
Citation: Kim, H.; Park, J.; Lee, H.;

Won, D.; Han, M. An FPGA-

Accelerated CNN with Parallelized

Sum Pooling for Onboard Realtime

Routing in Dynamic Low-Orbit

Satellite Networks. Electronics 2024,

13, 2280. https://doi.org/

10.3390/electronics13122280

Academic Editors: Fabio Garzetti

and Bruno Da Silva

Received: 10 May 2024

Revised: 4 June 2024

Accepted: 6 June 2024

Published: 11 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

An FPGA-Accelerated CNN with Parallelized Sum Pooling for
Onboard Realtime Routing in Dynamic Low-Orbit
Satellite Networks
Hyeonwoo Kim 1 , Juhyeon Park 2 , Heoncheol Lee 1,3,* , Dongshik Won 4 and Myonghun Han 5

1 School of Electronic Engineering, Kumoh National Institute of Technology,
Gumi 39177, Republic of Korea; hwkim@kumoh.ac.kr

2 PGM R&D Lab, LIGNEX1, Seongnam 13488, Republic of Korea
3 Department of IT Convergence Engineering, Kumoh National Institute of Technology,

Gumi 39177, Republic of Korea
4 TelePIX Corporation, Techno 4-ro, Daejeon 34013, Republic of Korea
5 Agency for Defense Development, Daejeon 34186, Republic of Korea
* Correspondence: hclee@kumoh.ac.kr; Tel.: +82-54-478-7476

Abstract: This paper addresses the problem of real-time onboard routing for dynamic low earth
orbit (LEO) satellite networks. It is difficult to apply general routing algorithms to dynamic LEO
networks due to the frequent changes in satellite topology caused by the disconnection between
moving satellites. Deep reinforcement learning (DRL) models trained by various dynamic networks
can be considered. However, since the inference process with the DRL model requires too long a
computation time due to multiple convolutional layer operations, it is not practical to apply to a real-
time on-board computer (OBC) with limited computing resources. To solve the problem, this paper
proposes a practical co-design method with heterogeneous processors to parallelize and accelerate
a part of the multiple convolutional layer operations on a field-programmable gate array (FPGA).
The proposed method was tested with a real heterogeneous processor-based OBC and showed that
the proposed method was about 3.10 times faster than the conventional method while achieving the
same routing results.

Keywords: convolutional neural network (CNN); deep reinforcement learning (DRL); FPGA; low
earth orbit (LEO) satellites; algorithm parallelization

1. Introduction

Low earth orbit satellite networks (LEO-SN), which consist of tens to thousands of
satellites located at relatively low altitudes (300 km to 1500 km), are used for a variety
of applications, including communications, internet, and observation [1]. Compared to
geostationary orbit satellites, LEO-SNs have the advantage of lower transmission losses
and lower latency due to their low orbital rotation [2–4]. The most powerful aspect of
LEO satellite networks, and a major topic of discussion among researchers, is whether
they can achieve global coverage. In order to achieve global coverage in a low earth
orbit satellite network, many satellites must be deployed, and accurate and fast routing
techniques between LEO satellites are required. Therefore, in recent years, research on
routing techniques for LEO satellite networks has been actively conducted.

Routing in a LEO satellite network is different from routing on the ground due to a
number of considerations. First of all, low-orbit satellites travel at high speeds, so routing
must be able to reflect the satellite topology [5–9]. Table 1 summarizes the previous research
on LEO satellite routing algorithms. LEO satellite routing algorithms have been actively
studied; firstly, some research [10,11] applied reinforcement learning techniques to routing
algorithms. In addition, some research [12–14] applied reinforcement learning techniques
and included a dynamic environment. Next, one paper [15] included the previous topics

Electronics 2024, 13, 2280. https://doi.org/10.3390/electronics13122280 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13122280
https://doi.org/10.3390/electronics13122280
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0005-3723-4331
https://orcid.org/0009-0003-2120-3851
https://orcid.org/0000-0003-2962-3474
https://doi.org/10.3390/electronics13122280
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13122280?type=check_update&version=1

Electronics 2024, 13, 2280 2 of 13

but also included satellite link disconnection. The previous works described focus on
LEO satellite routing algorithms, but they did not consider parallelization. Our proposed
method is different in that it incorporates the previous topics and uses parallelization to
accelerate the algorithm.

Table 1. Routing algorithm research related to reinforcement learning.

Related Works RL Dynamic Environment Link Disconnection Parallelization

[10,11] O X X X

[12–14] O O X X

[15] O O O X

Proposed Method O O O O

As discussed previously, LEO satellite networks require fast and accurate routing
techniques that account for frequent changes in satellite topology, making it difficult to
replicate conventional ground-based methods. In a real LEO satellite network, satellite
positions change in real time, and there are link disconnects. In addition, in the space
environment, each satellite needs to actively and adaptively schedule and map routes
without relying on ground stations. Routing algorithms based on deep reinforcement
learning can be a solution to these problems because they are highly adaptive to the real-
time changing environment. However, most deep reinforcement learning-based algorithms
are computationally intensive; so, it is necessary to reduce the computation time before it
can be used for real-time LEO satellite network routing.

An additional problem is the constraints of the LEO satellite network environment. In
the space environment, the computing resources used on the ground cannot be used, as
such, due to the temporary alteration of bits by cosmic radiation (SEU), permanent damage
to semiconductors (SEL), extreme environmental changes, and thermal differences due to
the presence or absence of sunlight. Considering these problems, this paper assumes that
the computing resources on a satellite are an on-board environment consisting of a central
processing unit (CPU) and a field-programmable gate array (FPGA) instead of conventional
ground resources. FPGAs are being studied in a variety of fields, because their reconfig-
urable architecture allows for development customized to user needs, offers the hardware
advantage of parallel processing, and is resistant to heat and power consumption [16–19].
However, FPGAs also have a disadvantage in that the performance may be inferior to a
CPU if the naive routing technique used in conventional computing resources is applied;
so, careful adjustment is required [20].

In this paper, we propose a parallelized reinforcement learning-based routing algo-
rithm for accurate and fast routing in a real-time LEO satellite network environment. The
parallelism is achieved through a co-design of a CPU and an FPGA. The contributions of
this paper are as follows.

- A practical co-design method with heterogeneous processors to parallelize and accel-
erate the Dueling-DQN-based routing algorithm was proposed to solve the problem
of real-time onboard routing for dynamic LEO satellite networks.

- The sum pooling process in the Dueling-DQN was significantly accelerated on an
FPGA by the proposed method, which can be applied to its other applications.

- The proposed method was tested with a real heterogeneous processor-based OBC and
showed significantly reduced computation time while achieving the same routing
results as the conventional method.

The rest of the paper is organized as follows. Section 2 provides the problem de-
scription. In Section 3, the proposed method is described in detail. Section 4 shows the
experimental results of the proposed method. Finally, Section 5 gives the conclusions.

Electronics 2024, 13, 2280 3 of 13

2. Problem Description
2.1. Routing Problem in the LEO Network

The routing problem in LEO satellite networks refers to the series of problem of
determining the path for each satellite to transmit data to the other satellites in a network
consisting of multiple satellites. In this paper, Markov decision processes (MDP) are used
to represent this problem mathematically, in particular, grid Markov decision processes [21].
The advantage of using a Grid MDP is that the underlying theory of reinforcement learning
can be easily expressed mathematically. In addition, since the state space is organized in
the form of a grid, the computation of state transitions and rewards is simpler than in a
general MDP. In this paper, a deep reinforcement learning-based routing algorithm that
can operate in the Grid MDP environment is used.

The Grid MDP is based on an assumption called the first-order Markov assumption,
which states that the probability of a state at time n is only affected by the state at the
previous time, n − 1. In a Grid MDP, the problem can be modeled in four terms: state,
action, reward, and state transition probability. Here, state represents the location of each
satellite and the data in the packet stored on that satellite, and action refers to the direction
in which the satellite sends data. The reward is the score obtained for sending data in a
certain direction, and the state transition probability represents the change in position due
to packet transmission.

Using a reinforcement learning algorithm and applying it to a grid MDP eliminates the
need to define a global state. In a conventional grid MDP environment, the state, actions,
rewards, and state transition probabilities must be modeled in advance to be applied
successfully; however, with reinforcement learning, they can be calculated and derived
directly without any prior modeling [22,23]. In addition, information about states and
rewards is collected in real time through learning, and based on this, the reinforcement
learning algorithm helps determine the optimal routing path. Due to the characteristics
of reinforcement learning, the initial performance is inferior, because the training data do
not exist; however, the performance improves as the training is repeated. In summary, an
MDP allows the learning processor to use dynamic programming algorithms such as value
iteration or policy iteration to find the optimal value function or policy, and reinforcement
learning allows the agent to gain direct experience through state observation and reward to
learn the value function or policy. In conclusion, applying a reinforcement learning-based
algorithm to low-orbit satellite network routing will require additional time due to the
learning time required, but it will eliminate the modeling process of predefining the entire
state. A Grid MDP can be used to find a robust policy, and reinforcement learning can be
used to improve the results through learning, although the initial results may be unstable;
so, it is suitable as a routing algorithm in this environment due to its high adaptability to
the dynamically changing satellite network environment.

2.2. Dueling DQN-Based Reinforcement Learning Model

The existing DQN model is an algorithm that combines deep learning and reinforce-
ment learning by constructing a Q-network through a CNN. The conventional DQN has a
structure that takes the state as input and outputs a Q-function [24,25]. In this paper, we
use Dueling DQN as a reinforcement learning technique, and Dueling DQN is a model
that applies a dueling architecture that is more suitable for reinforcement learning instead
of the existing neural network structure in the existing DQN model. Dueling DQN has
the advantage of effective learning through state-value and noise-resistant learning [26].
The main feature of the Dueling DQN is that it explicitly separates the state-value and
advantage functions and uses them to estimate the target. This allows the neural network to
estimate the difference between state-value and advantage, which is the direct cause of its
performance improvement over the DQN. The structure of a Dueling DQN is characterized
by using the same inputs as a conventional DQN, but it adds a separate fully connected
layer at the output that considers state-value and advantage. Dueling DQN is a structure
that separates state-value and advantage and then combines them to output Q-values.

Electronics 2024, 13, 2280 4 of 13

In dynamic LEO satellite networks and heterogeneous device environments, the
computational complexity should be fully considered when using Dueling DQN-based
routing algorithms. Since Dueling-DQN involves a complex computation process by a
neural network, it is necessary to adjust the amount of computation or accelerate the
computation by adjusting it appropriately.

2.3. Problem of On-Board Real-Time Inference

Reinforcement learning-based routing algorithms are effective for dynamic LEO. How-
ever, computing resource issues in the on-board environment and the heavy computation
time of dueling DQNs are critical to the real-time performance of the algorithm. Reinforce-
ment learning-based routing algorithms must provide optimal routing paths in response to
the dynamic situation of the satellite network, which is updated periodically. The goal of
this paper is to provide optimal routing paths while responding quickly to various factors
such as bandwidth, latency, error rate, and satellite orbits.

However, the CNN-based training and inference process of reinforcement learning-
based routing algorithms consumes an excessive amount of time, reducing real-time per-
formance, and ultimately fails to find the optimal routing path. To solve this real-time
problem, this paper proposes a heterogeneous device co-design-based inference paralleliza-
tion method. In this paper, we perform heterogeneous device co-design using PYNQ-Z2,
which has both a processing system (PS) that acts as a CPU and a programmable logic
(PL) that has the advantages of a hardware FPGA. The dueling DQN-based LEO routing
algorithm is basically performed on the PS, and the time-consuming inference process is
accelerated in parallel on the PL. The proposed method can reduce the execution time of
reinforcement learning and achieve real-time performance.

3. Proposed Method
3.1. Overall Structure of the Dueling-DQN-Based Routing Algorithm

In this paper, the overall flow of the Dueling-DQN-based routing algorithm for LEO
satellite networks is as follows. First, the grid environment generation, behavior, and
reward are defined. Actions are defined as up, down, left, right, and stop from the current
position of the agent. For rewards, −1 point is given for each time step, regardless of
behavior, and 1 point is given for reaching the destination. If the agent collides with an
obstacle (satellite link disconnection) while moving along the path, it will not be able to
perform the action in the next time step, making the penalty larger.

With this predefinition, we proceed to the Dueling-DQN part. The method of Dueling-
DQN used in this paper is as follows. First, 2D convolution and ReLU are performed
four times through the main layer. This process takes up the most time in the algorithm
and is the target of the parallelization described later. After this, the advantage layer and
state-value layer perform linear operations. It determines the action that corresponds
to the highest result, then performs the action and calculates the position and reward
value after the action. The obtained position and reward values are then delivered to the
Dueling-DQN as input states and iterated to find the optimal routing path. Figure 1 shows
this process schematically.

Electronics 2024, 13, 2280 5 of 13

Electronics 2024, 13, x FOR PEER REVIEW 5 of 15

Figure 1. Overall flowchart of the Dueling-DQN-based routing algorithm.

3.2. Dependency Analysis
As explained earlier, the part targeted for acceleration in this algorithm is the convo-

lution operation in the main layer. The parts that proceed before the convolution opera-
tion are executed in PS, and the inputs required for the convolution operation are moved
to PL for parallel operation and then moved back to PS. Algorithm 1 shows the flow of the
operation with pseudo-code for the convolution operation. The Calculate in_idx and Cal-
culate weight_idx of lines 8 and 9 are responsible for calculating the index for the current
position in the convolutional input data matrix and the convolutional weight matrix. The
key point to note here is line 10 in Algorithm 1. As shown, line 10 is where the accumula-
tion sum operation is located. Since the operation of a CNN uses the pooling method of
Sum pooling, there is no way to avoid the accumulation sum operation. However, the
problem with this is that it introduces dependencies between loops. This structure, where
the result of the previous loop affects the operation of the next loop, is not parallelizable
because it is not possible to move to the next loop before the value of the previous loop is
calculated. Parallelization in the parent loop is also limited because the operation that in-
troduces the dependency is located in the innermost loop of the six-loop. The following
sections describe how to overcome these loop dependencies.

Algorithm 1 The Conventional Sum Pooling Method

Input

conv_in[]
conv_weight[], conv_bias[]
input’s height, width, channel
kernel size
output’s height, width, channel

Output conv_out[]

Figure 1. Overall flowchart of the Dueling-DQN-based routing algorithm.

3.2. Dependency Analysis

As explained earlier, the part targeted for acceleration in this algorithm is the convolu-
tion operation in the main layer. The parts that proceed before the convolution operation
are executed in PS, and the inputs required for the convolution operation are moved to PL
for parallel operation and then moved back to PS. Algorithm 1 shows the flow of the opera-
tion with pseudo-code for the convolution operation. The Calculate in_idx and Calculate
weight_idx of lines 8 and 9 are responsible for calculating the index for the current position
in the convolutional input data matrix and the convolutional weight matrix. The key point
to note here is line 10 in Algorithm 1. As shown, line 10 is where the accumulation sum
operation is located. Since the operation of a CNN uses the pooling method of Sum pooling,
there is no way to avoid the accumulation sum operation. However, the problem with
this is that it introduces dependencies between loops. This structure, where the result of
the previous loop affects the operation of the next loop, is not parallelizable because it is
not possible to move to the next loop before the value of the previous loop is calculated.
Parallelization in the parent loop is also limited because the operation that introduces the
dependency is located in the innermost loop of the six-loop. The following sections describe
how to overcome these loop dependencies.

Electronics 2024, 13, 2280 6 of 13

Algorithm 1 The Conventional Sum Pooling Method

Input

conv_in[]
conv_weight[], conv_bias[]
input’s height, width, channel
kernel size
output’s height, width, channel

Output conv_out[]

1. for i = 0~output_channel
2. for j = 0~output_width
3. for k = 0~output_height
4. float result = 0;
5. for x = 0~input_channel
6. for y = 0~kernel_size
7. for z = 0~kernel_size
8. Calculate in_idx
9. Calculate weight_idx
10. result += conv_in[in_idx] × conv_weight[weight_idx]
11. end
12. end
13. end
14. Calculate out_idx
15. conv_out[out_idx] = result + conv_bias[i]
16. If(conv_out[out_idx] <= 0)
17. Conv_out[out_idx] = 0; //ReLU
18. end
19. end
20. end
21. end

3.3. Parallelized Sum Pooling

In the previous subsection, we discussed the limitations of parallelizing CNNs due
to the loop dependency of Sum-pooling. In this section, the process of parallelizing the
operation by releasing this loop dependency is introduced. In this paper, a method is
proposed to reconstruct the computational structure of the sum-pooling method of CNN to
parallelize it. First, the sum-pooling operation of a typical CNN consists of moving a kernel
of a predefined size over the input data by the height and width of the input, iterating
over the number of channels, accumulating the obtained values, and determining a single
feature of the output. As a result, the number of iterations of a single 2D Convolution
operation iter is calculated as follows:

iter = outchannel × outwidth × outheight × inchannel × kernel2
size (1)

Figure 2 shows a schematic representation of the process and direction of the operation
described above. The color change of the block means the direction of the operation. The
iterative structure described above calculates one feature of the output and moves on to
the next feature when the previous calculation is finished. In this paper, we propose a
method to avoid loop dependency by calculating the value of all features belonging to a
channel simultaneously based on one channel, rather than calculating one feature with a
dependency on the output. Figure 3 shows a schematic representation of the sum-pooling
method proposed in this paper.

In Figure 3, the direction of the operation is changed from the conventional Sum-
pooling in Figure 2. Hear also the color change of the block means the direction of the
operation. In the proposed method in Figure 3, the computation proceeds in the Channel di-
rection so that the dependency can be ignored. This does not eliminate the data dependency,
but it moves the loops with the data dependency away from each other, making it possible
to ignore the dependency under specific conditions. The specific conditions are described in

Electronics 2024, 13, 2280 7 of 13

Section 3.4. As a result, this computational structure is a hardware-friendly computational
processing structure that cannot be beneficial to CPUs with sequential processing but can
be greatly beneficial to hardware FPGAs with parallel processing characteristics.

Electronics 2024, 13, x FOR PEER REVIEW 7 of 15

Figure 2. CNN computation structure with conventional sum-pooling.

Figure 3. Proposed CNN computation structure with sum-pooling.

In Figure 3, the direction of the operation is changed from the conventional Sum-
pooling in Figure 2. Hear also the color change of the block means the direction of the
operation. In the proposed method in Figure 3, the computation proceeds in the Channel
direction so that the dependency can be ignored. This does not eliminate the data depend-
ency, but it moves the loops with the data dependency away from each other, making it
possible to ignore the dependency under specific conditions. The specific conditions are
described in Section 3.4. As a result, this computational structure is a hardware-friendly
computational processing structure that cannot be beneficial to CPUs with sequential pro-
cessing but can be greatly beneficial to hardware FPGAs with parallel processing charac-
teristics.

3.4. Buffer-Based Dependency Avoidance for Adaptive Pipelining
The implementation of the proposed method described in Section 3.3 is described in

this part. In the previous section, it was mentioned that dependencies between loops in

Figure 2. CNN computation structure with conventional sum-pooling.

Electronics 2024, 13, x FOR PEER REVIEW 7 of 15

Figure 2. CNN computation structure with conventional sum-pooling.

Figure 3. Proposed CNN computation structure with sum-pooling.

In Figure 3, the direction of the operation is changed from the conventional Sum-
pooling in Figure 2. Hear also the color change of the block means the direction of the
operation. In the proposed method in Figure 3, the computation proceeds in the Channel
direction so that the dependency can be ignored. This does not eliminate the data depend-
ency, but it moves the loops with the data dependency away from each other, making it
possible to ignore the dependency under specific conditions. The specific conditions are
described in Section 3.4. As a result, this computational structure is a hardware-friendly
computational processing structure that cannot be beneficial to CPUs with sequential pro-
cessing but can be greatly beneficial to hardware FPGAs with parallel processing charac-
teristics.

3.4. Buffer-Based Dependency Avoidance for Adaptive Pipelining
The implementation of the proposed method described in Section 3.3 is described in

this part. In the previous section, it was mentioned that dependencies between loops in

Figure 3. Proposed CNN computation structure with sum-pooling.

3.4. Buffer-Based Dependency Avoidance for Adaptive Pipelining

The implementation of the proposed method described in Section 3.3 is described
in this part. In the previous section, it was mentioned that dependencies between loops
in the Parallelized Sum pooling method are not eliminated but can be ignored under cer-
tain conditions. First, Algorithm 2 shows a pseudo-code that implements the structure
described in Section 3.3 for the HLS tool. HLS is an abbreviation for High Level Synthesis.
Verilog or VHDL languages are less productive in the hardware design process. Using
higher abstraction-level languages, such as C/C++, has several advantages in terms of
productivity. HLS is a tool that automatically generates RTL-level code just as a compiler
compiles when C/C++ codes used for algorithmic technology, rather than Verilog/VHDL,
which was traditionally used in hardware design. Parallelization techniques using HLS
tools are already well researched due to their high productivity and portability [27]. The
iterations for the output’s width and output’s height are moved to the lowest level, and
a buffer equal to the size of the height multiplied by the width is placed under the top
loop. The buffer in line 2 will serve as a buffer to store as many results as there are features
in the output of one channel. Next, in Algorithm 2, the pipelining directive is placed on
line 10, so it will attempt to pipeline lines 12 through 18. However, in this synthesis, the

Electronics 2024, 13, 2280 8 of 13

dependency on the accumulating sum in line 13 is determined to be valid, so pipelining
does not proceed. Therefore, the directive in line 11 explicitly removes the dependency on
the result. In this process, lines 12 through 18 are pipelined and can be parallelized.

Algorithm 2 The Proposed Parallelized Sum Pooling Method

Input

conv_in[]
conv_weight[], conv_bias[]
input’s height, width, channel
kernel size
output’s height, width, channel

Output conv_out[]

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

for i = 0~output_channel
float result [output_width × output_height] = 0;
for x = 0~input_channel
for y = 0~kernel_size
for z = 0~kernel_size
Calculate weight_idx
float temp = conv_weight
for j = 0~output_width
for k = 0~output_height
#Pipeline II = 1
#ignore dependence variable = result
Calculate in_idx
result += conv_in[in_idx] × conv_weight[weight_idx]
Calculate out_idx
Calculate conv_out[out_idx]
If(conv_out[out_idx] <= 0)
Conv_out[out_idx] = 0; //ReLU
end
end
end
end
end
end
end

For deep and complete pipelining, it is necessary to analyze the execution time of
lines 12 to 18. If the latency of 12 to 18 exceeds the size of the buffer, deep and complete
pipelining is not possible because the dependencies between the data become valid again.
In this context, deep and complete pipelining means that the Initiation Interval is equal to
1. This condition is defined as follows:

Ccom ≤ bu f f ersize (2)

In this application, the execution cycle Ccom for lines 12–18 is 14 clocks, which means
that implementing a buffer of 14 clocks or more will allow for deep and complete pipelining.

4. Experimental Results
4.1. Experimental Setups

In this paper, the Dueling-DQN-based routing algorithm was evaluated in the follow-
ing on-board environment. First, the training to obtain the .pt file containing the weight
information was performed on a Jupyter notebook v7.0.8 in the Anaconda v24.3.0 virtual
environment, and the training was performed on a desktop PC with i7-10700 and Nvidia
Geforce RTX 3070. The model for training was a 15 × 15 grid map consisting of four
channels: agent position, goal position, obstacles, and boundaries. The total number of
training runs was 100, with a maximum number of steps per run of 300 and a batch size

Electronics 2024, 13, 2280 9 of 13

of 1024. In the convolution process, each kernel was set to 6 × 6, 4 × 4, 3 × 3, and 2 × 2,
resulting in 15 × 15 × 4 inputs and 4 × 4 × 32 data outputs.

In addition, for the heterogeneous device co-design of CPU and FPGA, the Board
of PYNQ-Z2, which has both PS and PL, was selected. The PYNQ-Z2 is based on the
ZYNQ XC7z020-1CLG400C chipset, which includes a 650 MHz ARM Cortex-A9 dual-core
processor and an Artix-7 level FPGA. Figure 4 shows the real experimental environment
as configured. The FPGA development platform was Xilinx Vivado HLS 2018.3, Vivado
2018.3. First, the code for parallelization was configured in Vivado HLS 2018.3, and the
.v file containing the IP information was extracted by synthesizing the configured code.
The previously developed IP was then imported into Vivado 2018.3 to design the entire
hardware platform. Finally, the .hwh, .tcl, and .bit files containing information about
the hardware platform were extracted. PYNQ also provides various tools and libraries,
of which we used the overlay library to develop through python. Figure 5 shows the
development flow described above schematically.

Electronics 2024, 13, x FOR PEER REVIEW 10 of 15

Figure 4. Configured real experimental environment.

Figure 5. The overall flow of development.

4.2. Training Results
The training results of Dueling-DQN in the environment described above are as fol-

lows. First, the starting position of the agent was fixed to (2,2), and the target position was

Figure 4. Configured real experimental environment.

Electronics 2024, 13, x FOR PEER REVIEW 10 of 15

Figure 4. Configured real experimental environment.

Figure 5. The overall flow of development.

4.2. Training Results
The training results of Dueling-DQN in the environment described above are as fol-

lows. First, the starting position of the agent was fixed to (2,2), and the target position was

Figure 5. The overall flow of development.

Electronics 2024, 13, 2280 10 of 13

4.2. Training Results

The training results of Dueling-DQN in the environment described above are as
follows. First, the starting position of the agent was fixed to (2,2), and the target position
was fixed to (10,10). The training was executed a total of 100 times, and the training results
are shown in Figure 6. From Figure 6, it is seen that at the beginning of the training, the
agent repeatedly obtained the lowest score of −300, but after the initial score, it gradually
found the path over time. In the experiment, at the 40th training, the best point (shortest
path) was obtained for the first time and eventually converged to the best point.

Electronics 2024, 13, x FOR PEER REVIEW 11 of 15

fixed to (10,10). The training was executed a total of 100 times, and the training results are
shown in Figure 6. From Figure 6, it is seen that at the beginning of the training, the agent
repeatedly obtained the lowest score of −300, but after the initial score, it gradually found
the path over time. In the experiment, at the 40th training, the best point (shortest path)
was obtained for the first time and eventually converged to the best point.

Figure 6. Dueling-DQN-based routing algorithm training results. (Score means point obtained by
the agent until it reaches the goal location. Higher scores indicate that the goal location is reached
faster).

Figure 7 shows these results in a grid environment, where blue represents the agent,
red represents the goal location, black represents the obstacles (link disconnections), and
the gray line represents the path obtained. In Figure 7b,d, there is a collision between the
obstacle and the path; however, this can be ignored, as the path that was free of obstacles
at the time of movement is marked with dynamically moving obstacle positions. As a re-
sult, the routing algorithm based on the Dueling-DQN obtained the shortest path.

(a) (b)

Figure 6. Dueling-DQN-based routing algorithm training results. (Score means point obtained by the
agent until it reaches the goal location. Higher scores indicate that the goal location is reached faster).

Figure 7 shows these results in a grid environment, where blue represents the agent,
red represents the goal location, black represents the obstacles (link disconnections), and
the gray line represents the path obtained. In Figure 7b,d, there is a collision between the
obstacle and the path; however, this can be ignored, as the path that was free of obstacles at
the time of movement is marked with dynamically moving obstacle positions. As a result,
the routing algorithm based on the Dueling-DQN obtained the shortest path.

Electronics 2024, 13, x FOR PEER REVIEW 11 of 15

fixed to (10,10). The training was executed a total of 100 times, and the training results are
shown in Figure 6. From Figure 6, it is seen that at the beginning of the training, the agent
repeatedly obtained the lowest score of −300, but after the initial score, it gradually found
the path over time. In the experiment, at the 40th training, the best point (shortest path)
was obtained for the first time and eventually converged to the best point.

Figure 6. Dueling-DQN-based routing algorithm training results. (Score means point obtained by
the agent until it reaches the goal location. Higher scores indicate that the goal location is reached
faster).

Figure 7 shows these results in a grid environment, where blue represents the agent,
red represents the goal location, black represents the obstacles (link disconnections), and
the gray line represents the path obtained. In Figure 7b,d, there is a collision between the
obstacle and the path; however, this can be ignored, as the path that was free of obstacles
at the time of movement is marked with dynamically moving obstacle positions. As a re-
sult, the routing algorithm based on the Dueling-DQN obtained the shortest path.

(a) (b)

Electronics 2024, 13, x FOR PEER REVIEW 12 of 15

(c) (d)

Figure 7. Routing paths represented in a grid environment. (The blue box means agent. The red box
means goal location. The black box means obstacles (link disconnections). The gray line means path
obtained. The green dot means location of the agent after each step. (a) shows the result after 4 steps.
(b) shows the result after 8 steps and shows the routing path over the obstacles; however, this is due
to the movement of the obstacles and can be ignored. (c) shows the result after 12 steps. (d) shows
the final result after 16 steps).

4.3. Inference Results
As described earlier, the results of inference in the actual on-board environment us-

ing the .pt file obtained from the training results and the .hwh, .bit, and .tcl files obtained
from the hardware design are as follows. Figure 8 shows the results of inference using
PYNQ-Z2, organized by execution time. The experiment was run 10 times for each
method, and all results showed that the optimal routing path was found accurately. First,
PYNQ-Z2 used only PS for inference, and the average execution time was 0.9396 s. Next,
when PS and PL were co-designed, but the naive code was executed on PL without any
parallelization process, the execution time was 1.4012 s on average. Finally, when the PS
and PL were co-designed, and the 2D convolution operation was parallelized by applying
the proposed method, the average execution time was 0.2991 s. When checking the exper-
imental results, it can be seen that the naive method of using the same computation struc-
ture in the PL as in the PS without parallelization actually increased the execution time by
about 1.51 times compared to the PS only. However, when the parallel 2D convolution
operation was used following the proposed method, it was accelerated by about 3.10 times
compared to the PS only and by about 4.68 times compared to the naive method. This
shows that the proposed method improves real-time performance while maintaining ac-
curate results.

Figure 7. Routing paths represented in a grid environment. (The blue box means agent. The red box
means goal location. The black box means obstacles (link disconnections). The gray line means path

Electronics 2024, 13, 2280 11 of 13

obtained. The green dot means location of the agent after each step. (a) shows the result after 4 steps.
(b) shows the result after 8 steps and shows the routing path over the obstacles; however, this is due
to the movement of the obstacles and can be ignored. (c) shows the result after 12 steps. (d) shows
the final result after 16 steps).

4.3. Inference Results

As described earlier, the results of inference in the actual on-board environment using
the .pt file obtained from the training results and the .hwh, .bit, and .tcl files obtained from
the hardware design are as follows. Figure 8 shows the results of inference using PYNQ-Z2,
organized by execution time. The experiment was run 10 times for each method, and all
results showed that the optimal routing path was found accurately. First, PYNQ-Z2 used
only PS for inference, and the average execution time was 0.9396 s. Next, when PS and
PL were co-designed, but the naive code was executed on PL without any parallelization
process, the execution time was 1.4012 s on average. Finally, when the PS and PL were
co-designed, and the 2D convolution operation was parallelized by applying the proposed
method, the average execution time was 0.2991 s. When checking the experimental results,
it can be seen that the naive method of using the same computation structure in the PL as
in the PS without parallelization actually increased the execution time by about 1.51 times
compared to the PS only. However, when the parallel 2D convolution operation was used
following the proposed method, it was accelerated by about 3.10 times compared to the PS
only and by about 4.68 times compared to the naive method. This shows that the proposed
method improves real-time performance while maintaining accurate results.

Electronics 2024, 13, x FOR PEER REVIEW 13 of 15

Figure 8. Comparing the inference time of several methods, including the proposed method. (The
longer inference time can cause problems with the real-time performance of satellite routing algo-
rithms.).

Finally, Table 2 summarizes the resources of the boards used to design the naive and
proposed methods. Both the proposed method and naïve code required PS and PL to per-
form the work. The ZYNQ XC7z020-1CLG400C has a maximum hardware resource of
LUT 53200, LUTRAM 17400, FF 106400, DSP 220, and BRAM 140. Table 2 shows that the
proposed method utilized 25.32% of the total resources for LUTs, 4.76% for LUTRAM,
15.51% for FF, 25.36% for BRAM, and 9.09% for DSP, with a slight increase in the usage of
the LUTs and BRAM compared to the naive code. However, since the proposed method
significantly reduced the inference time, the results of almost the same or slight increase
in resource usage compared to the naive code indicate that the proposed method is an
efficient method.

Table 2. Algorithm’s hardware resource usage.

 Available Utilization (%)
Naïve Method Proposed Method

LUT 53,200 24.17 25.32
LUTRAM 17,400 4.22 4.76

FF 106,400 15.65 15.51
BRAM 140 22.50 25.36

DSP 220 9.09 9.09

5. Conclusions
This paper proposed a practical co-design method with heterogeneous processors to

parallelize and accelerate a part of the multiple convolutional layer operations on an
FPGA for onboard real-time routing in dynamic low-orbit satellite networks. Previous
work has considered reinforcement learning, dynamic environments, and satellite link
outages, but none has considered parallelization. This paper is different in that it includes
the previous topics and proposes an FPGA-accelerated CNN with parallelized sum pool-
ing for an onboard real-time routing method. In the sum-pooling structure of conventional
CNNs, convolution and ReLU operations require excessive execution time, which is not
suitable for the real-time requirements of dynamically changing low-orbit satellite net-
work environments. The proposed method solved this problem by accelerating the algo-
rithm through the co-design of CPU and FPGA, specifically by changing the computation

Figure 8. Comparing the inference time of several methods, including the proposed method. (The longer
inference time can cause problems with the real-time performance of satellite routing algorithms.).

Finally, Table 2 summarizes the resources of the boards used to design the naive and
proposed methods. Both the proposed method and naïve code required PS and PL to
perform the work. The ZYNQ XC7z020-1CLG400C has a maximum hardware resource
of LUT 53200, LUTRAM 17400, FF 106400, DSP 220, and BRAM 140. Table 2 shows that
the proposed method utilized 25.32% of the total resources for LUTs, 4.76% for LUTRAM,
15.51% for FF, 25.36% for BRAM, and 9.09% for DSP, with a slight increase in the usage of
the LUTs and BRAM compared to the naive code. However, since the proposed method
significantly reduced the inference time, the results of almost the same or slight increase
in resource usage compared to the naive code indicate that the proposed method is an
efficient method.

Electronics 2024, 13, 2280 12 of 13

Table 2. Algorithm’s hardware resource usage.

Available
Utilization (%)

Naïve Method Proposed Method

LUT 53,200 24.17 25.32
LUTRAM 17,400 4.22 4.76

FF 106,400 15.65 15.51
BRAM 140 22.50 25.36

DSP 220 9.09 9.09

5. Conclusions

This paper proposed a practical co-design method with heterogeneous processors to
parallelize and accelerate a part of the multiple convolutional layer operations on an FPGA
for onboard real-time routing in dynamic low-orbit satellite networks. Previous work
has considered reinforcement learning, dynamic environments, and satellite link outages,
but none has considered parallelization. This paper is different in that it includes the
previous topics and proposes an FPGA-accelerated CNN with parallelized sum pooling for
an onboard real-time routing method. In the sum-pooling structure of conventional CNNs,
convolution and ReLU operations require excessive execution time, which is not suitable
for the real-time requirements of dynamically changing low-orbit satellite network environ-
ments. The proposed method solved this problem by accelerating the algorithm through
the co-design of CPU and FPGA, specifically by changing the computation structure of
CNN. Experimental results with an OBC with heterogeneous processors including an
FPGA showed that the proposed method was about 3.10 times faster than the conventional
method while achieving the same routing results.

Author Contributions: All authors contributed to the present paper with the same effort in describing
the problem, finding the available literature, and writing the paper. H.K., J.P., and H.L. designed
and implemented the proposed method to resolve the problem. D.W. and M.H. addressed the topic
and proposed the idea to resolve it. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Agency for Defense Development, funded by the Korean
government (Defense Acquisition Program Administration) (UI220033VD).

Data Availability Statement: Data is unavailable due to the restrictions of the organization supporting
this work.

Conflicts of Interest: Authors Juhyeon Park and Dongshik Won were employed by the company
LIGNEX1 and TelePIX, respectively. The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed as a potential
conflict of interest.

References
1. Cakaj, S.; Kamo, B.; Lala, A.; Rakipi, A. The Coverage Analysis for Low Earth Orbiting Satellites at Low Elevation. Int. J. Adv.

Comput. Sci. Appl. 2014, 5, 6–10. [CrossRef]
2. Wang, J.; Li, L.; Zhou, M. Topological dynamics characterization for LEO satellite networks. Comput. Netw. 2007, 51, 43–53.

[CrossRef]
3. Kempton, B.; Riedl, A. Network Simulator for Large Low Earth Orbit Satellite Networks. In Proceedings of the ICC 2021—IEEE

International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [CrossRef]
4. Hu, Y.; Li, V.O.K. Satellite-based Internet: A tutorial. IEEE Commun. Mag. 2001, 39, 154–162. [CrossRef]
5. Uzunalioglu, H. Probabilistic routing protocol for low Earth orbit satellite networks. In Proceedings of the ICC ’98. 1998 IEEE

International Conference on Communications. Conference Record. Affiliated with SUPERCOMM’98 (Cat. No.98CH36220),
Atlanta, GA, USA, 7–11 June 1998; Volume 1, pp. 89–93. [CrossRef]

6. Markovitz, O.; Segal, M. Advanced Routing Algorithms for Low Orbit Satellite Constellations. In Proceedings of the ICC
2021—IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [CrossRef]

7. Uzunalioğlu, H.; Akyildiz, I.F.; Bender, M.D. A routing algorithm for connection-oriented Low Earth Orbit(LEO) satellite networks
with dynamic connectivity. Wirel. Netw. 2000, 6, 181–190. [CrossRef]

https://doi.org/10.14569/IJACSA.2014.050602
https://doi.org/10.1016/j.comnet.2006.04.010
https://doi.org/10.1109/ICC42927.2021.9500439
https://doi.org/10.1109/35.910603
https://doi.org/10.1109/ICC.1998.682592
https://doi.org/10.1109/ICC42927.2021.9500740
https://doi.org/10.1023/A:1019133429805

Electronics 2024, 13, 2280 13 of 13

8. Zhu, Y.; Qian, L.; Ding, L.; Yang, F.; Zhi, C.; Song, T. Software defined routing algorithm in LEO satellite networks. In
Proceedings of the 2017 International Conference on Electrical Engineering and Informatics (ICELTICs), Banda Aceh, Indonesia,
18–20 October 2017; pp. 257–262. [CrossRef]

9. Ekici, E.; Akyildiz, I.F.; Bender, M.D. A distributed routing algorithm for datagram traffic in LEO satellite networks. IEEE/ACM
Trans. Netw. 2001, 9, 137–147. [CrossRef]

10. Jiang, C.; Zhu, X. Reinforcement Learning Based Capacity Management in Multi-Layer Satellite Networks. IEEE Trans. Wirel.
Commun. 2020, 19, 4685–4699. [CrossRef]

11. Wang, X.; Dai, Z.; Xu, Z. LEO Satellite Network Routing Algorithm Based on Reinforcement Learning. In Proceedings of the 2021
IEEE 4th International Conference on Electronics Technology (ICET), Chengdu, China, 7–10 May 2021; pp. 1105–1109. [CrossRef]

12. Shi, X.; Ren, P.; Du, Q. Heterogeneous Satellite Network Routing Algorithm Based on Reinforcement Learning and Mobile Agent.
In Proceedings of the 2020 IEEE Globecom Workshops, Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [CrossRef]

13. Zuo, P.; Wang, C.; Yao, Z.; Hou, S.; Jiang, H. An Intelligent Routing Algorithm for LEO Satellites Based on Deep Reinforce-
ment Learning. In Proceedings of the 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), Norman, OK, USA,
27–30 September 2021; pp. 1–5. [CrossRef]

14. Zuo, P.; Wang, C.; Wei, Z.; Li, Z.; Zhao, H.; Jiang, H. Deep Reinforcement Learning Based Load Balancing Routing for LEO
Satellite Network. In Proceedings of the 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), Helsinki, Finland,
19–22 June 2022; pp. 1–6. [CrossRef]

15. Lee, J.H.; Chai, K.Y. A Study on the low-earth orbit satellite based non-terrestrial network systems via deep-reinforcement learning.
In Proceedings of the Korean Institute of Communication Sciences Conference, Yeosu, Republic of Korea, 17–19 November 2021;
pp. 1306–1307.

16. Ma, Y.; Cao, Y.; Vrudhula, S.; Seo, J. Optimizing Loop Operation and Dataflow in FPGA Acceleration of Deep Convolutional
Neural Networks. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
Monterey, CA, USA, 22–24 February 2017; pp. 45–54. [CrossRef]

17. Hoozemans, J.; Peltenburg, J.; Nonnemacher, F.; Hadnagy, A.; Al-Ars, Z.; Hofstee, H.P. FPGA Acceleration for Big Data Analytics:
Challenges and Opportunities. IEEE Circuits Syst. Mag. 2021, 21, 30–47. [CrossRef]

18. Biookaghazadeh, S.; Ravi, P.K.; Zhao, M. Toward Multi-FPGA Acceleration of the Neural Networks. ACM J. Emerg. Technol.
Comput. Syst. 2021, 17, 1–23. [CrossRef]

19. Rahman, A.; Lee, J.; Choi, K. Efficient FPGA Acceleration of Convolutional Neural Networks Using Logical-3D Compute
Array. In Proceedings of the 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany,
14–18 March 2016; pp. 1393–1398. [CrossRef]

20. Guo, K.; Zeng, S.; Yu, J.; Wang, Y.; Yang, H. [DL] A Survey of FPGA-based Neural Network Inference Accelerators. ACM Trans.
Reconfigurable Technol. Syst. 2017, 12, 1–26. [CrossRef]

21. Garcia, F.; Rachelson, E. Markov Decision Processes. In Markov Decision Processes in Artificial Intelligence; Wiley: Hoboken, NJ,
USA, 2013; pp. 1–38. [CrossRef]

22. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement Learning: A Survey. J. Artif. Intell. Res. 1996, 4, 237–285. [CrossRef]
23. Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. Deep Reinforcement Learning: A Brief Survey. IEEE Signal

Process. Mag. 2017, 34, 26–38. [CrossRef]
24. Ban, T.-W. An Autonomous Transmission Scheme Using Dueling DQN for D2D Communication Networks. IEEE Trans. Veh.

Technol. 2020, 69, 16348–16352. [CrossRef]
25. Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.; Freitas, N. Dueling network architectures for deep reinforcement

learning. In Proceedings of the 33rd International Conference on International Conference on Machine Learning, New York, NY,
USA, 19–24 June 2016; Volume 48, pp. 1995–2003.

26. Villanueva, A.; Fajardo, A. Deep Reinforcement Learning with Noise Injection for UAV Path Planning. In Proceedings of
the 2019 IEEE 6th International Conference on Engineering Technologies and Applied Sciences (ICETAS), Kuala Lumpur,
Malaysia, 20–21 December 2019; pp. 1–6. [CrossRef]

27. de Fine Licht, J.; Besta, M.; Meierhans, S.; Hoefler, T. Transformations of High-Level Synthesis Codes for High-Performance
Computing. IEEE Trans. Parallel Distrib. Syst. 2020, 32, 1014–1029. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ICELTICS.2017.8253282
https://doi.org/10.1109/90.917071
https://doi.org/10.1109/TWC.2020.2986114
https://doi.org/10.1109/ICET51757.2021.9451072
https://doi.org/10.1109/GCWkshps50303.2020.9367476
https://doi.org/10.1109/VTC2021-Fall52928.2021.9625325
https://doi.org/10.1109/VTC2022-Spring54318.2022.9860582
https://doi.org/10.1145/3020078.3021736
https://doi.org/10.1109/MCAS.2021.3071608
https://doi.org/10.1145/3432816
https://doi.org/10.3850/9783981537079_0833
https://doi.org/10.1145/3289185
https://doi.org/10.1002/9781118557426.ch1
https://doi.org/10.1613/jair.301
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1109/TVT.2020.3041458
https://doi.org/10.1109/ICETAS48360.2019.9117478
https://doi.org/10.1109/TPDS.2020.3039409

	Introduction
	Problem Description
	Routing Problem in the LEO Network
	Dueling DQN-Based Reinforcement Learning Model
	Problem of On-Board Real-Time Inference

	Proposed Method
	Overall Structure of the Dueling-DQN-Based Routing Algorithm
	Dependency Analysis
	Parallelized Sum Pooling
	Buffer-Based Dependency Avoidance for Adaptive Pipelining

	Experimental Results
	Experimental Setups
	Training Results
	Inference Results

	Conclusions
	References

