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Abstract

Texture is the surface qualities and visual attributes of an object, determined by the arrangement, size, shape, density, and
proportion of its fundamental components. In the manufacturing industry, products typically have uniform textures, allowing
for automated visual inspections of the product surface to recognize defects. During this process, texture defect recognition
techniques can be employed. In this paper, we propose a method that combines a convolutional autoencoder architecture with
Fourier transform analysis. We employ a normal reconstructed template as defined in this study. Despite its simple structure
and rapid training and inference capabilities, it offers recognition performance comparable to state-of-the-art methods. Fourier
transform is a powerful tool for analyzing the frequency domain of images and signals, which is essential for effective defect
recognition as texture defects often exhibit characteristic changes in specific frequency ranges. The experiment evaluates
the recognition performance using the AUC metric, with the proposed method showing a score of 93.7%. To compare with
existing approaches, we present experimental results from previous research, an ablation study of the proposed method, and
results based on the high-pass filter used in the Fourier mask.
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1 Introduction

Defect recognition can be categorized into two primary types
in previous research, object defect recognition and texture
defect recognition(detection). Both of these techniques are
employed in industrial manufacturing and production pro-
cesses to visually identify product defects. While these two
research domains may appear to converge on similar objec-
tives, each domain emphasizes a distinct aspect and utilizes
a specific methodology tailored to that emphasis.

Object defect recognition is employed to pinpoint flaws
in components or parts. Its primary function is to recognize
anomalies related to the component’s geometric configura-

B Sungyoung Kim
sykim@kumoh.ac.kr

Jongwook Si
jwsid25@kumoh.ac.kr

Department of Computer-Al Convergence Engineering,
Kumoh National Institute of Technology, Daehak-ro 61,
Gumi, Gyeongbuk 39177, Korea

Department of Computer Engineering, Kumoh National
Institute of Technology, Daehak-ro 61, Gumi, Gyeongbuk
39177, Korea

Published online: 06 July 2024

tion, dimensional accuracy, and material composition, all of
which could compromise the overall functionality or safety
integrity of the end product. On the other hand, Texture
defect recognition is primarily utilized to identify defects
on the surface texture of a product. It systematically assesses
the characteristics of the surface textures on the products to
identify defects, specifically focusing on anomalies in texture
uniformity, variations in color, and distortions in the inherent
pattern.

Texture defect recognition holds significant importance
in the fields of image processing and computer vision,
as textures offer valuable insights into patterns and struc-
tures within images [1]. Within the manufacturing industry,
the identification of texture defects plays a pivotal role in
evaluating product quality and uncovering flaws in the man-
ufacturing process [2].

Upholding product specifications to predefined standards
is of utmost importance in advanced manufacturing pro-
cesses. Anomalies in surface textures can substantially
degrade the end quality of products. The identification and
rectification of these irregularities in texture patterns are piv-
otal for comprehensive quality assessment and assurance.
This research proposes a novel methodology integrating
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Fourier transform techniques with convolutional autoen-
coders to discern and rectify texture defects proficiently.

During fabrication, the manifestation of texture anoma-
lies is not uncommon, underscoring the necessity for robust
detection mechanisms to maintain product integrity. The
incorporation of precise texture defect recognition strategies
allows manufacturers to promptly diagnose discrepancies,
facilitating immediate remedial measures. Additionally, such
detection results in substantial economic benefits by curtail-
ing the production of subpar products, diminishing material
wastage, and enhancing operational throughput.

Leveraging deep learning and computer vision method-
ologies for the automated detection of texture anomalies
offers a substantial advantage over traditional manual inspec-
tion methods, which are contingent upon individual sub-
jective assessments. This automated approach not only
streamlines the inspection process, decreasing time and mon-
etary expenditures but also ensures a more rapid and objective
criterion for defect recognition.

There are numerous ongoing studies focused on texture
defect recognition. Most of these studies focus on enhancing
recognition accuracy by integrating classification techniques
into deep learning architectures. This has led to these recogni-
tion models becoming larger and more intricate, demanding
the deployment of high-end equipment for both the training
phase and real-time inference. In contrast, this paper proposes
a novel method for detecting texture defects using a simple
deep-learning model combined with image processing tech-
niques to reduce the size and complexity of the recognition
model while increasing recognition accuracy.

In this study, we integrate the Fourier transform and
a denoising autoencoder architecture to recognize texture
defects. The Fourier transform is an indispensable mech-
anism for analyzing the frequency spectrum of images or
signals, facilitating the elucidation of texture frequency
attributes. Since texture defects often induce discernible
alterations within specific frequency bands, the Fourier trans-
form emerges as a potent instrument for defect recognition.
Concurrently, we leverage an autoencoder to ascertain the
standard texture properties of the material and subsequently
reproduce them. An autoencoder inherently encodes input
data into a latent dimension and decodes it, thus extracting
salient features. This autoencoder emulates regular texture
patterns, generating a canonical reconstruction blueprint.
This archetype aids defect recognition by discerning devi-
ations between the regenerated texture and its baseline.
The study provides a comprehensive explanation of the
autoencoder’s reconstruction process and a methodology for
creating a normal reconstruction template for texture defect
recognition, aiming to contribute fresh insights and advance-
ments to the field.

In this paper, we present a method for Visual tech-
nique for texture image defect recognition with Denoising
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Autoencoder and Fourier Transform, which we define by the
abbreviation V-DAFT. This study makes several significant
contributions, which are outlined as follows:

e Performance Improvement: The proposed simple denois-
ing autoencoder architecture has achieved a high level
of performance that is comparable to state-of-the-art
(SOTA) methods. Despite its simplicity, the autoencoder
has proven effective in texture defect recognition. This
demonstrates that efficient defect recognition can be
attained without complex deep-learning models.

e Integration of Techniques: This study introduces a hybrid
approach combining deep learning and image process-
ing methodologies to address texture defect recognition.
Specifically, deep learning is applied to accomplish
denoising and reconstruction tasks, while image pro-
cessing methods are utilized to extract relevant texture
features and facilitate defect recognition. This fusion of
techniques offers several advantages, including elimi-
nating extensive data training. As a result, this study
presents a streamlined and efficient methodology for tex-
ture defect recognition.

e Experimentation and Analysis: The study conducts com-
prehensive experiments and analyses, meticulously
adjusting various parameters to optimize texture defect
recognition performance. These experiments provide
insights into the parameters that most significantly influ-
ence performance and offer practical guidelines for
real-world applications. Through these contributions, this
study not only showcases the potential for detecting
texture defects but also highlights the advantages of com-
bining deep learning and image processing techniques.

2 Related works

In anomaly detection research, methods grounded in
reconstruction have garnered substantial attention. These
approaches typically involve training on normal data to gen-
erate reconstructed data and then leverage the disparities
between the input anomalous data and the original image
for detection. Frequently, models such as autoencoders and
generative adversarial networks (GANs) are employed for
reconstruction and the utilization of reconstruction errors for
anomaly detection.

2.1 Anomaly detection

For instance, AnoGAN [3] introduced a fundamental
approach to anomaly detection, combining unsupervised
learning with GAN techniques. It learns the distribution
of normal data by inputting only normal data and calcu-
lates anomaly scores to identify anomalies. Building upon
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this, f~AnoGAN [4], an extension of AnoGAN [3], enhances
performance through the incorporation of fast mapping tech-
niques for new data and the inclusion of an Encoder within the
GAN for more refined reconstruction. The data generated by
f-AnoGAN [4] exhibit impressive generation performance,
often challenging even experts to distinguish them from real
data. GANomaly [5] takes a comprehensive approach, learn-
ing both generation and latent spaces using only normal
data, while anomaly scores are computed based on differ-
ences in latent vectors. Skip-GANomaly [6] further extends
GANomaly [5] with a U-Net-based network architecture and
introduces adversarial training, which incorporates a loss
function for the discriminator’s feature maps, ultimately lead-
ing to improved reconstruction performance. MemAE [7]
addresses the limitations associated with using autoencoders
for anomaly detection by incorporating a memory module.
This unique addition makes reconstruction more challenging
for abnormal samples, which is particularly advantageous
when autoencoders might otherwise reconstruct abnormal
regions, a drawback that this study focuses on addressing.
OCGAN [8] presents a model for one-class anomaly detec-
tion, which learns latent representations of in-class examples
and confines the latent space to a given class. By utilizing a
denoising autoencoder network and discriminator, it gener-
ates in-class samples and explores anomalies beyond class
boundaries, achieving high-performance results.

These  studies  predominantly  concentrate  on
reconstruction-based methods for anomaly detection,
wherein training on normal data is the key to assessing and
detecting anomalies. Anomaly detection extends into various
subfields [1] and [9], encompassing applications such as dis-
ease recognition, accident recognition, and fall recognition.

2.2 Defect detection

Tsai et al. [1] proposed the use of the Fourier transform to
detect defects in printed circuit boards. This study demon-
strated the ability to detect small irregular pattern defects by
comparing the Fourier spectra of an image and a template,
thus highlighting the effectiveness of this method. While
drawing inspiration from the concept of using templates, this
approach differs from the one proposed in this study by forgo-
ing Fourier spectrum comparison and instead incorporating
deep learning elements. Tsai et al. [1], presented research
which relied on templates, this study demonstrates that
improved performance can be achieved by focusing solely
on component removal. Consequently, this study introduces
additional methods and achieves performance enhancements
for various textures.

DRAEM [2] introduced a defect recognition method that
deviates from the conventional approach of training on
normal data for reconstruction. It concurrently learns two net-
works for reconstruction and discrimination to preserve and

detect defective regions. However, the objective of this study
is to achieve performance improvement using a straight-
forward approach by training exclusively on normal data
without generating anomalous data, which might result in
slightly lower performance compared to the former approach.
Liang et al. [10] noted the limitations of the reconstruction
capabilities of other methods and introduced a defect recog-
nition method from a frequency perspective, aligning with
the viewpoint and approach of this study. They propose two
novel methods, frequency decoupling, and channel selection,
to reconstruct from various frequency perspectives and com-
bine them for more accurate defect recognition. N-Pad [11]
introduced a defect recognition method that uses the rela-
tive positional information of each pixel. Relative positional
information is represented in eight directions, and a loss
function is employed to demonstrate the utilization of this
positional information. An anomaly score is proposed using
Mahalanobis and Euclidean distances, and various experi-
ments on neighborhood sizes demonstrate the significance
of the method.

Si et al. [12] directed their focus toward applying recon-
struction techniques to thermal images of solar panels for
defect recognition. Given that the distribution of thermal
images is sensitive to color and lacks pronounced edge fea-
tures, this study proposes a method that uses patches instead
of reconstructing the entire image. The proposed method
introduces a technique called the “difference image align-
ment technique” by sorting pixel values, which enables easy
recognition of defects using only specific pixels. However,
the application of this approach may not be straightforward
due to significant differences in data characteristics between
the focus of this study (manufacturing) and thermal images.
Tsai et al. [13] introduced a defect recognition method that
considers the similarity between patches to extract represen-
tative and important information from images. Using patches
of different sizes, the method performs representation learn-
ing at different scales and applies K-means clustering and
cosine similarity to improve defect recognition. While this
method detects both object and texture, it exhibited lower per-
formance, particularly for texture recognition, as this study
primarily focuses on texture.

Liu et al. [14] proposed a method for enhancing defect
recognition performance in grayscale images through post-
processing techniques, including color space and image
processing. The network was designed to reconstruct the
original colors using grayscale images to prevent the incor-
rect classification of color information, resulting in improved
performance through the incorporation of various augmen-
tation techniques and morphologies. Shi et al. [15] stand out
from most other studies that concentrate on image recon-
struction. This study utilizes a pre-trained model to extract
feature maps from various layers, combines them, and per-
forms reconstruction to better restore the features. By basing
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all content on diverse feature maps, the method can bet-
ter preserve defective regions in the results. Hou et al. [16]
introduced a divide-and-assemble approach to overcome the
limitations of autoencoder models for unsupervised anomaly
detection. This approach involves modulating the model’s
reconstruction capability and introduces a multi-scale block-
wise memory module, adversarial learning, and meaningful
latent representations to enhance anomaly detection perfor-
mance, demonstrating significant improvements in anomaly
detection.

Patch SVDD [17] is a defect recognition method that
extends the traditional SVDD algorithm into a patch-
based deep learning approach. It involves constructing input
patches from arbitrary portions of the image, rather than
the entire image, for the deep learning model, and pro-
poses a method of integrating multiple-sized Anomaly Maps.
Uniformed Student [18] approach embeds the Receptive
Field for defect recognition using both Teacher and Student
modules, calculating the Regression error and considering
various Multiscale scenarios. This method identifies anoma-
lies when the Student’s output differs from that of the Teacher.
The final results, obtained by utilizing diverse Receptive
Field sizes, demonstrate high-performance defect recogni-
tion. Notably, the Multiscale approach shares similarities
with Patch-SVDD [17], while the proposed method in this
paper distinguishes itself by not employing Multiscale but
instead focusing on detecting defects through a single scale.
DAGAN [19] proposes a method to address the issue of data
imbalance in the domain of defect recognition by utilizing
two consecutive deep learning models trained through adver-
sarial generative learning for decision making. This approach
relies solely on the use of these two models for recognition,
leading to the analysis that there is a significant emphasis on
the deep learning network itself, as observed when comparing
our research findings. PEDNet [20] is a novel approach that
consists of three models: Patch Embedding, Density Estima-
tion, and Local Prediction. It proposes a method to project
data into an Embedding Space and detect anomalies therein.
To effectively represent this embedding space, dimension
reduction and patch embedding processes are employed, fol-
lowed by prediction through clustering. Zhang et al. [21]
introduced a distillation approach for various features and
proposed a system for anomaly and defect recognition using
a pretrained model on ImageNet. Despite significant differ-
ences among multiple datasets, their approach demonstrated
a common capability for recognition.

3 Texture defect detection
Noise is an inevitable factor that emerges during image pro-

cessing, posing a significant challenge to image analysis and
defectrecognition, especially in the context of defect identifi-
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cation. Noise can complicate the precise delineation of defect
areas, potentially leading to elevated recognition scores and
false positives during defect identification.

In this study, we introduce a defect recognition methodol-
ogy employing deep learning networks and Fourier transfor-
mation. The proposed approach encompasses the following
sequential steps:

3.1 Generation of reconstructed images through
denoising

Initially, a deep learning network is deployed to execute a
denoising process on the input images. This process yields
reconstructed images from which fine details are removed.
The network utilized in this step is a simple denoising
autoencoder featuring a straightforward structure exclusively
trained on normal images. The primary focus here is to gen-
erate images that closely resemble the input data, with a
paramount emphasis on noise elimination.

3.2 Preservation of defects through fourier
transform

Defect recognition transpires during the inference phase.
This process entails the creation of normal reconstructed
templates using a dataset of normal experimental data. The
term ‘normal reconstructed template’ denotes a collection of
results generated by a model trained solely on normal images.
This approach leverages the reconstruction mechanism of
an autoencoder, acknowledging the constraints in precisely
replicating the original imagery from normal videos. To
overcome these limitations, the generated outcomes are
considered as representative of the normal distribution. Con-
sequently, by employing the normal reconstructed template
to construct differential images, it becomes possible to elim-
inate the normal distribution and accentuate only regions
containing defects. A specific template is selected, and
the same Fourier transformation process is applied to it.
Examination of the Fourier spectrum reveals that a region
affected by defects exhibits marked dissimilarity compared
to a normal region. Significantly, the region afflicted with
defects displays a pronounced energy concentration, par-
ticularly within the high-frequency domain. To exclusively
preserve the high-frequency components corresponding to
the defective region, a high-pass filtering operation is exe-
cuted. Subsequently, an inverse Fourier transform is applied
to generate an image corresponding specifically to the high-
frequency component.

Figure 1 illustrates an example of testing the accuracy of
defect detection within a high-frequency texture background.
The first image is the original image, while the second and
third images are the results after applying a Fourier trans-
form, selectively removing certain frequency bands, and then
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Fig.1 Examples of fourier transform in high-frequency textures

performing an inverse transform. Notably, the third image
retains more of the high-frequency components compared to
the second image. These results demonstrate that, even in
textures comprised of high frequencies, there exists a subtle
yet distinct difference in frequency bands between defects
and the background.

3.3 Generation of difference images and
binary-level thresholding

The computation of difference images between each high-
pass-filtered normal reconstructed template and the input
image is the next step. In these difference images, pixels
with nonzero values are regarded as potential defect regions,
and higher values indicate a greater likelihood of defects. A
binary image is derived from the difference image through
binary thresholding. This approach facilitates the creation
of a defect score by representing items with a potential for
defects as one and those with a lower likelihood as zero in
the binary image. By generating a binary image, the defect
score is formulated by tallying the occurrences of the value
one. A higher score signifies a greater likelihood of the pres-
ence of defects. In binary images, pixels corresponding to
defects exhibit values distinct from those of normal pixels.
The binarization process effectively accentuates and repre-
sents the defect regions.

The proposed methodology facilitates defect recognition
using the above-outlined steps. This process allows differ-
entiation between normal and defective images, effectively
highlighting the regions where defects are present. The over-
all workflow of the proposed method is depicted in Fig. 2.

3.4 Normal texture image reconstruction

The model processes input images sized at 256 x 256 pixels,
composed of RGB color channels. Consequently, the input
shape is (256, 256, 3), with a depth of five layers. The autoen-
coder model comprises an encoder and a decoder. Input data
are compressed into a low dimensional latent vector through
the encoder and then reconstructed to the same size as the

input image via the decoder. Figure 3 illustrates the structure
of the reconstruction model proposed in this paper for noise
removal.

The encoder part follows a convolutional neural network
(CNN) structure. The first convolutional layer employs 64
filters, each utilizing a 3 x 3 kernel, the ReL.U activation func-
tion, and same padding to maintain output size. Subsequent
convolution layers extract spatial features from the image and
gradually reduce its size. The decoder receives the output of
the encoder for the restoration process. It uses up-sampling
layers to match the size of each layer in the encoder, employ-
ing a skip-connection structure to combine information from
each encoder layer. This process generates high-quality out-
put results of the same size as the input image.

The model’s loss function Eq. 1 combines basic L1 and
L2 losses. The L1 loss calculates the absolute error between
actual and predicted values, while the L2 loss calculates the
squared error between them. By combining these two losses,
the reconstruction loss is computed and minimized during
model training. This combined loss function captures var-
ious aspects of errors in a balanced manner, allowing the
model to effectively learn and optimize its parameters. In
conventional autoencoders, the typical objective is to train
the model to reconstruct the input to be exactly the same
as the output, often resulting in complex model architectures
and loss functions. However, in this paper, the autoencoder is
utilized solely for the purpose of removing noise from input
images, necessitating a simpler structure and loss function.
In other words, a straightforward architecture and loss func-
tion do not aim to make the output identical to the input but
rather focus on modeling the overall distribution of the input.
The L1 and L2 loss functions employed in this context are
fundamental functions leveraged inversely to indicate that
fine-grained reconstruction of individual components is not
the primary goal. The L1 Loss is robust when it comes to pre-
serving detailed information, making it effective for noise
removal. However, using L1 alone can potentially remove
regions of interest, including normal areas. Therefore, the
approach here involves incorporating an appropriate weight
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for the L2 Loss, specifically to target noise removal in the
background while preserving the relevant content.

N
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In this study, the simple denoising autoencoder struc-
ture was utilized for defect recognition tasks. The primary
objective is to detect defects using this structure, which
effectively compresses and reconstructs input data, enabling
differentiation between normal and defective data. Moreover,
this structure introduces denoising effects. The encoder part
extracts features from the input image and removes noise,
reducing noise in the input data. Noise refers to elements
that can be misclassified as defects in the texture, such as pat-
terns in the backgrounds of normal images. Removing noise
results in a reconstructed image with a nearly uniform color,
representing a normal distribution. This aids in distinguish-
ing defects or normal regions in the frequency band. With
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reduced noise, input data represent clearer and more accu-
rate frequency bands, making it easier to distinguish defect
areas from the results of the Fourier transformation. Con-
sequently, the simple denoising autoencoder structure with
denoising effects is well-suited for Fourier transformation
and tasks such as defect recognition and frequency-band divi-
sion.

3.5 Application of fourier transform

The Fourier transform plays a crucial role in this study, as
it allows the transformation of a 2D image from the spatial
domain into the frequency domain. This transformation pro-
vides valuable information regarding the image’s frequency
components. The Fourier transform process entails convert-
ing the original image into the frequency domain, conducting
necessary operations and restoring it to the original domain
through an inverse transformation.

First, the given 2D square image (256, 256) is represented
in the spatial domain using (x, y) coordinates. The Fourier
transform is applied to this image using Eq. (2). In this
equation, F(u, v) represents a complex number in the fre-
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quency domain and (u, v) represents the coordinates in the
frequency domain. Equation (2) illustrates the multiplication
of a complex exponential function in the frequency domain
with the image values at each spatial domain position, fol-
lowed by summation across all positions. This procedure
yields frequency information about the image in the fre-
quency domain.

N—-1N-1 ) wxtvy
Fan =Y 3 - 5)

x=0 y=0

@)

The inverse Fourier transform, as defined in Eq. (3),
exhibits a critical property. It ensures that when the origi-
nal image undergoes transformation and subsequent inverse
transformation, it is restored to the original image, highlight-
ing the relationship between the Fourier transform and its
inverse.

N—-1N-1

f(x’y)=$z ZF(u,vyejzn(uxNﬂ) (3)

u=0 v=0

In this study, multiple reconstructed results denoted as
T (x;) are generated for a “normal reconstructed template”
representing normal data. To detect the presence of defects,
both the target image under evaluation and the normal
reconstructed template undergo Fourier transformation, con-
verting them into the frequency domain. Within the frequency
domain, the component at frequency O is centered, with
higher frequencies shifting towards the edges through a fre-
quency shift process.

Following this, a “Fourier Mask” is introduced to elim-
inate low-frequency components, as depicted in Fig.4. An
ideal mask with a radius of t, centered at the origin, is created
for this purpose. This mask is employed to perform pixel-
wise operations on the Fourier-transformed result, effectively
removing low-frequency components. Consequently, only
the high-frequency region, where defects are present, is
retained, while background and unnecessary components
are eliminated. Subsequently, an inverse transformation is

applied to convert the results from the frequency domain back
to the spatial domain, preserving only the defective regions
of the texture image in the spatial domain.

3.6 Difference images and thresholding

The process involves the generation of two transformed
results, denoted as F(R(x)) and F(T (x;)). These out-
comes represent the removal of low-frequency components
while preserving high-frequency components for the “normal
reconstructed template” Therefore, the normal reconstructed
template retains fine high-frequency details while eliminat-
ing the rest. When this process is applied to a normal image
as input, the difference from the normal reconstructed tem-
plate is minimal. However, for an image with defects as input,
the defective regions remain unaltered, and some background
noise may persist. Subtraction of these two generated images
results in a difference image with nonzero values in the defec-
tive regions and values close to zero in unaffected areas. This
difference image serves as the basis for creating the final map
for defect recognition. Subsequently, a threshold value (th)
is applied to the generated map to produce final maps that
indicate the presence or absence of defects. Values exceed-
ing the threshold are set to one, while those below it is set to
zero. This binary map effectively distinguishes defect pres-
ence (set to one) from absence (set to zero). To fill empty
areas in the binary image, a dilation operation with a (5,5)
kernel is performed three times. The proposed defect score
is calculated as a normalized value based on the count of
pixels set to 1 in a binary image. The decision threshold for
determining the presence of defects is identified at the point
where the difference between the True Positive Rate (TPR)
and the False Positive Rate (FPR) across each category is
maximized.

The binary image obtained through this process marks one
in locations with defects and zero in unaffected areas, facil-
itating defect recognition. The calculation of scores for the
entire image, followed by normalization, leads to the deter-

Fig.4 Fourier mask and pixel-wise
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if pixel > th: 1
else: 0

Binary-level Thresholding (th)

Difference Fourier Image

Fig.5 Procedure for calculating the defect score

Table 1 Detailed datasets with data augmentation

Category Train(Normal) Test(Normal) Test(Defect)
Carpet 280 84 89
Grid 264 63 57
Leather 245 96 92
Tile 230 99 84
Wood 247 57 60

mination of the normalized defect score. Figure 5 illustrates
the process of calculating the defect score.

4 Experimental results
4.1 Datasets

For texture defect recognition in this study, we utilized the
MVTec-AD dataset [22], comprising five textures and ten
objects. However, our evaluation focused on the five tex-
tures. Due to data limitations for both training and testing,
data augmentation was employed. Table 1 provides details
on the dataset composition, including the number of sam-
ples in each texture category. The majority of the data were
used for training since we exclusively used normal data for
this purpose. To balance the sample count between normal
and defective data, we applied augmentation techniques to
normal data. This process not only increased training data
diversity but also ensured an adequate number of defective
samples, thereby enhancing model performance.

4.2 Training details

In the context of texture defect detection, we adopted the fol-
lowing training approach. We normalized the pixel values of
the input image data to fall within the O to 1 interval. To gen-
erate diverse training data, we performed data augmentation,
which encompassed techniques such as shearing (20% mag-
nitude), zooming (20% magnification), and both horizontal
and vertical flipping. Training employed the Adam optimizer
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Defect Score
Normalization

with an initial learning rate of le-4 and was conducted over
500 epochs on the entire dataset, with a batch size of 16.
The loss function included the hyperparameter A2 set to
100 for L2 loss and Az 1 set to 1 for L1 loss, resulting in a
combination of these simple loss functions.

4.3 Performance evaluation and ablation study

The neural network utilized in this study was exclusively
trained on normal data, leading to generated images with
different distribution characteristics when processing images
containing defects. Figure 6 provides a visual representation
of the images reconstructed from examples of defective data
across various categories. Notably, all the data depicted in the
figure contain defects, with varying types of defects evident.
The first row showcases the original images with defects,
while the second row displays the images that have under-
gone reconstruction using the autoencoder. In these original
images, patterns are discernible, even within the background,
featuring prominent characteristics. However, the defective
regions exhibit even more pronounced features. Therefore,
the process of removing noise from the background serves
to effectively highlight the defective regions. As a result,
the overall reconstructed images appear somewhat blurred,
with a notable reduction in background noise, except for the
grid category. While the defective regions may also appear
somewhat blurred, the elimination of background patterns
simplifies the task of extracting defects. It is noteworthy that
the grid category maintains a consistent pattern that closely
resembles the original, except in areas with defects, where
observable differences emerge.

The utilization of normal reconstructed templates was
necessitated by the network’s inherent limitations in terms of
its reconstruction capabilities. As a consequence, when cre-
ating various images from the original images, we observe
significant disparities. In practical terms, even normal data
cannot be perfectly reconstructed to replicate the original
images. Therefore, this approach proves invaluable in selec-
tively retaining only the defective regions by optimizing the
reconstructed results for the original images. The normal
reconstructed template represents the outcomes of restor-
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Fig.6 Examples of reconstructed images with defects

Fig.7 Examples of normal reconstructed templates

ing normal data and encompasses a diverse array of forms
and patterns. These templates are employed to generate
distinct images, subsequently harnessed for detecting the
regions within the images that exhibit defects. Given that the
network was exclusively trained on normal images, the pro-
cessing of images containing defects results in reconstructed
images that display slight deviations in their distributions.
Consequently, the approach involves calculating differences
between the normal reconstructed templates and the regions
within the images that manifest defects, ultimately facilitat-
ing the extraction of these defects.

This method excels in precisely detecting defects by effec-
tively distinguishing between normal and defective regions.
Through the differentiation of reconstructed images, the
non-defective areas are eliminated, leaving behind only
the defective regions. This enhances the distinctiveness of
the defects, resulting in more accurate recognition. This
approach leverages the inherent constraints of the autoen-
coder’s reconstruction capabilities. It utilizes the normal
reconstructed template to enhance defect recognition per-
formance. By eliminating the normal areas and emphasizing
the defective regions, we can achieve more accurate defect
recognition. The images reconstructed from normal data
encompass a variety of normal restoration templates. Con-
sequently, it is crucial to select the most suitable template

for each data category. Figure 7 provides a visual represen-
tation of the chosen templates for each category, based on
the experimental results. These templates can be applied to
generate different images, ensuring consistent performance
improvement across all data. It is important to note that, when
generating these different images, we excluded the 10-pixel
edge from the evaluation. This exclusion is necessary because
the edge exhibits a different distribution compared to the orig-
inal data, mainly due to padding, and this difference could
lead to misclassification.

As outlined in Sect. 3, it is crucial to determine the most
suitable template by combining the Fourier mask, denoted
as t, with binary-level thresholding represented by th. To
assess performance, we employed the area under the curve
(AUC) as the evaluation metric. AUC is a widely used met-
ric for evaluating the performance of classification models,
ranging from O to 1, where a value closer to 1 indicates
superior performance. Given that each category possesses
distinct characteristics, it necessitates varying parameter val-
ues, leading us to explore different combinations of these
parameters. Consequently, we used the AUC to identify the
optimal parameter combination for each category, selecting
the combination that yielded the highest AUC value. The
most suitable parameter values for T and ¢/ are determined by
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Receiver operating characteristic
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Fig. 8 ROC and AUC of the proposed method for textures in MVTec
AD dataset [22]

systematically evaluating their performance across all possi-
ble combinations, ultimately leading to the final selection.
In this paper, an evaluation is conducted using the test
data mentioned in Table 1 for each category. Additionally, an
experiment comparing all candidates of the Normal Recon-
structed Template with combinations of (t, th) values is
performed. The combination of (z, th) has been evaluated
for all integer values, with comparisons made for every pos-
sible combination in the ranges 7: [1, 50] and ¢A: [1, 25].
The results of this analysis are presented in Table 2, with the
parameter combinations that achieved the highest AUC for
each category outlined as follows (z, th): Carpet: (41, 9),
Grid: (44, 20), Leather: (2, 6), Tile: (40, 2), Wood: (1, 11).
Fig. 8 represents the ROC curves for the combinations of
parameters that achieved the highest performance for each
category presented in Table 2. The overall average AUC was
93.1%, signifying that our proposed simple method delivers
performance on par with state-of-the-art approaches. These
results underscore the effectiveness of our method in defect
recognition despite its simplicity. Notably, the Carpet cate-
gory exhibited a relatively lower AUC compared to the other
categories. This discrepancy can be attributed to the smaller
difference between the defect regions and the background in
the Carpet category when compared to the other categories.
When the distinction between the defect regions and the
background is minimal, removing noise from the background
may inadvertently lead to the elimination of defect regions,
thereby making accurate recognition more challenging. In the
case of carpets, the performance of the method is observed to
be comparatively lower when compared to other categories.
This suggests that the underlying cause lies in the distinct
characteristics of carpet data. This analysis is attributed to the
presence of various high-frequency regions within the back-
ground noise removal process, which possesses frequencies
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Table 2 Performance analysis

Carpet

7 8 9 10 11 12
37 0.736 0.727 0.720 0.715 0.712 0.713
38 0.732 0.731 0.730 0.726 0.725 0.731
39 0.763 0.758 0.758 0.762 0.766 0.771
40 0.815 0.820 0.822 0.821 0.825 0.822
41 0.869 0.871 0.874 0.864 0.845 0.836
42 0.845 0.827 0.812 0.783 0.759 0.743
Grid

18 19 20 21 22 23
42 0.907 0.815 0.920 0.931 0.925 0.913
43 0.918 0.918 0.921 0.919 0.915 0.902
44 0.919 0.934 0.939 0.933 0.922 0.903
45 0.928 0.934 0.937 0.929 0.919 0.889
46 0.923 0.931 0.929 0.929 0.915 0.890
47 0.931 0.924 0.926 0.921 0.906 0.867
Leather

4 5 6 7 8 9

1 0.910 0.932 0.924 0.901 0.892 0.871
2 0.955 0.964 0.975 0.900 0.824 0.788
3 0.968 0.951 0.888 0.847 0.825 0.793
4 0.953 0914 0.887 0.845 0.785 0.760
5 0.946 0.909 0.859 0.800 0.752 0.722
6 0.948 0.890 0.846 0.787 0.745 0.716
Tile

1 2 3 4 5 6
37 0.685 0.898 0.818 0.766 0.696 0.643
38 0.695 0.915 0.820 0.748 0.685 0.637
39 0.727 0.896 0.786 0.743 0.685 0.631
40 0.736 0.932 0.786 0.741 0.679 0.625
41 0.735 0.914 0.794 0.735 0.667 0.625
42 0.733 0.923 0.791 0.723 0.655 0.625
Wood

7 8 9 10 11 12

1 0.875 0.897 0.929 0.953 0.976 0.962
2 0.886 0.910 0.939 0.932 0.938 0.935
3 0.914 0.918 0.944 0.940 0.939 0.946
4 0.906 0.930 0.917 0.918 0918 0.917
5 0.901 0.925 0.911 0.904 0.912 0.910
6 0.900 0.911 0.898 0.906 0.915 0.912

Bold text indicates the highest performance
row: Fourier mask length t, column: threshold value th

similar to actual defects and thus remain unremoved. Our
study demonstrates that a straightforward method can yield
high-performance results. Furthermore, the adaptability of
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Fig.9 Workflow for defect detection (1st column: reconstruction, 2nd—3rd columns: Fourier transform results, 4th column: binary-level threshold-

ing)

our method to accommodate variations in optimal parameter
combinations for different categories underscores its flexi-
bility and simplicity, rendering it applicable to a wide range
of defect recognition challenges. Figure 9 illustrates a partial
process for generating the final decision map for each cat-
egory. The first column displays the reconstructed image,
while the second and third columns depict the frequency
domain images of the input image and the normal recon-
structed template, respectively. The fourth column showcases

the result of binary-level thresholding applied to different
Fourier images. Defective regions are represented by white
areas, demonstrating the preservation of actual defective
areas.

Table 3 presents the results of evaluating various anomaly
recognition algorithms with SOTA across different cate-
gories, with performance assessed using the AUC value. In
the comparative analysis, the algorithms chosen for compari-
son with the proposed method are evaluated by citing metrics
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Table 3 Comparisons of performance with related works

Methods Patch svdd [17] Uniformed student [18] KDAD [21] DAGAN [19] PEDENet [20] Ours
Carpet 0.48 0.695 0.879 0.903 0.922 0.866
Grid 0.83 0.819 0.952 0.867 0.959 0.957
Leather 0.69 0.819 0.945 0.944 0.976 0.975
Tile 0.70 0.912 0.946 0.961 0.926 0.932
Wood 0.94 0.725 0.911 0.979 0.900 0.976
Average 0.728 0.794 0.927 0.931 0.936 0.939

Bold text indicates the highest performance

Table 4 Ablation study results

Table 5 Comparative performance of ideal filter and Butterworth filter

Normal reconstructed template X 0} 0}

Fourier transform 0} X 0}

Carpet 0.791 0.659 0.874
Grid 0.885 0.508 0.939
Leather 0.344 0.634 0.975
Tile 0.819 0.505 0.932
Wood 0.923 0.867 0.976
Average 0.752 0.634 0.939

according to the settings specified in each study, due to the
use of identical datasets in the experiments. A value of 1 indi-
cates the presence of defects, while 0 indicates their absence.

The studies utilized for performance comparison [17],
[18], [19], [20] and [21] all focus on detecting defects
using the MVTec AD [22]. These methods evaluate perfor-
mance by combining complex deep learning networks with
conventional approaches. When examining each category
individually, our method demonstrates lower performance
compared to the state-of-the-art methods DAGAN [19] and
PEDENet [22]. However, while we may not achieve the high-
est performance in each category, our overall performance is
8% and 3% higher, respectively, when compared to these
methods.

Analyzing the results for each category, as per the analysis
in Table 4, the Carpet category exhibits relatively lower per-
formance. In the Grid, our performance is 7.2% higher than
DAGAN [19], but it is more than 2% lower than PEDENet
[20] and KDAD [21]. However, in the “Leather”, our per-
formance is slightly lower than PEDENet [20] but still quite
similar, with less than a 1% difference. Additionally, in the
“Tile” and “Wood”, our performance is higher than PEDENet
[20] but slightly lower than DAGAN [19].

However, the core objective of this paper is to intro-
duce an efficient inference method using a simple network
architecture. Furthermore, our proposed method preserves
defects in the frequency domain, rather than using deep learn-
ing for feature extraction, making it superior in this regard.
Consequently, an AUC of 93.9% demonstrates excellent per-
formance. In real-time inference scenarios, our method is

@ Springer

Filters Ideal Butterworth (ours)
Carpet 0.828 0.874
Grid 0.920 0.939
Leather 0.969 0.975
Tile 0.881 0.932
Wood 0.963 0.976
Average 0.912 0.939

more practical compared to other studies, as it does not
require a lengthy inference process involving complex deep
learning networks. Additionally, if the Normal Reconstructed
Template is predefined, the inference time can be reduced to
less than 20us per image, enabling rapid inference speeds
suitable for real-time applications. The method presented
in this study comprises two primary components: the uti-
lization of a denoising autoencoder for generating a normal
reconstructed template and its integration with the Fourier
transform to segregate and eliminate defective features. The
performance evaluation was conducted with a focus on the
combined use of the normal reconstructed template and
Fourier transform. It is worth noting that solely employ-
ing the Fourier transform makes it exceedingly challenging
to distinguish defective features in the frequency domain,
resulting in a slightly higher overall AUC of 75.2% com-
pared to the obtained results. Notably, the Leather category
recorded a significantly lower value of 0.344 when com-
pared to other categories, possibly due to the data’s unique
characteristics, making defect recognition through frequency
bands less effective in this category. When using only the nor-
mal reconstructed template in conjunction with the Fourier
transform, the average AUC was low at 63.4% across all
categories except Leather. This suggests that relying solely
on the normal reconstructed template to preserve defec-
tive regions is challenging for other categories, while the
reconstructed results alone can effectively preserve defective
regions. In contrast, the proposed method, which combines
both the normal reconstructed template and Fourier trans-
form, achieved the highest performance with an AUC of
93.9%. Therefore, the methodology introduced in this study
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Table 6 Additional

performance evaluations and Category Precision Recall F1-Score Macro-F1 Decision thresholds
decision threshold for each Carpet 0.940 0.750 0.834 0.853 0.094
category in the proposed method
0.802 0.955 0.872
Grid 0.944 0.810 0.872 0.875 0.974
0.818 0.947 0.878
Leather 0.947 0.927 0.937 0.936 0.110
0.926 0.946 0.935
Tile 0.878 0.869 0.873 0.863 0.029
0.847 0.857 0.852
Wood 0.838 1.000 0912 0.906 0.117
1.000 0.817 0.899

demonstrates superior performance compared to evaluations
using existing methods in isolation. In particular, when com-
pared to the common approach of using only the Fourier
transform, this method exhibited a remarkable 18.7% per-
formance improvement, achieving the highest performance
across all categories.

The proposed approach incorporates a high-pass filter in
this study, specifically introducing a method based on the
Butterworth filter. The ideal filter selectively assigns a value
of one to the high-frequency region through a defined cutoff,
while the rest is set to zero. However, owing to the poten-
tial of filters to frequently introduce a ringing artifact, the
Butterworth filter is favored over the ideal filter. A notable
distinction between the Butter-worth and ideal filters is the
smoother boundary transitions provided by the former. In this
study, post-filtering is employed, resulting in the generation
of a binary image through a post-processing step that utilizes
a threshold. The primary objective of this post-processing
step is to isolate and preserve only the defects. Consequently,
both the ideal and Butterworth filters prove resilient to the
ringing artifact. Table 5 presents the performance evaluation
results for various filters. The preference for the Butterworth
filter over the Ideal filter, particularly in the context of gen-
erating binary images, underscores its superior performance
in terms of defect preservation.

Table 6 presents the computed Decision Thresholds for
each category according to the proposed method, and based
on these thresholds, it details the Precision, Recall, and
F1-Score for normal and defect categories, as well as the
Macro-F1 values. It is observed that, with the exception of
the Grid category, most categories are close to 0. The Grid
category, due to its high-frequency patterned background,
requires a threshold near 1 to detect defects, resulting in an
F1-Score of 87.5%. For other categories, typically charac-
terized by low-frequency background noise, the thresholds
are calculated around 0.1, with the Tile category notably at
a very low 0.029. Unlike the AUC, these figures represent
actual binary classification results, with Leather achieving
the highest performance at 93.6%. Although the values are

generally lower than those of AUC, the metrics suggest that
the proposed method holds substantial value, especially when
considering the characteristics of the metrics and the perspec-
tive of inference time.

5 Conclusion

This study introduces an image analysis methodology that
combines a simple denoising autoencoder with Fourier
transformation to explore texture defect recognition. The pro-
posed approach utilizes an autoencoder for noise removal and
a Fourier transform process to isolate defective regions, with
the presentation of the most suitable mask radius and thresh-
old values for each dataset.

To enhance the performance of the method in future
research, it is crucial to employ deeper learning networks for
improved noise removal. The development and application
of advanced noise removal techniques through deep learning
have the potential to enhance defect detection capabilities,
and they are essential for improving applicability in the
real world. However, while this method demonstrated high
performance in most textures, it achieved relatively lower
performance in certain textures. This limitation is attributed
to the fact that the method detects defects in textures based
solely on frequency components rather than features. How-
ever, it offers advantages such as high efficiency and real-time
usability. To enhance the performance of the method in future
research, it is crucial to employ deeper learning networks for
improved noise removal. The development and application
of advanced noise removal techniques through deep learning
have the potential to enhance defect recognition capabilities,
and they are essential for improving applicability in the real
world. Currently, the comparison has been conducted solely
on manufacturing data. However, there is significant potential
for broader application of this method in various domains.
To contribute more extensively to diverse fields, research is
planned on methodologies for integrative analysis of data
across multiple sectors.
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