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1. Introduction

Hydrological models play a crucial role as essential tools in the realms of water re-
sources operations, planning, and management practices [1,2]. Hydrological models can be
categorized based on their structure (data-driven/statistical, conceptual, physical, hybrid)
or spatial representation (lumped, distributed) [3,4]. Core components of the modeling
process include model calibration, validation/verification, sensitivity analysis, and uncer-
tainty analysis [5,6]. In operational scenarios, field observations, both in situ and remote
sensing, are frequently integrated into hydrological models to enhance model performance
by updating states and/or parameters [7,8]. Before informing decision-making, model
outputs, particularly those derived from ensemble-based approaches, typically undergo
post-processing [9–11]. Progress in computing, such as the utilization of cloud-based
systems and parallelization, along with advancements in information technologies like
artificial intelligence, create new prospects for enhancing hydrological modeling [12–14].
Moreover, the persisting and anticipated environmental shifts, such as global warming
and intensified extreme events, present novel hurdles for hydrological modeling [15].
This necessitates innovative modeling strategies and the integration of modeling across
diverse disciplines [16,17].

2. Historical Development and Present Status of Hydrological Modeling

The history of hydrological modeling encompasses a progression from empirical
equations to sophisticated numerical models, reflecting advancements in scientific under-
standing and computational capabilities. Early efforts in hydrological modeling relied on
empirical equations such as the Rational Method for estimating peak flows in drainage
design [18]. As computing technology advanced, numerical models emerged, allowing
for a more comprehensive representation of hydrological processes. Notable milestones
include the Soil Conservation Service Curve Number method [19] which provided a semi-
empirical approach to predict runoff from rainfall events. Conceptual models emerged as
a step towards process-based representations of hydrological phenomena. These models,
like the Stanford Watershed Model and the Soil Moisture Accounting model, introduced in
the 1960s and 1970s, aimed to incorporate fundamental hydrological processes [20]. They
provided a more comprehensive understanding of the interaction between precipitation,
infiltration, runoff, and streamflow. Subsequently, physically-based models incorporat-
ing fundamental equations governing water movement, such as Darcy’s law [21] for
groundwater flow, Green-Ampt equation [22] and Horton equation [23] for infiltration,
Penman-Monteith equation [24] for evapotranspiration, and Richards equation [25] for
unsaturated flow, became prominent. With the advent of remote sensing and Geographic
Information Systems (GIS), spatially distributed models gained traction, enabling a finer
resolution of hydrological processes over diverse landscapes. Recent advancements in data
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assimilation techniques, machine learning, and artificial intelligence are further enhancing
the predictive capabilities of hydrological models.

The present state of hydrological modeling is prominently marked by the advanced de-
velopment of physically-based distributed models and the rise of data-driven approaches.
For instance, Nearing et al. [26] demonstrated the use of Long Short-Term Memory (LSTM)
networks for forecasting streamflow, comparing its performance with the Global Flood
Awareness System (GloFAS) and highlighting that this AI model can reliably forecast
extreme riverine events up to five days in advance, particularly in ungauged basins. Mean-
while, trends in physically-based hydrological modeling have expanded to include larger
spatial scales, enhanced representations of hydrological processes, and the integration of
climate change projections to assess impacts on hydrological extremes [27,28]. Data assimila-
tion and post-processing approaches have become more actively engaged in high-resolution
hydrologic modeling [29–31]. As an example, Siqueira et al. [32] discussed how combining
post-processing methods such as Ensemble Model Output Statistics (EMOS) and Ensemble
Copula Coupling (ECC) significantly enhances both the reliability and sharpness of stream-
flow predictions by a medium-range, continental-scale hydrologic-hydrodynamic model
ensemble in South America. Moreover, hybrid or unified hydrologic modeling approaches
that leverage both physically-based and data-driven methods are gaining attention [33–35].
Shen et al. [35] noted that differentiable modeling, which connects flexible amounts of
prior physical knowledge to neural networks, offers better interpretability, generalizabil-
ity, and extrapolation capabilities than purely data-driven machine learning approaches,
achieving comparable accuracy with less training data. Additionally, Wang et al. [36] pre-
sented a hybrid deep-learning surrogate model that replicates the physics-based distributed
model, HydroPy, significantly enhancing the simulation of hydrological processes in the
Amazon Basin.

3. The Current Special Issue

The objective of this Special Issue was to showcase the most recent progress in the
field of hydrological modeling development and applications. The papers featured in this
collection encompass various subjects related to enhancing hydrological modeling through
inventive methodologies and novel datasets. A summary of each paper is provided below.

Rozos et al. (Contribution 1) proposed the use of machine learning models as a tool to
assess the performance of conventional hydrological models rather than as a replacement
of those conventional models. The hypothesis is that if the machine learning model
demonstrates improved performance, it indicates that there is information in the data that
the structure or configuration of the hydrological model fails to consider. The applicability
of the proposed methodology was illustrated via two case studies with data shuffling
(akin to cross-validation) implemented. The case studies indicated that machine learning
models can be utilized as an assessment tool to refine hydrological models, either through
enhancing calibration or adjusting the physical/conceptual assumptions within the model.

Shen et al. (Contribution 2) developed a new formulation of conditional bias (CB)-
penalized Kalman filter (KF), or CBPKF, that reduces computation and algorithmic com-
plexity. They also described adaptively prescribing the weight for the CB penalty in the
CBPKF in order to improve unconditional performance. Synthetic experiments indicated
that the variance-inflated KF (VIKF)-based approximation of the CBPKF was computation-
ally less expensive than the original CBPKF. The adaptive CBPKF improved the estimation
of extremes by 20–30% over the KF while its unconditional performance was comparable
to that of the KF. The adaptive implementation of the alternative formulation of the CBPKF
offered a significant addition to the dynamic filtering methods particularly for the improved
estimation of extremes.

Awad et al. (Contribution 3) assessed changes in the performance of the DRAINMOD
model with different time steps, hourly or daily, used in computing daily evapotranspira-
tion (ET0) via the standardized ASCE Penman-Monteith model. The model was applied
to a 12-hectare farmland at the lower reaches of the Yangtze River basin. When the time
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step changed from daily to hourly, DRAINMOD cumulative predictions of the runoff were
increased by 4.8%, and drainage and infiltration were decreased by 3.1 and 1%, respectively.
The findings indicated the importance of using a proper time step in computing ET0 for
better utilization of agricultural water alongside high crop yields.

Hatchett et al. (Contribution 4) investigated alterations in snow seasonality across
the U.S. Pacific Southwest region during a simulated severe 20-year dry period in the 21st
century (2051–2070). The study indicated that substantial declines in median peak annual
snow water equivalent and annual streamflow runoff, coupled with changes in snow
seasonality across the region were expected. In addition, about 80% of historical seasonal
snowpacks are projected to transition to ephemeral conditions, potentially leading to a
two-to-four-fold increase in the wildfire burned area. The projected dry spell is anticipated
to have negative impacts on water supply reliability, and these impacts are likely to be
exacerbated by alterations in snow seasonality and an increase in wildfire activity.

Cardi et al. (Contribution 5) incorporated numerical modeling and machine learning
(ML) modeling in forecasting flood events, particularly unprecedented flood events via
the data augmentation technique. Specifically, they ran a numerical model to generate
a dataset that contains a wide range of plausible future flood events. The dataset was
utilized to develop an ML model named the Expanded Framework of Group Method of
Data Handling (EFGMDH). The EFGMDH model exhibited high accuracy during both
the training and testing processes in the study watershed. The study provided valuable
insights for flood management amid a changing climate.

Adams and Quinn (Contribution 6) implemented enhanced versions of the catch-
ment runoff attenuation flux tool (CRAFT), Dynamic CRAFT and multiCRAFT, to predict
water quality problems related to phosphorus (P). Dynamic CRAFT was applied to the
trans-border Blackwater catchment (UK and Republic of Ireland) to simulate soluble P and
particulate P fluxes. Nested modeling at the sub-catchment scale with different mitigation
scenarios was implemented by multiCRAFT. The modeling results illustrated that the
P load reductions could be best achieved using a combined scenario of mitigation mea-
sures targeting diffuse sources contributing to both the surface runoff and fast-subsurface
flow pathways.

Gruss et al. (Contribution 7) analyzed the impact of a dam reservoir on streamflow
using hydraulic modeling and statistical methods in the Nysa Kłodzka River, Poland. After
simulating pre-dam and post-dam streamflow conditions using HEC-RAS, changes in
hydrologic regimes were assessed by Mann-Kendall and innovative trend analysis (ITA).
The findings suggested that the dam had a significant impact on streamflow patterns by
stabilizing flows in response to climate-induced changes.

4. Future Perspectives and Conclusions

With ongoing and rapid changes in societal, environmental, and operational needs,
hydrological modeling has been and will continue to be an essential tool to provide viable
solutions to problems in hydrology and related disciplines. With the advent of big data
and high performance computing resources, we anticipate that data-centric approaches
such as machine learning (e.g., Contribution 1 and Contribution 5) and data assimilation
(e.g., Contribution 2) will become an integral part of modeling studies in the foreseeable
future. Two conventional approaches, data analysis-based experimental or simulation-
based derived, can also continue to serve as important hydrological modeling tools to
improve understanding of hydrology undergoing transitions and provide valuable insights
on hydrological predictions. As hydrological extremes have been increasing in frequency
and severity globally, we envision increasing trends in future modeling efforts focused on
large-scale hydrology.

This Special Issue showcases recent advancements in hydrological modeling method-
ologies and operational practices. It underscores the critical need for continued application
to validate the effectiveness and generalizability of novel techniques, particularly those
involving machine learning and data assimilation.
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