
Received 28 June 2024, accepted 11 July 2024, date of publication 17 July 2024, date of current version 26 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3429506

ASAP: Agile and Safe Pursuit for Local Planning
of Autonomous Mobile Robots
DONG-HYUN LEE 1,2, SUNGLOK CHOI 3, (Member, IEEE), AND KI-IN NA 4
1School of Electronic Engineering, Kumoh National Institute of Technology, Gumi-si, Gyeongbuk 39177, Republic of Korea
2Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi-si, Gyeongbuk 39177, Republic of Korea
3Department of Computer Science and Engineering, Seoul National University of Science and Technology (SEOULTECH), Nowon-gu, Seoul 01811, Republic of
Korea
4Mobility Robot Research Division, Electronics and Telecommunications Research Institute (ETRI), Yuseong-gu, Daejeon 34129, Republic of Korea

Corresponding author: Ki-In Na (kina4147@etri.re.kr)

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by Korean Government through MSIT under
Grant RS-2024-00337584.

ABSTRACT This paper presents a novel local planning approach called Agile and SAfe Pursuit (ASAP) for
autonomous mobile robots. It aims to enable agile path following and safe collision avoidance in cluttered
environments, while ensuring computational efficiency for real-time performance in embedded systems with
limited computational power. For agile path following, the proposed approach utilizes a local path that
includes a line path, arc path, and in-place rotation, and generates a target velocity based on the kinematic
constraints of the robot. For safe collision avoidance, the proposed approach uses obstacle information to
generate safety corners, which represent points in free space to circumvent obstacles with arbitrary shapes,
and selects the best safety corner with the minimum travel time. To reach the target velocity as quickly as
possible, the proposed approach uses a normalized velocity space to calculate control velocity that achieves
the ratio of the linear and angular components of the target velocity in the shortest possible time period. For
end-users to easily adapt a robot’s behavior to different environments, the proposed approach is designed to
require only a few tuning parameters. The proposed algorithm’s agile control, rigorous collision avoidance,
and computational efficiency were demonstrated through experimental results from hardware-in-the-loop
simulations under various scenarios and real-robot tests in cluttered environments. Remarkably, the proposed
approach achieves computational speeds that are 25 to 200 times faster than other existing algorithms.

INDEX TERMS Autonomous mobile robot, collision avoidance, local planner, path following.

I. INTRODUCTION
Autonomous mobile robots have gained widespread pop-
ularity in various automation applications, such as smart
factories and last-mile delivery, owing to advancements in
deep learning-based perception, the computational power
of embedded systems, and sensor technologies [1], [2],
[3]. This growing interest in autonomous mobile robots
has driven extensive research aimed at enhancing their
functionality and performance across diverse environments
and tasks. Numerous studies have explored different types of
mobile robots, each offering unique capabilities. For instance,
Arif et al. [4] designed an amphibious spherical robot that

The associate editor coordinating the review of this manuscript and

approving it for publication was Jamshed Iqbal .

achieves high torque, versatile motion, compactness, and
stability without relying on optimal control. Kim et al. [5]
introduced a mobile platform with transformable wheels
capable of navigating steps and stairs in indoor environments.
Additionally, Jiang et al. [6] proposed a novel sliding
mode control method for four-wheel omnidirectional mobile
robots, effectively compensating for lumped disturbances in
harsh terrain conditions.

Among the various mechanisms used in autonomous
mobile robots, the differential-drive mechanism stands out
due to its simplicity in kinematics and hardware, as well
as its ability to rotate in narrow spaces. In mobile robot
applications, autonomous navigation is a critical technology
that combines a global planner for path planning and a local
planner for path following and collision avoidance [7], [8],

99600

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0000-0002-9372-3333
https://orcid.org/0000-0002-1127-1346
https://orcid.org/0000-0002-4229-4786
https://orcid.org/0000-0002-0795-0282

D.-H. Lee et al.: ASAP: Agile and Safe Pursuit for Local Planning of Autonomous Mobile Robots

[9]. Typically, global planners determine a feasible path to
the target position using a given map without considering
the kinematic constraints of the robots or unknown obstacles
not present on the map. In contrast, local planners generate
control velocities to follow the global path while avoiding
collisions by considering the kinematic constraints of the
robot and newly detected obstacles. Mobile robot systems
with limited computational power require a computationally
efficient local planner that accurately follows a given global
path while safely avoiding collisions.

There are three major approaches in the local planning
of mobile robots: velocity space optimization, trajectory
space optimization, and learning-based approaches. Veloc-
ity space optimization approaches, such as the curvature
velocity method (CVM) and the dynamic window approach
(DWA), have been widely explored for local planning.
These methods generate collision-free and feasible velocities
without requiring trajectory optimization but are often limited
by their dependence on multiple parameter tuning and
sampling-related parameters [10], [11], [12], [13]. Trajectory
space optimization methods, including Timed-Elastic-Band
(TEB) and Model Predictive Control (MPC), aim to find
near-optimal trajectories but are computationally expensive
and require accurate dynamic models, making them less
practical for real-time applications [14], [15]. Learning-
based approaches leverage machine learning algorithms
to learn motion commands directly from sensory input,
offering adaptability and robustness in complex environ-
ments. However, they face challenges related to sensor
data reliability, generalization, and computational complexity
[16], [17], [18].

In this paper, we present a novel local planning approach
called Agile and SAfe Pursuit (ASAP) for autonomous
mobile robots. The motivation behind this work stems from
the need for more robust and versatile navigation algorithms
in autonomous robotics. The primary objective of this work is
to develop a navigation algorithm for autonomous robots that
can efficiently and safely navigate complex environments.
The proposed algorithm aims to address the limitations of
existing methods by optimizing local planning and obstacle
avoidance in real-time. Traditional methods often struggle
with scalability, adaptability, and efficiency in complex
environments. Our contributions include the development of
the ASAP algorithm, which improves upon these aspects,
and extensive validation through simulations and real-world
experiments.

The proposed approach uses velocity space optimization
to determine control velocity and employs a local path of
lines and arcs for accurate path following. It solves the
local planning problem without using objective functions
or sampling, avoiding associated parameters. This method
selects control velocity from a dynamic window considering
kinodynamic constraints, avoiding the need for a predictive
dynamic model. It uses safety corners to navigate obstacles,
bypassing the need for proximity-based constraints. The
approach runs in real-time on embedded systems using

lightweight processes, avoiding complex models like deep
neural networks. It is robust and adaptable for various mobile
robots with minimal parameter adjustments. The proposed
approach has three primary objectives:
• Enable agile global path following and safe collision
avoidance in cluttered environments.

• Ensure computational efficiency for real-time perfor-
mance on embedded systems with limited resources.

• Allow end-users to operate it in a specific mission
environment using only a minimal set of intuitively
tunable parameters.

The remainder of this paper is organized as follows.
Section II provides an overview of previous works with a
discussion of their ideas and limitations. Section III describes
the proposed local planner in detail. Section IV presents
the experimental results obtained from hardware-in-the-loop
simulations and real robot systems. Section V discusses the
experimental results of the proposed approach, and finally,
Section VI presents the conclusions of this study.

II. RELATED WORKS
In this section, we review the existing approaches for
local planning in robot navigation, categorized into three
main types: velocity space optimization approaches, tra-
jectory space optimization approaches, and learning-based
approaches. Each subsection will provide an overview of
these approaches, their strengths, and their limitations,
highlighting how our proposed method differs and improves
upon them.

A. VELOCITY SPACE OPTIMIZATION APPROACHES
Velocity space optimization approaches formulate local plan-
ning as a constrained optimization problem in the velocity
space of the robot. The CVM selects the best point that
maximizes the objective function in the velocity space [10],
[12]. The objective function typically refers to optimizing
metrics such as path length, travel time, energy consumption,
distance from obstacles or a combination of these factors.
The lane curvature method (LCM) and beam curvature
method (BCM) combines the lane and beam methods to
CVM [19], [20]. Unlike the CVM-related approaches that
require obstacle maps, the DWA selects the control velocity
with the lowest cost by calculating the cost function for each
sampled control velocity from the dynamic window [11],
[13], [21].

Velocity space optimization approaches can generate
collision-free and feasible velocities for robots, without
requiring trajectory optimization. However, they only con-
sider local paths as arcs and select the one that maximizes the
objective function, requiring the tuning of multiple param-
eters to combine optimization elements with different units
and ranges. Additionally, the effectiveness and computational
cost of sampling-based approaches, such as DWA, depend
significantly on sampling-related parameters, such as the
number of samples and simulation time.

VOLUME 12, 2024 99601

D.-H. Lee et al.: ASAP: Agile and Safe Pursuit for Local Planning of Autonomous Mobile Robots

The proposed approach adopts a velocity space opti-
mization approach to determine the control velocity from
the dynamic window. However, this approach differs from
the aforementioned approaches because it employs a local
path comprising a line and arc, including in-place rotation,
to enable agile and accurate path following. Considering the
kinematic constraints, current velocity, and target angle error,
the proposed approach deterministically solves the local
planning problem without utilizing an objective function
or sampling, which results in not having any parameters
associated with sampling or trajectory scoring.

B. TRAJECTORY SPACE OPTIMIZATION APPROACHES
Trajectory space optimization methods search for an optimal
trajectory in a space of all possible trajectories that satisfy
the specific limitations and conditions, such as kinodynamic
constraints on robot velocity and acceleration, as well as
environmental constraints like avoiding obstacles. TEB,
which is an extension of the elastic-band (EB) algorithm [22],
incorporates temporary information on kinodynamic con-
straints, such as limited robot velocity and acceleration using
a weighted multi-objective optimization framework [14],
[23]. MPC is another trajectory space optimization approach
that repeatedly solves an optimization problem to compute a
sequence of control actions over a finite horizon [15], [24],
[25]. MPC is a flexible framework that allows the combina-
tion of various algorithms to improve its performance in robot
navigation, such as an ancillary state feedback controller,
hybrid PID controller, and primal-dual neural network [26],
[27], [28].

Although trajectory space optimization approaches can
generate near-optimal trajectories that satisfy constraints or
objectives, they are computationally expensive, particularly
for large optimization problems or long horizons. Addition-
ally, accurate models of robot dynamics and the environment
are required for good performance, which can be challenging
to obtain in practice. Furthermore, these approaches are
sensitive to parameter selection and require exhaustive tuning
to achieve a satisfactory performance.

The proposed approach differs from the trajectory space
optimization approaches in that it selects the control velocity
from a dynamic window in the velocity space that considers
the kinodynamic constraints rather than generating the
control velocity as a solution for constrained optimization.
This feature makes it unnecessary for the proposed approach
to have an accurate predictive dynamic model for the robot
and avoids parameters related to optimization. Moreover,
instead of using the proximity to obstacles as a constraint
and finding an optimal solution that avoids obstacles,
the proposed approach employs safety corners, which are
points in free space extracted from obstacles, to circumvent
obstacles and rapidly reach the global path.

C. LEARNING-BASED APPROACHES
Learning-based approaches use machine learning algorithms,
such as deep reinforcement learning and neural network,

FIGURE 1. Flow chart of the proposed local planner.

to learn the mapping between the sensory input of a
robot and its motion commands without relying on a pre-
defined model of the environment or robot dynamics [16],
[29]. End-to-end learning-based local planners learn map-
ping directly from sensory input to motion commands
[17], [30]. Hybrid learning-based local planners combine
learning-based approaches with traditional methods [31],
[32], [33]. These approaches use machine learning models to
learn a correction term or modify the output of the traditional
planner based on current sensory input. To enhance the
performance of learning based navigation, an input repre-
sentation of LiDAR readings is proposed in [34]. Another
hybrid approach involves using a trained agent to switch
between multiple different planners based on sensor data
observations [18], [35].

Learning-based local planners have shown promise in
mobile robot navigation and autonomous driving in complex
environments. However, these remain an active area of
research, and there are many open challenges, such as
dealing with noisy or incomplete sensor data, handling
uncertainty, data requirements, generalization, adaptability,
safety, interpretability, and complexity.

The proposed approach can be executed in real-time
on embedded systems because it avoids utilizing complex
models, such as deep neural networks, and instead employs
three lightweight and interpretable processes. It is sufficiently
robust for handling environmental changes and unexpected
events, and can be adapted for mobile robots by adjusting a
small number of parameters.

III. AGILE AND SAFE PURSUIT (ASAP)
The proposed approach consists of three primary processes:
path following, collision avoidance, and control velocity
generation processes, as shown in Fig. 1. In the path

99602 VOLUME 12, 2024

D.-H. Lee et al.: ASAP: Agile and Safe Pursuit for Local Planning of Autonomous Mobile Robots

following process, an adaptive lookahead point along the
global path is selected while considering the current velocity,
minimum distance from obstacles, and the stopping distance.
Subsequently, the path following velocity is determined from
the velocity space, which reflects the kinematic constraints
of the robot. Using the lookahead point and path following
velocity, a local path comprising line and an arc paths is
generated. If no collision is predicted on the local path,
the path following velocity is used as the target velocity.
Otherwise, the collision avoidance process is triggered to
generate the collision avoidance velocity, which is used as
the target velocity.

The collision avoidance process is initiated by generating
safety corners that act as temporary target points used to avoid
arbitrarily shaped obstacles while considering their safety
distance from them. Subsequently, the collision avoidance
point is computed by selecting the best safety corner that
can lead the robot to reach the global path in the shortest
time without collisions. A collision avoidance velocity is
generated to enable the robot to rapidly reach the collision
avoidance point.

The control velocity generation process determines the
target velocity path required to reach the turning radius of
the target velocity within the shortest time in the normalized
velocity space. It then computes the control velocity to follow
the target velocity path and reach the target velocity in the
shortest possible time considering the velocity window of the
robot.

A. PATH FOLLOWING PROCESS
1) LOOKAHEAD POINT SELECTION
The lookahead distance determines the extent to which a
lookahead point is located on a global path. The lookahead
point is a temporary target position on the global path required
by the robot to converge smoothly to a global path over
time. In the proposed algorithm, the lookahead distance
is determined by considering the current robot velocity,
minimum distance from the closest obstacle, minimum
distance to stop, and distance to the final goal position.

The maximum and minimum lookahead distances dmax
l

and dmin
l are defined as

dmax
l =

{
dmax
O , dfree ≤ dmax

O

dmax
F , dfree > dmax

O

dmin
l = sLdmax

l (1)

where dfree is the minimum distance between the robot and
the inflated obstacles with inflation distance dR, dmax

O is
the maximum range for considering the obstacles, dmax

F is
the maximum lookahead distance for path following when
there are no obstacles in the range of dmax

O , and sL (0 <

sL ≤ 1) is a constant scaler that determines the ratio of
dmin
l to dmax

l . The inflation distance dR can be determined
as the radius of the circle that encompasses the robot with
a safety margin. In (1), dmax

O must be sufficiently large for
the local planner to forecast any collisions. However, a large

FIGURE 2. A collection of all admissible velocities Vop is determined by
sR , which is the ratio of the maximum linear velicity vmax to the
maximum angular velocity wmax.

lookahead distance increases the cross track error and may
cause the robot to move inside the corner, which is called
the ‘‘cutting corners’’ problem [36]. Thus, using a large
lookahead distance is inefficient for agile path following
when there are no obstacles within the specified range. For
agile motion control to follow the global path with small
cross track error and avoid the cutting corner problem, dmax

F
(dmax
F < dmax

O) is used as the maximum lookahead distance
when no obstacles exist within dmax

O .
The lookahead distance dl is defined as

dl = min(max(dvl , dstop), dg) (2)

where dg denotes the distance to the goal, dvl is the velocity
scaled lookahead distance, and dstop is the minimum distance
required for the robot to stop. To adjust dl according to the
current velocity of the robot dvl is defined as

dvl = (dmax
l − dmin

l)
vr
vmax + d

min
l (3)

where vr and vmax are the current and maximum linear
velocities of the robot, respectively. For the robot to stop
before hitting an obstacle when the lookahead point is in the
collision area, the stop distance dstop is defined as

dstop =
v2r

2v̇max + dR (4)

where v̇max is the maximum linear acceleration, and dR is
added to the safety margin. Using dl , the lookahead point pl
is defined as

pl = flook(dl) (5)

where flook(dl) returns a single point toward the goal position
on the global path that is dl away from the robot.

2) PATH FOLLOWING VELOCITY GENERATION
The proposed approach only considers the operation of the
robot in the forward direction, including in-place rotation.
Thus, a collection of all admissible velocities Vop, that the
robot can attain during its operation is determined, as shown
in Fig. 2, where sR = vmax

wmax , and vmax
wheel and dB are the

maximum linear velocity of the wheel and the half distance
between the left and right wheels, respectively.

VOLUME 12, 2024 99603

D.-H. Lee et al.: ASAP: Agile and Safe Pursuit for Local Planning of Autonomous Mobile Robots

FIGURE 3. Proposed path following velocity generation process.
(a) Turning radius ym is scaled down to yf by the linear velocity scaler,
sm, when the robot is moving slowly or is stationary. (b) vm is scaled
down to vf by sm in the velocity space.

The path following velocity generation process produces
a target velocity for the agile path following by considering
differential-drive kinematics. As the angle between the
lookahead point and the forward direction of the robot
approaches the threshold angle, the turning radius decreases.
If it is greater than or equal to the threshold angle, the turning
radius becomes zero for the in-place rotation.

Fig. 3 illustrates the proposed process for generating path
following velocities, where θl denotes the lookahead angle
and pm (0 ≤ ∥pm∥ ≤ dl) refers to the intersection point
between an arc of a radius ym and a line connecting the
lookahead point and the robot, as depicted in Fig. 3(a).
Fig. 3(b) illustrates the determination of vm (= (wm, vm)) by
intersecting the line v = ymw and one of the edges of Vop.
The path following velocity is obtained by scaling ym using
a linear velocity scaler, which decreases the turning radius
when vr is small or θl is large.

The maximum threshold angle for path following
θmax
F (0 < θmax

F ≤ π) is defined to reduce the turning radius
as |θl | approaches θmax

F and to drive the robot to rotate in
place when |θl | exceeds θmax

F . This can be tuned according
to the task environment of the robot. For example, if a robot
operates in an office environment with narrow corridors, then
a small θmax

F is preferable, such that the robot can turn with
a small radius. On the other hand, if the robot operates in a
wide open space and a large turning radius does not affect the
task performance, a large θmax

F value is preferable for turning
corners smoothly at high speeds. Using θmax

F , the normalized
lookahead angle θ̂l is defined as

θ̂l = fnorm(θl, θmax
F) (6)

where

fnorm(θ, θmax) =

π

2
θ

θmax , |θ | < θmax

π

2
, θ ≥ θmax

−
π

2
, θ ≤ −θmax.

(7)

From dl and θ̂l , ym is generated as

ym = frad(dl, θ̂l) (8)

FIGURE 4. Collision check of the local path starts at pl and moves toward
the robot with a step size of dR . It terminates when a collision is detected
or when it reaches the collision-free circle with a radius of dfree.

where frad(d, θ̂) is the radius generation function in (34)
as described in the Appendix. As |θl | approaches θmax

F , ym
decreases for the robot to enable a rotation with a smaller
radius. When |θl | is equal to or greater than θmax

F , ym is zero
for an in-place rotation. On the other hand, as |θl | approaches
zero, |ym| approaches∞ such that the robot moves straight to
pl . Using θl and ym, vm (= (wm, vm)) is defined as

wm =
vmax

ym + sgn(θl)sR
, vm = ymwm (9)

where sgn(θ) is the sign function of θ and sR(= vmax

wmax) is the
ratio of vmax to wmax.

If the robot moves slowly or is stationary, a small turning
radius turn toward the goal can prevent collisions with
obstacles around the robot. Therefore, the linear velocity
scaler sm (0 ≤ sm ≤ 1) is defined as

sm = 1−
2
π
|θ̂l |fhys(vr) (10)

with

fhys(vr) =

1, vr < vmin

hys

0, vr > vmax
hys

h−, vmin
hys ≤ vr ≤ v

max
hys

(11)

where h− is the previous output of fhys(vr), and vmin
hys and v

max
hys

are the lower and upper hysteresis thresholds, respectively.
From vm and sm, the path following velocity vf (= (wf , vf))
is defined as

wf = wm,

vf = yf wm = smymwm = smvm (12)

where yf (= smym) denotes the turning radius, wf is the
angular velocity, which is the same as wm, and vf is the linear
velocity obtained by scaling vm into sm. When vr is higher
than vmax

hys , yf is the same as ym because sm is one. If vr is lower
than vmin

hys , then yf becomes lower than ym, as shown in Fig. 3,
since sm is less than one. This allows the robot to turn with a
small radius when it moves slowly or remains stationary.

99604 VOLUME 12, 2024

D.-H. Lee et al.: ASAP: Agile and Safe Pursuit for Local Planning of Autonomous Mobile Robots

3) LOCAL PATH COLLISION CHECK
The local path to reach pl consists of the line and arc paths,
as shown in Fig. 4, where θcloseo is the angle between the robot
and the closest obstacle, and pt is the tangent point between
the line and arc paths with a turning radius yf . The line path
for the path following is the tangent line connecting pl and pt .
For the collision check of the local path in the path following
process, the set of sampling points Pf is defined as

Pf = fpath(pl, yf) (13)

where fpath(p, y) starts the sampling points from pl and
moves along the local path toward the robot with a step
size of dR until it reaches the collision-free circle of radius
dfree. If all points in Pf are in a free configuration space
Cfree, that is, Pf ⊂ Cfree, the control velocity generation
module calculates the control velocity using vf . Otherwise,
the collision avoidance process is triggered.

B. COLLISION AVOIDANCE PROCESS
1) OBSTACLE CORNER DETECTION
The first step in the collision avoidance process is to detect
the corners of the obstacles that are discontinuous points
detected by distance measurement sensors, such as laser
scanners, time-of-flight sensors, stereo cameras, and single
image sensors with depth estimation. The corners are simply
defined as discontinuous points in the distance between the
robot and obstacles, thus requiring no information about the
shape, number, or overlap of obstacles. Additionally, corners
are exclusively used by the proposed algorithm to generate
temporary target points to avoid collisions when predicting
and preventing collisions.

The corner detection is illustrated in Fig. 5(a) where pns
and pne are the start and end corners of the n-th obstacle,
respectively. The start corner set Ps and the end corner set
Pe store the start and end corners, respectively, which are
not occluded by other obstacles. When a previously detected
obstacle occludes a new obstacle, only the end corner of
the previously detected obstacle is added to Pe, and the
start corner of the new obstacle is ignored. For example,
obs0 occludes obs1 in Fig. 5(a), so only p0e is added to Pe,
and p1s is ignored. On the other hand, if a previously detected
obstacle (e.g., obs2) is occluded by a new obstacle (e.g., obs3),
then only the start corner of a new obstacle (e.g., p3s) is added
to Ps and the end corner of the previous obstacle (e.g., p2e) is
ignored. For example, obs2 is occluded by obs3, as shown in
Fig. 5(a), so only p3s is added to Ps and p2e is ignored.

2) SAFETY CORNER GENERATION
The collected corners in Ps and Pe can be utilized for the
robot to bypass the obstacles. In the safety corner generation
process, the corners of Ps and Pe are rotated clockwise and
counterclockwise by a safety angle, respectively, to maintain
a safety distance dS (dS > dR) from the obstacles. For
po(= do ̸ θo) ∈ Ps ∪ Pe, the polar form of the safety corner

FIGURE 5. (a) Start and end corners are stored to the start corner set, Ps,
and the end corner set, Pe, that are not occluded by other obstacles,
respectively. (b) Safety corners are generated by rotating the corners to
keep the safety distance, dS , from the obstacles.

pc(= dc ̸ θc) is defined as

dc = do, θc = θo + δθc (14)

where

δθc =

− sin(

dS
do

), po ∈ Ps

sin(
dS
do

), po ∈ Pe.
(15)

If pc ∈ Cfree is satisfied, pc is added to the safety corner set
Pc.

The generation of a safety corner is illustrated in Fig. 5(b),
where pnc and δθnc are the n-th safety corner and angle,
respectively. The m-th obstacle obsm has a start corner pms
and end corner pme . Because they are not occluded by other
obstacles, pms and pme are stored in Ps and Pe, respectively.
For each corner to be away from the obstacle, the distances
dS , pms , and pme are rotated to δθnc clockwise and δθn+1c
counterclockwise to move to pnc and p

n+1
c , respectively.

3) SAFETY CORNER COST ESTIMATION
The safety corner cost represents the estimated minimum
time required for a robot to pass through the safety corner and
reach the global path. Determining the cost of moving from
a safety corner to a global path, a collision-free temporary
lookahead point on the global path p⋆

l is defined as

p⋆
l = flook(ndl) (16)

VOLUME 12, 2024 99605

D.-H. Lee et al.: ASAP: Agile and Safe Pursuit for Local Planning of Autonomous Mobile Robots

FIGURE 6. Cost of the safety corner, pc , is the estimated minimum time
for the robot to arrive at the temporary lookahead point, p⋆

l , via pc .

where n is defined as a minium positive integer that
guarantees a collision-free point of p⋆

l . The cost of pc with
p⋆
l as the temporary lookahead point fcost(pc,p⋆

l) is defined
as

fcost(pc,p⋆
l) =

dc + ∥p⋆
l − pc∥

vmax +
|θc| + |θcl⋆ |

wmax (17)

where

θcl⋆ = cos−1(
pc · (p⋆

l − pc)
∥pc∥∥p⋆

l − pc∥
). (18)

The first and second terms on the right side of (17) represent
the estimated minimum time required for the robot to travel
by distance and rotate by angle, respectively.

Fig. 6 shows an example of the safety corner cost
generation for pc, where po ∈ Pe is rotated counterclockwise
tomove toward pc. Considering n as theminimum integer that
ensures a collision-free point for flook(ndl), p⋆l is determined
as flook(3dl). For the robot to reach pc, the travel distance and
angle are dc and θc, respectively. For a robot to travel from
pc to p⋆

l , the travel distance and angle are ∥p
⋆
l − pc∥ and θcl⋆ ,

respectively. Thus, the estimated minimum time for the total
travel distance with vmax and angle with wmax is

dc+∥pc−p⋆
l ∥

vmax

and |θc|+|θcl⋆ |wmax , respectively.

4) COLLISION AVOIDANCE VELOCITY GENERATION
The collision avoidance velocity generation process estimates
the collision avoidance velocity to bypass obstacles and
quickly reach a global path, as described in Algorithm 1.
As shown in line 9 of Algorithm 1, the best safety corner
with the lowest cost p⋆

c is selected to determine the collision
avoidance point pa. The avoidance lookahead distance da is
calculated in line 10 of the algorithm, where dmin

a in line 7 is
the minimum avoidance lookahead distance. The avoidance
scaler sa (0 ≤ sa ≤ 1) adjusts da and dmin

a using dfree and
θclosea . As the robot approaches the obstacle than a distance of
dS and is heading toward the obstacle, sa is decreased to zero
to avoid collisions and rotate in place to head to pa.
The processes of adjusting da and checking the collision

of the local path are described in lines 13 through 22. The

FIGURE 7. Local paths at the first and second iterations of collision check
with da and da − dR as the avoidance lookahead distances are expected
to collide. At the third iteration with da − 2dR , the local path is
collision-free, and thus y ′′

a is used to generate the collision avoidance
velocity.

Algorithm 1 Collision Avoidance Velocity Genera-
tion
Input : Pc,p⋆

l , θ
close
o , df , dl

Output: Va, va

1 wa← 0, va← 0
2 va← (wa, va), Va← {va}
3 so← min(max(dfreedS

, smin
o), 1.0)

4 sa← 1.0
5 if dfree < dS then

6 sa← min(2|θ
close
o |

π
, 1.0)

7 dmin
a ← min(dl,max(sadS , dfree))

8 while Pc ̸= ∅ do
9 p⋆

c ← argmin
pc∈Pc

fcost(pc,p⋆
l)

10 da← min(dl, samax(d⋆
c − d

min
a , 0.0)+ dmin

a)
11 θa← θ⋆

c
12 pa← da ̸ θa
13 while da ≥ dmin

a do
14 θ̂a = fnorm(θa, θmax

A)
15 ya← frad(da, θ̂a)
16 Pa← fpath(pa, ya)
17 if Pa ⊂ Cfree then
18 Va← {v ∈ Vop| v ≤ so(sRw+ vmax), v ≤

−so(sRw− vmax)}
19 wa←

sovmax

ya+sgn(θa)sosR
, va← yawa

20 va← (wa, va)
21 return Va, va
22 da← da − dR

23 Pc← Pc \ {p⋆
c}

24 return Va, va

turning radius ya for collision avoidance is calculated in
line 15, where θ̂a is the normalized angle θa with θmax

A (0 <

θmax
A ≤

π
2) as the maximum threshold angle for collision

avoidance. The sampled point set,Pa, from the local pathwith
pa and ya is calculated in line 16 to detect collisions along the

99606 VOLUME 12, 2024

D.-H. Lee et al.: ASAP: Agile and Safe Pursuit for Local Planning of Autonomous Mobile Robots

FIGURE 8. Three example cases (A, B, and C) of generating control
velocities with different current velocities (vA

r , vB
r , and vC

r).

local path. If all the points inPa are collision-free, the feasible
velocity space for collision avoidance, Va, is calculated as
indicated in line 18, where so (smin

o ≤ so ≤ 1) reduces vmax

up to smin
o times as the robot approaches the obstacles for

safety. From Va and ya, the collision avoidance velocity va
is determined as the cross-point between the linear function
v = yaw and one of the edges of Va, as shown in line 19.
Algorithm 1 is terminated by returning Va and va, as shown
in line 21. However, if any collision is detected in the local
path, da decreases by dR each time, as indicated in line 21.
If a collision-free local path is not found until da < dmin

a ,
then p⋆

c is removed from Pc, as shown in line 22, and the new
best safety corner is selected for the subsequent iterations.

Fig. 7 illustrates the process in lines 12 through 22 of
Algorithm 1. For the first trial with da, the local path crosses
the obstacle because of a large ya. Similarly, the local path
from the second trial with da−dR passes through the obstacle.
For the third trial with da − 2dR, the local path is collision-
free, and thus the turning radius, y′′a is used to generateVa and
va, as shown in lines 18 and 19, respectively, of Algorithm 1.

C. CONTROL VELOCITY GENERATION MODULE
1) VELOCITY SPACE NORMALIZATION
During the control velocity generation process, the target
velocity space, target velocity, current velocity, and the
maximum acceleration of the robot are considered to generate
the control velocity that can be achieved within one control
cycle time. The target velocity spaceVt and the target velocity
vt are determined as

(Vt , vt) =

{
(Vop, vf), Pf ⊂ Cfree

(Va, va), otherwise.
(19)

If all the sampled points on the local path to the lookahead
point are collision-free, Vop and vf from the path following
process are used as as Vt and vt , respectively. Otherwise, Va
and va from the collision avoidance process are used as Vt
and vt , respectively.
Based on the current velocity and the maximum accelera-

tion of the robot, a velocity window, which is a subset of Vt
that can be reached in one control cycle time Vd

t , is defined

as

Vd
t = {v ∈ Vt | |w− wr | ≤ δw, |v− vr | ≤ δv} (20)

with

δw = ẇmaxTC , δv = v̇maxTC (21)

where δw and δv are the angular and linear velocity steps,
respectively, in one control cycle time TC . ẇmax and v̇max are
the maximum angular and linear accelerations, respectively.

Because an arc path with turning radius yt =
vt
wt

guarantees
collision-free travel, the control velocity must first reach the
line v = ytw in the shortest time, and thenmove along the line
to reach vt . To determine the target velocity path that guides
the current velocity to the line v = ytw in the shortest time, the
target velocity space is normalized by the velocity window.
The normalized target velocity space, Ṽt , is defined as

Ṽt = {ṽ = (w̃, ṽ)| w̃ =
w
δw

, ṽ =
v
δv

, v ∈ Vt }. (22)

The target velocity path in Ṽt is the shortest line from the
normalized current velocity ṽr to the normalized line ṽ =
ỹt w̃, where ỹt = δw

δv yt .

2) CONTROL VELOCITY GENERATION
In the normalized target velocity space, the normalized
temporary target velocity ṽp on the line ṽ = ỹt w̃ is defined
as

ṽp =

{
ṽproj, ṽproj > 0
(0, 0), ṽproj ≤ 0

(23)

where the projected point ṽproj from ṽr to the line ṽ = ỹt w̃,
is defined as

ṽproj =
ṽr · ṽt
∥ṽt∥2

ṽt . (24)

Because the proposed algorithm only considers forward
motion, including in-place rotation, ṽp is set to (0, 0) when
ṽproj ≤ 0. From ṽp, the temporary target velocity vp is
obtained as

vp = (δww̃p, δvṽp). (25)

From vt and vp, the control velocity vu is defined as

vu =

argmin
v∈Vd

t

∥vt − v∥, Vd
t ∩ {v| v = ytw} ̸= ∅

argmin
v∈Vd

t

∥vp − v∥, Vd
t ∩ {v| v = ytw} = ∅.

(26)

If the current velocity reaches to the line v = ytw in one
control cycle time, the point closest to vt in the velocity
window is selected as vu. Otherwise, the point closest to vp
is used as the control velocity to reach the line v = ytw in the
shortest time and then moves on the line to finally reach vt .
Fig. 8 shows the three example cases of generating control

velocities for different current velocities vAr , v
B
r , and vCr , and

their normalized velocity windows are indicated by dashed

VOLUME 12, 2024 99607

D.-H. Lee et al.: ASAP: Agile and Safe Pursuit for Local Planning of Autonomous Mobile Robots

FIGURE 9. Screenshots of simulation scenarios: (a) Scenario 1,
(b) Scenario 2, and (c) Scenario 3.

squares in the normalized target velocity space. In the case of
A, vAt reaches line v = ytw in TC . Thus, the control velocity
vAu is selected from the velocity window vAr which can reach
vt within the shortest time. Cases B and C show that v = ytw
cannot be reached from their current velocities in TC such that
both cases must use vp as the temporary target velocity until
their current velocities reach v = ytw. For B, ṽp is obtained
by projecting ṽBr on the line ṽ = ỹt w̃ in the normalized target
velocity space. However, forC, ṽproj is less than zero, and thus
(0, 0) is used as ṽp. Finally, cases B and C select the control
velocities from their velocity windows that can reach vp in
the shortest time.

IV. EXPERIMENTS
In this section, we evaluate the performance of the proposed
algorithm through a series of experiments. We conduct both
simulation and real-world experiments to provide a com-
prehensive analysis. In both the simulation and real-world
experiments, the robot navigates in an unknown environment
without any prior knowledge to evaluate the robustness
and effectiveness of the local planners. The simulation
experiments are designed to compare our approach with
existing methods in different scenarios, while the real robot
experiment demonstrates the practicality of our approach in
a real-world environment.

A. SIMULATION EXPERIMENTS
1) SIMULATION SCENARIOS
To compare the performances of four local planners
(DWA [7], TEB [14], MPC [15], ASAP (proposed)),

TABLE 1. Characteristics of the three simulation scenarios.

simulations were conducted with three scenarios. The
screenshot and summary of the three scenarios are shown in
Fig. 9 and Table 1, respectively.

In Scenario 1, a predefined reference path consisting of
a straight path and a sharp corner was given to the robot,
with obstacles adjacent to the reference path, as shown
in Fig. 9(a). Therefore, Scenario 1 was used to evaluate
the local planners’ performance in terms of reference path
following and collision avoidance in a low obstacle density
environment.

In Scenario 2, the robot was required to visit the
sequentially provided waypoints in a cluttered environment,
as shown in Fig. 9(b). For path planning, a straight-line (SL)
planner was used to periodically generate a straight path
from the robot to the waypoint. Because SL planner was not
capable of generating collision-free paths, the local planners
were responsible for the collision avoidance. Therefore,
Scenario 2was used to evaluate the collision avoidance ability
of the local planners in a high obstacle density environment.

In Scenario 3, the robot was required to sequentially
visit the provided waypoints in a cluttered environment with
concave obstacles, as shown in Fig. 9(c). To prevent the local
planners from being trapped by concave obstacles, an A⋆

planner was used for path planning. Although collision-free
paths were provided by the A⋆ planner, robot’s kinodynamic
constraints were not considered during the path generation.
Moreover, the path was updated rapidly upon the discovery
of unknown obstacles. Therefore, Scenario 3 was used to
evaluate the ability of local planners to quickly follow a given
collision-free path, considering the robot’s kinodynamic
constraints and ensuring safe collision avoidance.

The performances of the local planners were compared for
the three scenarios by computing the average and standard
deviation of the evaluation metrics after executing each local
planner ten times for each scenario. To ensure performance
consistency, each local planner used the same parameters for
all scenarios, where the parameters were tuned to ensure that
each local planner could complete all scenarios.

2) SIMULATION SETUP
As illustrated in Fig. 10, the hardware-in-the-loop (HIL)
simulation setup consists of a workstation to simulate the four
scenarios and an embedded board to execute the navigation
algorithms. In the experiment, NVIDIA Jetson Xavier NX
was used as the embedded system. The workstation ran a
virtual differential-drive robot equipped with a 2D LiDAR in
a simulated environment using the Gazebo simulator, which
is an open-source 3D robotics simulator, and transferred the

99608 VOLUME 12, 2024

D.-H. Lee et al.: ASAP: Agile and Safe Pursuit for Local Planning of Autonomous Mobile Robots

FIGURE 10. Hardware-in-the-loop simulation setup consists of a
workstation to run the Gazebo simulator and an embedded board to run
navigation algorithms.

FIGURE 11. Simulation results from Scenario 1. (a) Robot trajectories and
(b) arrival time, cross track error, and computation time of four local
planners.

LiDAR measurement data, odometry, and velocity of the
robot to the embedded board. The embedded board ran
the global planner and local planner using Nav2, which is
the navigation stack of robot operating system 2 (ROS 2),
and transferred the control velocity to the workstation. The
workstation and embedded board were connected to the same
WiFi network and communicated with each other using the
data-distribution service (DDS).

3) SIMULATION RESULTS FROM SCENARIO 1
In Scenario 1, the arrival time, cross track error (CTE), and
computation time were used as performance metrics of the
local planners. The arrival time is the time required for the
robot to travel from the starting point to the end point along
the reference path, as shown in Fig. 11(a). The CTE, which is

the shortest distance from the robot to the reference path, was
measured every 0.1 seconds until the robot reaches the end
point. The average and standard deviation of CTE were used
for the evaluation. The computation time is the time required
by the local planner to generate the control velocity.

Fig. 11(a) shows the robot’s trajectory using the four
local planners. In the case of DWA, the turning radius was
larger than that of the other local planners, which resulted
in inefficient trajectories. In addition, DWA struggled to
generate control speeds to avoid obstacles when in front of
the robot. Consequently, DWA showed a larger arrival time
and CTE than the other algorithms, as shown in Fig. 11(b).
MPC showed superior results in terms of arrival time and
CTE compared with the other algorithms. However, since
MPC required more time to generate collision-free local
paths through optimization when encountering obstacles, the
standard deviation of the computation time was larger than
that of the other algorithms. On the other hand, the proposed
approach only ran the collision avoidance process when a
collision was expected along the local path and chose the best
safety corner to bypass obstacles and quickly converge to the
reference path. As a result, the proposed approach exhibited
a low CTE and a significantly faster computation time than
DWA, TEB, and MPC, approximately 200, 25, and 80 times
faster, respectively, as shown in Fig. 11(b).

4) SIMULATION RESULTS FROM SCENARIO 2
In Scenario 2, the arrival and computation times of the local
planners were used as evaluation metrics. Because there was
no reference path to follow, the CTE was excluded from
the evaluation. Fig. 12(a) shows the robot’s trajectory of
visiting 13 waypoints using four local planners. Similar to
the results of Scenario 1, DWA rotated with a large turning
radius, resulting in a long arrival time, as shown in Fig. 12(b).
In contrast, TEB, MPC, and the proposed approach rotated
agilely depending on the waypoint location, as observed at
waypoints 2, 6, and 9 in Fig. 12(a). In terms of computation
time, TEB and MPC increased by more than two times
compared with Scenario 1, as shown in Fig. 12(b). This is
because both algorithms generated collision-free local paths
through nonlinear optimization, and the computational load
increases as the obstacle density increases. Similarly, the
computation time of the proposed approach increased by
approximately 1.5 times comparedwith Scenario 1. However,
it still showed computation time that was 155, 25, and
170 times faster than DWA, TEB, and MPC, respectively,
as shown in Fig. 12(b).

5) SIMULATION RESULTS FROM SCENARIO 3
In Scenario 3, the arrival and computation times of the local
planners were used as evaluation metrics as in Scenario 2.
However, unlike Scenarios 1 and 2, Scenario 3 contained
more complex (irregularly shaped) obstacles, such as concave
obstacles, that could cause the local planners to trap in
local minima. To prevent this problem, an A⋆ planner that
periodically generates collision-free paths was used.

VOLUME 12, 2024 99609

D.-H. Lee et al.: ASAP: Agile and Safe Pursuit for Local Planning of Autonomous Mobile Robots

FIGURE 12. Simulation results from Scenario 2. (a) Robot trajectories and
(b) arrival time, cross track error, and computation time of four local
planners.

Fig. 13(a) shows the trajectory of a robot visiting
11 waypoints using the four local planners. Unlike the other
local planners, DWA resulted in an inefficient trajectory
when moving from waypoint 10 to 11 because of its large
turning radius. Consequently, the DWA exhibited a longer
arrival time than the others, as shown in Fig. 13(b). It can
be observed from Fig. 13(b) that the computation times
of TEB, MPC, and the proposed approach decreased by
approximately 0.8, 0.7, and 0.6 times, respectively, compared
with Scenario 2. This is because A⋆ provided collision-free
paths to the local planner, thereby reducing the computational
burden on the local planners to calculate collision-free local
paths. On the other hand, the computation time of DWA
increased by approximately 1.3 times. This demonstrated
that even though a collision-free paths were provided, DWA
suffered from generating a collision-free arc path in a
cluttered environment. As in the computation time results

FIGURE 13. Simulation results from Scenario 3. (a) Robot trajectories and
(b) arrival time, cross track error, and computation time of four local
planners.

of Scenarios 1 and 2, the proposed approach showed a
significantly faster computation time than DWA, TEB, and
MPC by approximately 316, 31, and 194 times, respectively,
as shown in Fig. 13(b).

B. REAL ROBOT EXPERIMENT
The proposed algorithm was implemented in a mobile robot
system as shown in Fig. 14(a). The system comprised

99610 VOLUME 12, 2024

D.-H. Lee et al.: ASAP: Agile and Safe Pursuit for Local Planning of Autonomous Mobile Robots

FIGURE 14. (a) Differential-drive robot platform, (b) a cluttered
environment with 20 obstacles and (c) robot trajectories from the
experiment.

a mobile robot platform with differential-drive kinematics
(OMO R1mini), an embedded computer (NVIDIA Jetson
Xavier NX), a 2D LiDAR (YDLIDAR X4), and a tracking
camera (Intel RealSense T265). For autonomous navigation,
the SL planner and the proposed approach were used as
the global and local planners, respectively. For localization,
only visual-inertial odometry from the tracking camera was
used without a prior map. To construct the cluttered experi-
mental environment, 20 obstacles were evenly placed in the
5 m × 5 m area, as shown in Fig. 14(b). The human
operator used the ROS visualization tool (Rviz) from a remote
computer to send the target positions to the robot. When the
target position was sent to the robot from the operator, the
embedded computer on the robot ran the SL planner and
the proposed approach to reach the target while avoiding
collisions.

During the experiment, the human operator randomly
selected 12 target positions and provided the subsequent
target locations one by one when the robot reached the target.
A video of the experiment is available in [37]. The trajectories
of the robot is illustrated in Fig. 14(c), and the experiment
result demonstrated that the proposed approach could reach

all target positions in a cluttered environment quickly,
smoothly, and safely, without collisions. When the target
location was provided while the robot was stationary,
it rotated in place and moved smoothly along the corner as
the angle with the target location decreased. When collisions
were expected, the robot decreased its linear velocity and
moved toward a safety corner with a short radius for safe
collision avoidance.

V. DISCUSSION
It was observed from the results of the three scenarios that
the arrival time, CTE, and computation time of the DWA
were higher than those obtained using the other algorithms.
This is due to the fact that DWA necessitates a large number
of velocity samples and a lengthy simulation time deter-
mining a local path that avoids collisions. Conversely, TEB
requires less computation than DWA because it generates
collision-free paths by adjusting the elastic band. However,
TEB requires solving a non-convex optimization problem,
which increases the computation when the obstacle density is
high. Similarly, MPC is computationally expensive because
it solves a constrained optimization problem in real-time
to obtain the optimal control input sequence over a finite
prediction horizon. Unlike other algorithms, the proposed
approach separates path following from collision avoidance.
It accurately follows the global path when there are no
obstacles on the local path and utilizes safety corners to
avoid obstacles, while quickly returning to the global path
when a collision is detected along the local path. Moreover,
the proposed approach does not rely on computationally
expensive techniques such as velocity sampling and non-
linear optimization, which makes it faster than the other
algorithms.

While the proposed approach demonstrates promising
performance in various scenarios, several limitations have
been identified that suggest directions for future research
and improvements. The algorithm is primarily designed
for differential-drive robots capable of in-place rotation,
making it less suitable for robots with Ackermann steering
mechanisms. For such robots, the algorithmwould needmod-
ifications to account for maximum steering angles and the
possibility of reversingmaneuvers. Addressing this limitation
would involve developing an adapted version of the algorithm
that can handle the kinematic constraints of Ackermann
steering systems. The algorithm also assumes a collision-free
global path and generates reactive velocity commands based
on current sensor information. Consequently, if the global
path is not collision-free and crosses concave obstacle
areas, the robot can fall into a local minimum, leading
to deadlock. To mitigate this, future enhancements could
include implementing deadlock detection mechanisms and
incorporating strategies such as global path re-planning or
wall-following behaviors when a local minimum is detected.
Addressing these limitations will be crucial for enhancing the
versatility and robustness of the proposed algorithm.

VOLUME 12, 2024 99611

D.-H. Lee et al.: ASAP: Agile and Safe Pursuit for Local Planning of Autonomous Mobile Robots

VI. CONCLUSION
This study presents a novel local planning approach for
autonomous mobile robots with three primary objectives,
enabling agile path following and safe collision avoidance,
ensuring computational efficiency for real-time performance
in embedded systems, and facilitating intuitive parameter
tuning for end-users. For path following, the proposed
approach considers the kinematic constraint of the robot and
generates the path following velocity based on the turning
radius and hysteresis thresholding. For collision avoidance,
the proposed approach generates safety corners, incurs the
cost of bypass obstacles, and reaches the global path rapidly.
From the target velocity, a control velocity is generated to
rapidly reach the turning radius to the target from the velocity
space based on the velocity window and kinodynamics of the
robot. The HIL simulation experiments with thee scenarios
demonstrated that the proposed approach is superior to DWA,
TEB, and MPC in path following and collision avoidance
with a significantly shorter computation time. Notably, the
proposed algorithm demonstrates a computational speed
that is 25 to 200 times faster compared to other existing
algorithms. The real embedded robot experimental results
also demonstrated its effectiveness in cluttered environments,
indicating its potential for real-world applications.

Future work will include improving the proposed approach
for applications in mobile robots with diverse drive mecha-
nisms, such asAckermann steering and omni-wheeledmobile
robots. Modeling and avoiding dynamic obstacles are other
major future research topics for robust local planning in
crowds.

APPENDIX
The radius generation function frad(d, θ̂) generates the turning
radius of the local path for a differential-drive robot to
reach the goal point p (= d ̸ θ) by considering θmax as
the maximum angle. For an accurate and collision-free
path following, y = frad(d, θ̂) must satisfy the following
conditions:

1)

|y| ≤
d

2| sin(θ)|
(27)

2)

lim
θ̂→+0

y = ∞ and lim
θ̂→−0

y = −∞ (28)

3) For ya = frad(d, θ̂a) and yb = frad(d, θ̂b),

ya ≥ yb ≥ 0 for 0 < θ̂a ≤ θ̂b ≤
π

2
and

ya ≤ yb ≤ 0 for −
π

2
≤ θ̂b ≤ θ̂a < 0 (29)

The first condition guarantees that the arc path does not pass
over the goal point, and the second condition indicates that
the robot moves straight when θ approaches zero. In the third
condition, |y| decreases to zero as |θ | approaches θmax, and

the robot rotates in place when |θ | ≥ θmax. To satisfy the
aforementioned conditions, frad(d, θ̂) is defined as

frad(d, θ̂) = α cot(θ̂) (30)

where α is the value of frad(d, θ̂) to satisfy all conditions. The
remaining conditions, except for the first one, are satisfied as
long as α is non-negative. When |θ̂ | is π

2 , the first condition
is satisfied regardless of α because cot(±π

2) is zero. As
θ̂ approaches zero, the leftside of (27) using (30) can be
approximated as

|frad(d, θ̂)| = α| cot(θ̂)| = α|
cos(θ̂)

sin(θ̂)
| ≃ α

1
π
2
|θ |

θmax

= α
2θmax

π |θ |
.

(31)

Similarly, the rightside of (27) is approximated as d
2|θ | .

By substituting the leftside and rightside of (27) into (31) and
d

2|θ | , respectively, (27) can be approximated as

α
2θmax

π |θ |
≤

d
2|θ |

. (32)

Thus, α must satisfy the following inequality:

0 < α ≤
dπ

4θmax . (33)

For the end of the arc path to reach the goal point as |θ̂ |
approaches zero, frad(d, θ̂) is defined as

frad(d, θ̂) =
dπ

4θmax cot(θ̂). (34)

REFERENCES
[1] K.-C. Chen, S.-C. Lin, J.-H. Hsiao, C.-H. Liu, A. F. Molisch, and

G. P. Fettweis, ‘‘Wireless networked multirobot systems in smart facto-
ries,’’ Proc. IEEE, vol. 109, no. 4, pp. 468–494, Apr. 2021.

[2] D. Lee, G. Kang, B. Kim, and D. H. Shim, ‘‘Assistive delivery
robot application for real-world postal services,’’ IEEE Access, vol. 9,
pp. 141981–141998, 2021.

[3] M. M. Madebo, C. M. Abdissa, L. N. Lemma, and D. S. Negash,
‘‘Robust tracking control for quadrotor UAVwith external disturbances and
uncertainties using neural network based MRAC,’’ IEEE Access, vol. 12,
pp. 36183–36201, 2024.

[4] M. A. Arif, A. Zhu, H. Mao, X. Zhou, J. Song, Y. Tu, and P. Ma, ‘‘Design
of an amphibious spherical robot driven by twin eccentric pendulums with
flywheel-based inertial stabilization,’’ IEEE/ASME Trans. Mechatronics,
vol. 28, no. 5, pp. 1–13, 2023.

[5] Y. Kim, Y. Lee, S. Lee, J. Kim, H. S. Kim, and T. Seo, ‘‘STEP:
A new mobile platform with 2-DOF transformable wheels for service
robots,’’ IEEE/ASME Trans. Mechatronics, vol. 25, no. 4, pp. 1859–1868,
Aug. 2020.

[6] L. Jiang, S. Wang, Y. Xie, S. Xie, S. Zheng, J. Meng, and H.
Ding, ‘‘Decoupled fractional supertwisting stabilization of interconnected
mobile robot under harsh terrain conditions,’’ IEEE Trans. Ind. Electron.,
vol. 69, no. 8, pp. 8178–8189, Aug. 2022.

[7] B. P. Gerkey and K. Konolige, ‘‘Planning and control in unstructured
terrain,’’ in Proc. ICRA Workshop Path Planning Costmaps, 2008.

[8] S. Macenski, F. Martín, R. White, and J. G. Clavero, ‘‘The Marathon 2:
A navigation system,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
(IROS), Oct. 2020, pp. 2718–2725.

[9] W. Ayalew, M. Menebo, L. Negash, and C. M. Abdissa, ‘‘Solving
optimal path planning problem of an intelligent mobile robot in dynamic
environment using bidirectional rapidly-exploring random tree star-
dynamic window approach (BRRT*-DWA) with adaptive Monte Carlo
localization (AMCL),’’ TechRxiv, Dec. 2023.

99612 VOLUME 12, 2024

D.-H. Lee et al.: ASAP: Agile and Safe Pursuit for Local Planning of Autonomous Mobile Robots

[10] R. Simmons, ‘‘The curvature-velocity method for local obstacle
avoidance,’’ in Proc. IEEE Int. Conf. Robot. Autom., Sep. 1996,
pp. 3375–3382.

[11] D. Fox, W. Burgard, and S. Thrun, ‘‘The dynamic window approach to
collision avoidance,’’ IEEE Robot. Autom. Mag., vol. 4, no. 1, pp. 23–33,
Mar. 1997.

[12] J. López, P. Sánchez-Vilariño, R. Sanz, and E. Paz, ‘‘Efficient local
navigation approach for autonomous driving vehicles,’’ IEEE Access,
vol. 9, pp. 79776–79792, 2021.

[13] S. Yasuda, T. Kumagai, and H. Yoshida, ‘‘Safe and efficient dynamic
window approach for differential mobile robots with stochastic dynamics
using deterministic sampling,’’ IEEE Robot. Autom. Lett., vol. 8, no. 5,
pp. 2614–2621, May 2023.

[14] C. Rösmann, F. Hoffmann, and T. Bertram, ‘‘Integrated online trajectory
planning and optimization in distinctive topologies,’’ Robot. Auto. Syst.,
vol. 88, pp. 142–153, Feb. 2017.

[15] C. Rösmann, A. Makarow, and T. Bertram, ‘‘Online motion planning
based on nonlinear model predictive control with non-Euclidean rotation
groups,’’ in Proc. Eur. Control Conf. (ECC), Jun. 2021, pp. 1583–1590.

[16] M. Everett, Y. F. Chen, and J. P. How, ‘‘Motion planning among dynamic,
decision-making agents with deep reinforcement learning,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2018, pp. 3052–3059.

[17] H. L. Chiang, A. Faust, M. Fiser, and A. Francis, ‘‘Learning navigation
behaviors end-to-end with AutoRL,’’ IEEE Robot. Autom. Lett., vol. 4,
no. 2, pp. 2007–2014, Apr. 2019.

[18] L. KU+000E4stner, J. Cox, T. Buiyan, and J. Lambrecht, ‘‘All-in-
one: A DRL-based control switch combining state-of-the-art navigation
planners,’’ in Proc. Int. Conf. Robot. Autom. (ICRA), May 2022,
pp. 2861–2867.

[19] N. Yong Ko and R. G. Simmons, ‘‘The lane-curvature method for local
obstacle avoidance,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
Innov. Theory, Pract. Appl., Sep. 1998, pp. 1615–1621.

[20] J. López, P. Sanchez-Vilariño, M. D. Cacho, and E. L. Guillén,
‘‘Obstacle avoidance in dynamic environments based on velocity space
optimization,’’ Robot. Auto. Syst., vol. 131, Sep. 2020, Art. no. 103569.

[21] D. H. Lee, S. S. Lee, C. K. Ahn, P. Shi, and C.-C. Lim, ‘‘Finite
distribution estimation-based dynamic window approach to reliable
obstacle avoidance of mobile robot,’’ IEEE Trans. Ind. Electron., vol. 68,
no. 10, pp. 9998–10006, Oct. 2021.

[22] S. Quinlan and O. Khatib, ‘‘Elastic bands: Connecting path planning and
control,’’ in Proc. IEEE Int. Conf. Robot. Autom., Aug. 1993, pp. 802–807.

[23] C. Roesmann, W. Feiten, T. Woesch, F. Hoffmann, and T. Bertram,
‘‘Trajectory modification considering dynamic constraints of autonomous
robots,’’ in Proc. ROBOTIK 7th German Conf. Robot., May 2012,
pp. 1–6.

[24] A. Richards and J. P. How, ‘‘Robust distributed model predictive control,’’
Int. J. Control, vol. 80, no. 9, pp. 1517–1531, Sep. 2007.

[25] M. Hoy, A. S. Matveev, and A. V. Savkin, ‘‘Algorithms for collision-free
navigation of mobile robots in complex cluttered environments: A survey,’’
Robotica, vol. 33, no. 3, pp. 463–497, Mar. 2015.

[26] F. Ke, Z. Li, and C. Yang, ‘‘Robust tube-based predictive control for visual
servoing of constrained differential-drive mobile robots,’’ IEEE Trans. Ind.
Electron., vol. 65, no. 4, pp. 3437–3446, Apr. 2018.

[27] S. Peicheng, L. Li, X. Ni, and A. Yang, ‘‘Intelligent vehicle path tracking
control based on improved MPC and hybrid PID,’’ IEEE Access, vol. 10,
pp. 94133–94144, 2022.

[28] H. Xiao, Z. Li, C. Yang, L. Zhang, P. Yuan, L. Ding, and T. Wang, ‘‘Robust
stabilization of a wheeled mobile robot using model predictive control
based on neurodynamics optimization,’’ IEEE Trans. Ind. Electron.,
vol. 64, no. 1, pp. 505–516, Jan. 2017.

[29] L. Kästner, C. Marx, and J. Lambrecht, ‘‘Deep-reinforcement-learning-
based semantic navigation of mobile robots in dynamic environments,’’
in Proc. IEEE 16th Int. Conf. Autom. Sci. Eng. (CASE), Aug. 2020,
pp. 1110–1115.

[30] H. Shi, L. Shi, M. Xu, and K.-S. Hwang, ‘‘End-to-end navigation strategy
with deep reinforcement learning for mobile robots,’’ IEEE Trans. Ind.
Informat., vol. 16, no. 4, pp. 2393–2402, Apr. 2020.

[31] L. Kästner, T. Buiyan, L. Jiao, T. A. Le, X. Zhao, Z. Shen, and J. Lambrecht,
‘‘Arena-rosnav: Towards deployment of deep-reinforcement-learning-
based obstacle avoidance into conventional autonomous navigation
systems,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Sep. 2021, pp. 6456–6463.

[32] A. Faust, K. Oslund, O. Ramirez, A. Francis, L. Tapia, M. Fiser,
and J. Davidson, ‘‘PRM-RL: Long-range robotic navigation tasks by
combining reinforcement learning and sampling-based planning,’’ in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2018, pp. 5113–5120.

[33] K. E. Dagher, R. A. Hameed, I. A. Ibrahim, and M. Razak, ‘‘An
adaptive neural control methodology design for dynamics mobile robot,’’
TELKOMNIKA (Telecommun. Comput. Electron. Control), vol. 20, no. 2,
p. 392, Apr. 2022.

[34] W. Zhang, Y. Zhang, N. Liu, K. Ren, and P.Wang, ‘‘IPAPRec: A promising
tool for learning high-performance mapless navigation skills with deep
reinforcement learning,’’ IEEE/ASME Trans. Mechatronics, vol. 27, no. 6,
pp. 5451–5461, Dec. 2022.

[35] W. Zhang and Y. F. Zhang, ‘‘Behavior switch for DRL-based robot
navigation,’’ in Proc. IEEE 15th Int. Conf. Control Autom. (ICCA),
Jul. 2019, pp. 284–288.

[36] A. Lombard, X. Hao, A. Abbas-Turki, A. E. Moudni, S. Galland,
and A.-U.-H. Yasar, ‘‘Lateral control of an unmaned car using GNSS
positionning in the context of connected vehicles,’’ Proc. Comput. Sci.,
vol. 98, pp. 148–155, Jan. 2016.

[37] D.-H. Lee, S. Choi, and K.-I. Na. (Jun. 9, 2022). Video Demonstra-
tion of the Experiment. Accessed: Dec. 6, 2022. [Online]. Available:
https://youtu.be/1xq0Em9IJgo

DONG-HYUN LEE received the B.S. degree in
electrical engineering from Kyungpook National
University, Daegu, Republic of Korea, in 2007, and
the M.S. and Ph.D. degrees in electrical engineer-
ing from KAIST, Daejeon, Republic of Korea, in
2009 and 2015, respectively. From 2015 to 2016,
he was a Postdoctoral Researcher with the
Intelligent Robotics Group (IRG), NASA Ames
Research Center, Moffett Field, CA, USA. Since
2016, he has been with the School of Electronic

Engineering and the Department of IT Convergence Engineering, Kumoh
National Institute of Technology, Gumi-si, Republic of Korea. His research
interests include autonomous navigation, human–robot interaction, and
multi-robot systems.

SUNGLOK CHOI (Member, IEEE) received the
B.S. degree in mechanical and aerospace engi-
neering from Seoul National University, Seoul,
Republic of Korea, in 2006, and the M.S. and
Ph.D. degrees in robotics from KAIST, Daejeon,
Republic of Korea, in 2008 and 2019, respectively.
From 2008 to 2021, he was a Research Scientist
with the Electronics and Telecommunications
Research Institute (ETRI), Daejeon. Since 2021,
he has been with the Department of Computer

Science and Engineering, Seoul National University of Science and
Technology (SEOULTECH). His research interests include autonomous
navigation, 3D computer vision, and robust regression.

KI-IN NA received the B.S. degree in mechanical
engineering from Pohang University of Science
and Technology (POSTECH), Pohang, Republic
of Korea, in 2009, and the M.S. and Ph.D. degrees
in robotics program from KAIST, Daejeon,
Republic of Korea, in 2011 and 2022, respectively.
Since 2011, he has been a Research Scientist with
the Electronics and Telecommunications Research
Institute (ETRI), Daejeon. His current research
interests include detection and tracking of moving

objects, socially-aware navigation, human–robot interaction, and artificial
intelligence for real applications.

VOLUME 12, 2024 99613

