustration of the fabricated bio–PSS device; (b) two–dimensional SPM image;
and (c) Raman spectrum of DNA–curcumin on the graphene/PET substrate.

2.3. Characterization Techniques

Scanning probe microscopy (SPM; NX-20 Park Systems, Suwon, Republic of Korea)
was used to determine the thicknesses and morphologies of the samples. The spectra
were obtained via Raman spectroscopy (inVia reflex, Renishaw, Wotton-under-Edge, UK)
using a He/Ne laser at a wavelength of 532 nm. Transmittance spectra were recorded
by UV-visible spectroscopy (PerkinElmer LAMDA, Waltham, MA, USA). The Fourier-
transform infrared (FTIR, 80-Bruker, Vertex, Boston, MA, USA) spectrum was obtained in
the spectral wavenumber range of 600–3000 cm−1. The structural phases were recorded
using a sophisticated XRD (PANalytical, Westborough, MA, UK) instrument with a copper
target material (Cu Kα radiation = 0.154 nm). The stress–strain curve (i.e., loading rate is
~0.16 mm/s) of the sample was obtained using a UTM (ORIENTAL, Hanshin Tech Co.,
Busan, Republic of Korea) instrument. The I-V and bending characteristics of the measured
devices were systematically analyzed using a parameter analyzer (Keithley 4200-SCS,
Tektronix, Beaverton, OR, USA).

3. Results and Discussion

SPM was used to determine the surface morphology of the DNA/graphene/PET, as
illustrated in Figure 2b. The root-mean-square surface roughness of the sample was ap-
proximately 30.64 nm. The thickness of the multi-layer graphene layer (i.e., four layers) and
DNA/graphene (i.e., three layers) were ~1.8 nm and ~150 nm on the PET substrate, respec-
tively. XRD measurements of the DNA-curcumin/graphene/PET samples were performed
to assess their structural phases. Raman spectroscopy was used to examine the spatial scat-
tering modes of vibrations in a measured sample to detect the graphene, DNA, curcumin,
and PET substrates. The Raman spectrum of the flexible DNA-curcumin/graphene/PET
sample is presented in Figure 2c. The strong peaks at 1289 ± 1 cm−1 (C–O band) and
1725 ± 1 cm−1 (C=O) were correlated with the PET substrate. Similar characteristic PET
peaks have been reported previously [36]. The two broad peaks corresponding to the G- and
2D-band were correlated with the graphene conducting layer. One peak at 1586 ± 1 cm−1
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(G-band) appeared as a major in-plane vibrational mode. This mode occurs because of the
two neighboring carbon atoms in a single layer of graphene. In addition, the second peak
at 2685 ± 1 cm−1 (2D-band) is related to the doubly generated resonance linking of the two
iTO phonons [37]. The two distinctive peaks identified at 959 ± 1 cm−1 and 1625 ± 1 cm−1

corresponded to the curcumin sample. These characteristics peaks were also observed by
Nong et al. [38] and reported as νC=O vibration (959 ± 1 cm−1) and νC=O and νC=C
vibration (1625 ± 1 cm−1) in curcumin molecules, respectively. The peak at 1094 ± 1 cm−1

corresponds to the symmetric stretching vibration mode of PO2
− in the DNA backbone

and is considered an internal intensity standard for DNA content [39].
FTIR microscopy was performed to identify the stretching vibration interactions and

harmonics in the DNA-curcumin/graphene/PET sample (refer to Figure 3a). The stretching
vibrations of the bonds at 3200–3500 (O–H group), 1430 (C=C aromatic), and 1277 cm−1

(ν(C–O)) corresponded to curcumin [40,41]. The stretching bands at 2916 (CH2 asymmetric),
2851 (CH2 symmetric), and 916 cm−1 (phosphate-ribose skeletal motion) were ascribed
to DNA components [42], and the bonds at 1725 (C=O) and 1406 cm−1 (O–H) originated
from the graphene layer [42,43]. The bonds at 1082 (ester C=O stretching) and 1010 cm−1

(benzene-related in-plane vibration) were attributed to the PET substrate [7].
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Figure 3b illustrates the transmission spectrum of the DNA-curcumin/graphene/PET
sample. The strong transmission peak (at 683 nm) was found to have an optical energy
bandgap value of 1.81 eV. We compared our sample with a sample without graphene, and
the results showed an optical energy bandgap of 1.79 eV at a significant transmission peak
of 693 nm. Therefore, the lower bandgap (~20 meV) of the DNA-curcumin/graphene/PET
sample may be due to the graphene layer. A comparable reduction in the optical energy
bandgap was observed for carbon-based materials [44,45].

A UTM instrument was used to analyze the mechanical flexibility of the DNA-
curcumin/graphene/PET sample. Here, both ends of the measured sample were held
using the gripping inside the fixtures of the UTM machine as shown inset of Figure 4.
Using a normal stretching strain-stress curve of the measured sample was carried out in
a quasi-static state at a strain rate of 0.16 mm/s. However, the UTM measurements were
performed under homogeneous uniaxial stretching conditions, and it was observed that the
yield point occurred at approximately 22 ± 0.5 GPa, as shown in Figure 4. There were two
distinctive plastic deformations in regions I (approximately 3.26 GPa) and II (approximately
0.07 GPa). Approximately 3.18 times the yield stress point was found at 111 ± 2% of the
elongation break point. These results suggest that the mechanical and flexibility qualities
were improved by applying strain. Consequently, the DNA-curcumin effect on flexible
graphene/PET substrates is due to the enhancement induced by the strain. These features
are important for flexible devices.
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Figure 5a,b presents the I-V curves under initial and distinct strains (i.e., compressive
and tensile directions) for the biopolymer-based flexible DNA-curcumin/graphene/PET
strain sensor (bio-PSS). In Figure 5a,b, the output current of the sensor gradually increases
with an increasing applied compressive strain and decreases with an increasing applied
tensile strain. To evaluate the real-time working mechanisms and control of the flexible
bio-PSS with applied strain, we assessed the injection current and strain of the device
in the steady state (I0), change-in state (∆I = IC − I0), and relative deformation state
(∆I/I0 = IC − I0/I0), where IC and I0 are the initial and applied strains in the compressive
and tensile directions, respectively. The correlation between ∆I/I0 and the applied strains
in the compressive and tensile directions is shown in Figure 5c,d. These relationships were
predicted based on the I-V characteristics (Figure 5a,b).
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The gauge factor is often used to describe the sensitivity of a strain sensor and can
be evaluated as (∆I/I0)/ε, which is the relative deformation in the current divided by the
applied strain. Figure 6a,b shows how the applied strains in the compressive and tensile
direction loads caused an increase in the gauge factor values. The evaluated gauge factors
for the compressive strains of −0.08%, −0.16%, −0.22%, and −0.27% were 268, 322, 383,
and 407, respectively, and 323, 347, 362, and 366 for the predicted tensile strains of 0.08%,
0.16%, 0.22%, and 0.27%, respectively. The measured strain gauge values were higher than
the standard gauge values (i.e., 2) [46,47]. This illustrates that the strain gauge values of
268 (28.06), 322(28.33), 383(28.58), and 407 (28.67), which were 8.06, 8.33, 8.58, and 8.67 times
higher than the traditional gauge value, were determined by the induced compressive
strains of −0.08%, −0.16%, −0.22%, and −0.27%, respectively. Furthermore, the gauge
factor values of 323 (28.33), 347(28.44), 362(28.5), and 366 (28.52) were obtained for the tensile
strains of 0.08%, 0.16%, 0.22%, and 0.27%, respectively, which were 8.33, 8.44, 8.5, and
8.52 times higher than the conventional value.
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In actuality, the gauge factor values are dependent on an applied bias and the strain to
control the piezoelectric effect. At a certain value of combined applied bias and strain, the
pathways with low activation energy are already conductive (i.e., high current) and cannot
be changed with an increasing strain. The values of the gauge factor are restricted due to
certain strains already having reached a high conductive state. Further, the gauge factor
value influences the materials’ characteristics such as the gauge factor of the graphene
layer that ranges from 10 to 15, which is dependent on the number of graphene layers
(1–5 layers) [48]. Furthermore, a DNA/graphene/GaN/PEN hybrid device demonstrates a
high gauge factor of 898 [45]. Moreover, we did not use semiconductor materials in our
present device (DNA/graphene/PET) and attained a high gauge factor of 407. This is the
first approach we have used in which no semiconductor material is used. When compared
to the current results, we will obtain higher gauge factors in future devices.
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Figure 6c,d illustrates the features of the response findings of the flexible bio-PSS
under compressive and tensile strains. The current versus time plot with applied strains
under compressive and tensile loads has a close resemblance in shape, indicating that the
bio-PSS responded quickly and well. At an applied compressive strain of −0.08%, the
approximate response time was 0.8 s. Further, at an applied tensile strain of 0.08%, the
response time of the sample was 1 s. Thus, based on these strain outcomes, the bio-PSS is a
promising active sensor that could meet the needs of the development of wearable/flexible
sensors in the future.

4. Conclusions

In this study, we introduced a biocompatible material, DNA-curcumin, as a flexible
strain-sensitive layer on a graphene/PET substrate using innovative and bio-inspired
cutting-edge technology. The utilization of DNA-curcumin provides a cost-effective, tun-
able, and feasible approach to fabricating a biopolymer-based piezoelectric strain sensor
(bio-PSS). Our proposed bio-PSS demonstrates highly sensitive, super mechanical behav-
iors while enabling bending functionalities. Specifically, it displayed compelling sensitivity,
boasting a strain gauge factor 8.67 times greater than that of a conventional metal gauge un-
der an applied compressive strain of −0.08%. Moreover, the bio-PSS demonstrated a rapid
response time of 0.8 s under the same compressive strain. According to our analysis, the
strain-modulated flexible bio-PSS based on biopolymer materials, such as DNA-curcumin,
presents significant commercial viability for future applications in wearable/flexible elec-
tronics such as biomedical devices, soft robotics, and artificial intelligence.
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