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This study proposes a small one-dimensional convolutional neural network (1D-
CNN) framework for individual authentication, considering the hypothesis that a
single heartbeat as input is sufficient to create a robust system. A short segment
between R to R of electrocardiogram (ECG) signals was chosen to generate single
heartbeat samples by enforcing a rigid length thresholding procedure combined
with an interpolation technique. Additionally, we explored the benefits of the
synthetic minority oversampling technique (SMOTE) to tackle the imbalance in
sample distribution among individuals. The proposed framework was evaluated
individually and in a mixture of four public databases: MIT-BIH Normal Sinus
Rhythm (NSRDB), MIT-BIH Arrhythmia (MIT-ARR), ECG-ID, and MIMIC-III which
are available in the Physionet repository. The proposed framework demonstrated
excellent performance, achieving a perfect score (100%) across all metrics
(i.e., accuracy, precision, sensitivity, and F1-score) on individual NSRDB and
MIT-ARR databases. Meanwhile, the performance remained high, reaching
more than 99.6% on mixed datasets that contain larger populations and more
diverse conditions. The impressive performance demonstrated in both small and
large subject groups emphasizes the model’s scalability and potential for
widespread implementation, particularly in security contexts where timely
authentication is crucial. For future research, we need to examine the
incorporation of multimodal biometric systems and extend the applicability of
the framework to real-time environments and larger populations.
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1 Introduction

Advancements in technology have significantly transformed various sectors, including
banking and personalized services, by shifting the majority of them to the digital realm.
Consequently, ensuring the security of data and applications has become a pressing
concern, given that services are gradually easier to access (more open) and are
simultaneously more prone to malicious third-party attacks (Shahim, 2021). Security
systems that depend on external components such as tokens, passwords, or
identification (ID) cards are acknowledged for their robust security when correctly used
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but are also susceptible to theft, loss, and replication Shaheed et al.
(2021). As a result, biometric authentication has been considered an
important means of digital security, providing secure authentication
by identifying individuals based on their unique biological
(anatomical and physiological) and behavioral features (Nguyen
et al., 2018; Hammad et al., 2019a).

Personal identification through different biometric identifiers,
such as fingerprints, voice, gait, and iris, has been implemented
worldwide on a large scale (AlDuwaile and Islam, 2021). However,
the rapid advancement of falsification technology has created
vulnerability to attacks on these biometric traits (Patro et al.,
2019). For instance, fingerprints can be recreated using latex (An
et al., 2020), voice can be manipulated with advanced recording tools
(Hamdan and Mokhtar, 2018), the face can be counterfeited by
artificial masks (Erdogmus and Marcel, 2014; Hamdan and
Mokhtar, 2018), and the iris can be falsified by using customized
contact lenses or artificial eyes (Wang et al., 2007; Nguyen et al.,
2018; Kauba et al., 2020). Given these circumstances, in recent years,
there has been a growing interest among researchers in exploring the
feasibility of utilizing “hidden” traits that encompass the element of
“aliveness,” such as Electroencephalogram (EEG) or brain signals,
and Electrocardiogram (ECG) or heart signals (Chiu et al., 2021). In
terms of signal acquisition, ECG is notably simpler than EEG (Pinto

and Cardoso, 2019; AlDuwaile and Islam, 2021). For instance, ECG
signals can be easily obtained from fingers (Islam and Alajlan, 2017;
Gwynn et al., 2021), whereas EEG signals typically require more
sophisticated equipment and a more complex setup (Agarwal et al.,
2020; AlDuwaile and Islam, 2021). Additionally, the ECG waveform
is relatively straightforward, strong, and focused, resulting in a
distinct and clear pattern compared to EEG. In a single heartbeat
or one cycle of cardiac activity, a typical ECG waveform consists of
three major segments: P, QRS, and T waves (see Figure 1). This
pattern was repeated and was relatively consistent over time.
Therefore, utilizing ECG signals as a new biometric modality
could be more acceptable for real-world applications.

Other key strengths of ECG utilization for biometric
authentication are as follows. First, ECGs have been proven to be
unique among individuals due to variations in both physiological
and geometrical characteristics of the heart among different
individuals (inter-individual variability) (AlDuwaile and Islam,
2021; Yuniarti and Rizal, 2022). The pattern of the ECG
waveform on each individual is reliant on morphological aspects,
such as the thickness of the cardiac muscle, shape, and size of the
heart (El Boujnouni et al., 2022). Second, ECG recordings are
exclusive to living entities and can be used to verify the
authenticity of access attempts, distinguishing between human

FIGURE 1
The typical electrocardiogram (ECG) waveform in one cycle of a heartbeat.
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and non-human sources (Pinto and Cardoso, 2019; Rathore et al.,
2020). On the other hand, adding a “liveness detection” feature to
certain biometrics other than ECG is computationally costly and
falls short of system security. Third, the physiological data in ECG
have been used in various clinical applications, including cardiac
disease diagnosis, emotion recognition, and psychophysiological
state assessment (Goshvarpour and Goshvarpour, 2019). This, in
turn, paves the way for new cutting-edge research opportunities to
harness ECGs in the creation of fusion applications serving dual
purposes: health monitoring and biometrics (Tan and Perkowski,
2017; Zhang et al., 2017; Cosoli et al., 2021).

Over the last decade, considerable effort has been made to
develop various algorithms using ECG for individual
authentication (Hammad et al., 2019b; Donida Labati et al., 2019;
Pinto and Cardoso, 2019; Ihsanto et al., 2020; Srivastva et al., 2021).
The pioneering research by Biel et al. (2001) portrayed the viability
of principal component analysis (PCA) along with soft independent
modeling of class analogy (SIMCA) classifiers to identify
20 individuals based on ten fiducial features extracted from 12-
lead ECG signals. Lee et al. (2018) introduced a curvature-based
vertex selection technique using polygonal approximation to reduce
the number of samples required for detecting fiducial points of the
ECG signal, specifically the QRS complex. The effectiveness of the
algorithm was verified through experiments using the QT-DB and
MIT-ARR databases. In recent years, researchers have explored the
use of DL-based approaches such as CNN. Pinto and Cardoso
(2019) applied transfer learning of 1D-CNN with Euclidean
distance to classify 290 individuals in the Physikalisch-
Technische Bundesanstalt (PTB) database (Bousseljot et al.,
2004). The input for the network was multiple heartbeats that
were segmented blindly every 5 s. However, its accuracy was
stuck at 91%. Hong et al. (2019) employed a 2D-CNN-based
algorithm, that is, the Inceptionv3 model, and transferred
learning to identify 200 subjects in the PTB database. They
converted the ECG signals into an image using spatial
correlation-based and temporal correlation-based signals as input
to the network and achieved 98% accuracy. Donida Labati et al.
(2019) conducted an experiment using the same database, PTB, but
only 52 healthy subjects were employed and achieved a perfect
accuracy of 100%. They used a 2D-CNN architecture to extract a set
of feature vectors composed of multiple QRS complexes from ECG
samples. Later work by Ihsanto et al. (2020) also reported a perfect
accuracy of 100% with a residual depthwise separable CNN, but
using different databases, that is, ECG-ID and MIT-ARR. For the
ECG-ID database, 100% accuracy was obtained with a minimum of
eight heartbeats, and for the MIT-BIH database, a minimum of six
heartbeats was required. Li et al. (2020) introduced a cascaded CNN
consisting of an F-CNN to extract heartbeat features and anM-CNN
for template comparison. They used five different databases,
including FANTASIA, CEBSDB, NSRDB, STDB, and AFDB, for
the experiments and attained identification rates of 99.3%, 93.1%,
91.4%, 92.7%, and 89.7%, respectively, using a single heartbeat input.
They also explored the performance of the cascaded CNN for several
heartbeats (3, 5, 8, 10, 15, and 20 beats). However, they
recommended using at least three heartbeats for efficient
performance with identification rates of 99.9%, 95.0%, 96.1%,
95.2%, and 90.9% for FANTASIA, CEBSDB, NSRDB, STDB, and
AFDB, respectively. Srivastva et al. (2021) proposed PlexNet that

leverages the benefits of both transfer learning and ensemble
learning of ResNet and DenseNet based on three sequential
heartbeats extracted from ECG signals. They attained a 99.66%
accuracy with multi-session datasets using PTB and CYBHi. The
majority of previous studies require a lengthy segment of the ECG
signal consisting of multiple heartbeats to achieve optimal accuracy.
This presents practical challenges for real-world applications,
particularly when capturing and processing time are costly.

AlDuwaile and Islam (2021) investigated the effectiveness of
employing a single heartbeat for human biometric recognition. They
employed four pre-trained models (GoogleNet, ResNet, MobileNet,
and EfficientNet) along with CNN to assess the impact of different
types of segments of ECG signals, including R-centered segments (a
fixed-length segment around the R-peak), R-R segment, and P-P
segment. These segments must be converted into continuous
wavelet transformation (CWT) images before being fed into the
DL network. They reported an accuracy of 99.90% with the PTB
dataset containing a single-session ECG recording. However, an
accuracy between 94.18% and 98.20% was achieved with ECG-ID
datasets under multi-session and mixed-session, respectively.
Prakash et al. (2023) also investigated the potential application of
a short segment of ECG signals for biometric recognition using a
Siamese network (twin network). The short segment around R-peak
was generated by clipping a series of ECG signals into single, dual,
and triple heartbeats, and converting them into binary images. The
Siamese network was constructed using a pair of identical 1D-CNN
backbones that shared the same parameters and weights. It takes two
images as inputs and returns a similarity (distance) metric that
indicates how similar they are. They achieved accuracies of 91%,
99.85%, and 99.90% using single, dual, and triple ECG beats,
respectively, when 90 individuals were identified in an ECG-
ID database.

Research with a single-heartbeat paradigm mostly requires the
transformation of ECG signals (1D) into an image (2D). This work
explores the feasibility of a single heartbeat utility without the need to
transform it into a 2D space using 1D-CNN. Moreover, the 1D-CNN
framework was also constructed using only two layers of convolutional
networks to simplify the complexities of the architecture. This study
targets robust authentication accuracy across diverse conditions (small
and large subject populations, normal and abnormal hearts,
imbalanced and balanced samples, or single and mixed sessions).
We achieved this by assessing the proposed framework on various
databases embodying such conditions from a public repository
(Physionet.org) and comparing the outcomes with those of other
approaches reported in the literature. These databases are the MIT-
Normal Sinus RhythmDatabase (NSRDB) (The Beth Israel Deaconess
Medical Center, 1990), MIT-BIH Arrhythmia (MIT-ARR) (Moody
and Mark, 1992), ECG-ID (Lugovaya, 2011), and MIMIC-III
waveform databases (Moody et al., 2020). The assessment was
performed individually and in a mixture of all those databases. The
main contributions of our paper are as follows.

1. Proposing a 1D convolutional neural network (1D-CNN)
framework for individual authentication using a single
heartbeat extracted from the ECG signal.

2. Utilizing the segment between two consecutive R-peaks (R-R
segment) to represent a single heartbeat, capturing the
complete systolic and diastolic phases of the cardiac cycle.
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3. Employing a rigid length thresholding procedure combined
with interpolation to generate consistent single heartbeat
samples across subjects.

4. Exploring the benefits of the synthetic minority oversampling
technique (SMOTE) to address imbalanced sample
distributions among individuals.

5. Comprehensive evaluation of the proposed framework on
individual and mixed datasets from public ECG databases
(NSRDB, MIT-ARR, MIMIC-III, and ECG-ID),
demonstrating high authentication accuracy across diverse
conditions.

6. Achieving perfect authentication scores (100% accuracy,
precision, sensitivity, and F1-score) on individual NSRDB
and MIT-ARR datasets with balanced sample distributions.

7. Demonstrating the scalability and potential for widespread
implementation of the proposed framework, particularly
where timely authentication is crucial.

8. Comparative analysis with state-of-the-art methods,
highlighting the superior performance and computational
efficiency of the proposed 1D-CNN approach for single
heartbeat ECG authentication.

2 Materials and methods

2.1 Problem definition

Authentication problems using ECG signals can be differentiated
into two tasks that serve different purposes: verification (binary
problem) or identification (multi-class problem). In the verification
task, the system compares the individual’s ECG signals against the pre-
enrolled data (templates) to determine whether the presented identity
matches or corresponds to the claimed identity. Thus, the output of the
verification system is binary–either a match (verification success) or no
match (verification failure). Meanwhile, in the identification task, the
system compares the presented ECG signals of a subject against
templates from all subjects in the database and find the best match
to determine the subject’s identity. Ourwork is focused on identification
rather than verification, where the goal is to correctly classify each
subject into one of several possible subjects. Specifically, our study was
performed within a closed-set environment, meaning that no new
individuals can be recognized outside of the predefined group in the
database. The training and testing sets share the same set of classes, and
every instance in the test set belongs to one of the known classes
observed during training.

2.2 Database overview

In this study, four databases obtained from the well-known
freely accessible database Physionet were used to analyze and
evaluate the efficacy of the proposed framework. These four
databases are NSRDB (The Beth Israel Deaconess Medical
Center, 1990), MIT-BIH Arrhythmia (Moody and Mark, 1992),
ECG-ID (Lugovaya, 2011), and MIMIC-III (Moody et al., 2020),
which contain normal and abnormal heart conditions or either
single or multi-session recording. In this study, we utilized ECG
signals from 18 subjects in the NSRDB, 27 subjects in the MIT-BIH,

90 subjects in the ECG-ID, and 83 subjects in the MIMIC-III
databases. The experiments were performed individually on each
database and in combination with the databases. The MIXED-1
dataset was obtained from the combined ECG-ID (90 subjects) and
MIMIC-III (83 subjects) data, which produced 173 subjects.
MIXED-2 is a combination of three databases (ECG-ID, MIMIC-
III, and MIT-BIH) that generated 200 subjects. The last
combination, MIXED-3, derived from the ECG-ID, MIMIC-III,
MIT-BIH, and NSRDB databases, resulted in 218 subjects. A
summary of the datasets used in this study is presented in Table 1.

1. NSRDB: This database contains continuous ECG recordings
for approximately 24 h from 18 subjects (five men aged
26–45 years and 13 women aged 20–50 years). The ECG
signals included in this database showed no notable
arrhythmic conditions. The recordings were digitized at a
sampling rate of 128 Hz and subsequently represented as
12-bit binary sequences. In this database, there are two
types of ECG signals, namely, “ECG1” and “ECG2” which
are taken from different leads on a subject’s body. For our
experiment, we used the “ECG1″ signals.

2. MIT-ARR: This database includes 48 half-hour ECG
recordings from 47 subjects (25 men aged between 32 and
89 years and 22 women aged from 23 to 89 years who were
associated with different clinical pathologies. Each record
contains two ECG channels sampled at 360 Hz with an 11-
bit resolution over a 10 mV range. In this study, we only used
recordings from 27 subjects with channel “MLII”.

3. MIMIC-III: This database comprises long-term quasi-
continuous recordings of ECG signals along with up to
eight other physiological waveforms (Photoplethysmogram
or PPG, Arterial Blood Pressure or ABP, respiration, etc.)
from approximately 30,000 ICU patients. The signal
duration in this database varied depending on the duration
of each patient’s stay in the ICU. The recorded signals were
digitized at a sampling rate of 125 Hz with 8-, 10-, or
(occasionally) 12-bit resolutions.

4. ECG-ID: This database comprises 310 ECG recordings
collected from 90 subjects (44 males and 46 females aged
13–75 years) for approximately 20 s. The number of ECG
records collected from each subject varied, ranging from two
recordings acquired within a single day to as many as
20 recordings collected periodically over a period of
6 months. Each ECG record encompasses Lead-I data,
which are digitized at a sampling rate of 500 Hz with a 12-
bit resolution over a nominal range of 10 mV. There are two
types of ECG signals provided in this database, namely, “ECG
I” (unfiltered signals) and “ECG I Filtered”. In this study, an
unfiltered signals was used.

5. MIXED-1: This dataset was created by combining two existing
datasets, that is the ECG-ID and MIMIC-III datasets, resulting
in a total of 173 subject datasets.

6. MIXED-2: This dataset was created by combining three
existing datasets, that is ECG-ID, MIMIC-III, and MIT-BIH
Arrhythmia datasets, resulting in 200 subject datasets.

7. MIXED-3: This dataset was created by combining four existing
datasets, that is ECG-ID, MIMIC-III, MIT-BIH Arrhythmia,
and NSRDB datasets, resulting in a total of 218 subject datasets.
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2.3 Proposed framework

The overall pipeline of the proposed framework for ECG-based
biometric authentication using a 1D-CNN is illustrated in Figure 2.
It encompasses four stages: pre-processing, segmentation, data
merging, and authentication.

2.3.1 Pre-processing
This stage aims to enhance the quality of raw ECG recordings

and prepare them for further experiments. In this study, pre-
processing included frequency resampling and filtering. ECG
signals from various databases were recorded at different
sampling frequencies. Hence, the signals were first resampled to

TABLE 1 The summary of the datasets adopted in our experiments.

No. Database Sampling rate (Hz) # Samples per subject Session Condition

1 NSRDB 128 18 single healthy

2 MIT-ARR 360 27 single arrhythmia (along with 18 other diseases)

3 MIMIC-III 125 83 single healthy and arrhythmia

4 ECG-ID 500 90 mix healthy

5 MIXED-1a 250 173 mix healthy and arrhythmia

6 MIXED-2b 250 200 mix healthy and arrhythmia

7 MIXED-3c 250 218 mix healthy and arrhythmia

aMIXED-1: ECGID + MIMIC III.
bMIXED-2: ECGID + MIMIC III + MIT-ARR.
cMIXED-3: ECGID + MIMIC III + MIT-ARR + NSRDB.

FIGURE 2
The general pipeline of the proposed framework for single heartbeat ECG-based identification.
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250 Hz to set the uniformity and standardization of all the databases
utilized in this study. The majority of raw ECG signals from various
databases are contaminated with noise, such as power-line
interference, baseline wander (breathing or body movement), or
muscle (electromyographic) noise. To attenuate the noise from raw
ECG signals, we applied a 3rd-order Butterworth bandpass filter
(BPF) with a low cutoff frequency of 0.6 Hz and a high cutoff
frequency of 40 Hz.

2.3.2 Segmentation
In this stage, the continuously filtered ECG signals were segmented

into individual heartbeats. There are two types of ECG segmentation
methods: fiducial and non-fiducial. The Fiducial method relies on
specific points in the ECG waveform for segmentation, such as the
R-peak and P-wave onset or offset, Q-wave onset, QRS onset or offset,
and T-wave onset or offset (Figure 1). In contrast, the non-fiducial
method does not consider specific points. Instead, it analyzes the entire
signal using more complex algorithms such as transforming the ECG
signal into the frequency domain using Fourier transform,
decomposing the ECG signals into different frequency components
using Wavelet Transform, application of a sliding window technique,
templatematching, ormachine learning techniques (Menon et al., 2022;
Haleem and Pecchia, 2022. In this study, a fiducial approach
was adopted.

Most studies in the literature utilize the R-centered paradigm
(i.e., a short segment around the R-peak) to clip the ECG signal into
a single heartbeat. This is performed by detecting the location of

R-peak, which is the most notable feature of ECG waveform. Then,
they approximated the segment from the detected R-peak to its left
and right (AlDuwaile and Islam, 2021; Prakash et al., 2023). While
this approach can capture the complete P-QRS-T complex when
implemented correctly, it may not accurately represent the entire
cardiac cycle for individuals with varying heart rates or heart rate
variability within the same subject. The variability in heart rates can
affect the length and features of the P-QRS-T complex. Hence, in
this study, to represent a single heartbeat that encapsulates the
complete systolic and diastolic phases, we chose a segment between
two successive R-peaks (R-R segment). This approach ensures the
inclusion of all phases of the cardiac cycle regardless of heart rate
variability and provides a more comprehensive representation of
each heartbeat.

First, the location of the R-peak is detected by applying the Pan
and Tompkins (1985), which is used in commonQRS detection. The
results of this process are shown in Figure 3. However, in some cases,
the R-peak is not properly detected, as shown in Figure 4. Thus, to
discard unwanted components in such cases, we applied rigid length
thresholding after detecting the R-peak. This is performed by
initially calculating the length of two consecutive detected R
peaks using the following equation:

Δxi � xi − xi−1; i � 1, . . . , N − 1 (1)
where Δxi is the length of the two consecutive detected R-peaks. We
then took only eight RR-lengths within the standard or normal

FIGURE 3
The results of R-peak detection algorithm in various databases.
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range. The normal range is assumed if, between two R peaks, there
are no fluctuating signals (artifact-free), no T-peak is detected, or no
R-peak is skipped, based on our manual observation. We then
calculated the mean (2) and standard deviation (3) of the normal
R-R length using the following equations:

μ � 1
N

∑N
i�1

Δxi;N � 8 (2)

σ �

��������������
1
N

∑N
i�1

Δxi − μ( )2
√√

;N � 8 (3)

Then, two thresholds are set to discard the unwanted signals:

th1,2 � μ ± σ (4)
where th1,2 are the lower and upper thresholds, respectively. The R-R
length that is less than the lower threshold (th1) or higher than the
upper threshold (th2) is discarded. The selected signals were then
interpolated to the reference length of 150 samples to set the
uniformity of the R-R length, representing a single heartbeat for
each subject. Figure 5 shows the example results of the clipped beats
from two different subjects with and without the application of rigid
thresholding in our study.

2.3.3 Data merging
The end of the segmentation stage produces several clipped

beats corresponding to each subject. All clipped beats from all

FIGURE 4
The inappropriate result of R-peak detection algorithm.

FIGURE 5
Examples of clipped beats (R-R segments) from four subjects on NSRDB, MIT-ARR, MIMIC-III, and ECG-ID databases: (A) before applying rigid
thresholding; (B) after applying rigid thresholding.
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subjects were then merged into one CSV file for further analysis and
experiments using the deep-learning model. We first prepared
4 CSV files corresponding to each database, that is, NSRDB,
MIT-ARR, MIMIC-III, and ECG-ID. Next, we created three
other datasets (MIXED-1, MIXED-2, MIXED-3) using the
combination of them.

2.3.4 Deep-learning training
Initially, we experimented with several architectures, including

models with three or more convolutional layers. However, these
models exhibited overfitting and did not achieve the desired
accuracy, primarily due to their increased complexity, which was
not well-suited to our dataset. The number of convolutional layers
was reduced to two after empirical testing. This simplification
helped mitigate overfitting and improved the generalization
capability of the model. We experimented with various filter sizes
ranging from small (3, 5) to larger filters (7, 9). Smaller filters
provided better feature extraction in our context, capturing the
essential characteristics of the ECG signal. Different numbers of
kernels (16, 32, 64) were tested. We found that starting with
16 kernels in the first layer and increasing to 32 in the second
layer achieve a good balance between capturing detailed features and
maintaining computational efficiency.

Figure 6 shows the architecture of the 1D-CNN used in this
study. It is composed of two convolutional layers, two max-pooling

layers, a flattened layer, one dense layer, one dropout layer, and a
Softmax layer. The convolutional layer uses ReLU neurons to
introduce non-linearity to the network, promoting the
development of a more profound representation. The first and
second convolutional layers consisted of 16 and 32 kernels,
respectively, with the same filter size of 3. The max-pooling layer
with a pool size of two is placed after each of the convolution layers
to reduce the spatial dimensions of the matrices or the number of
parameters while preserving the important features. The flattened
layers transformed the output of the last max-pooling layer into a 1D
vector. One dense layer, a fully connected layer with 100 neurons,
and the ReLU activation function are added after the flattened layer
to interpret the features extracted by the convolutional layers.
Dropout regularization was applied at a rate of 0.2 to reduce
overfitting by randomly setting a fraction of the input units to
zero. The final layer of the network is a fully connected layer with a
softmax activation function that serves as the classification function
for the authentication task. The hyperparameters that we used in this
study can be seen in Table 2.

2.4 Experimental settings

The overall experiment in this study was carried out using Keras
2.14.0 and Python 3.10.12 on the desktop computer with the

FIGURE 6
The architecture of 1D-CNN for single heartbeat ECG-based identification.
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specification of Windows 11 (64-bit), 65 GB RAM, AMD Ryzen
5 5600X, and NVIDIA GeForce RTX 3060 32 GB. We performed
experiments using two scenarios: with imbalanced datasets and balanced
one. For each scenario, we divided the datasets into a training set,
validation set, and testing set with a ratio of 60:20:20, respectively.

2.4.1 Scenario-1: Training with imbalanced datasets
In this scenario, we used imbalanced datasets, that is, the

number of beat samples representing each subject varied. In this
case, we applied k-fold cross-validation with k = 5 to ensure that
every observation data in the datasets has a chance to appear in the
training-validation set, reducing variability and overfitting. We then
evaluated the performance of the proposed framework.

2.4.2 Scenario-2: Training with balanced datasets
In this scenario, we intend to address the potential bias arising from

the class imbalance present in our datasets, as the machine learning
model tends to favor the majority classes during the learning process,
resulting in poor performance on the minority class instances. To
address this issue, we employed the SMOTE (Synthetic Minority Over-
sampling Technique) algorithm developed by Chawla et al. (2002) for
oversampling the minority class samples. This process involves.

1. Identify the minority class (the class with fewer instances) and
the majority class (the class with more instances) in the dataset.

2. For each sample in the minority class, the algorithm finds its
k-nearest neighbors from the same class. The value of k
determines the number of nearest neighbors to consider.

3. For each minority class sample, the algorithm randomly selects
one of its k-nearest neighbors. Then, it creates a new synthetic
sample by interpolating between the selected minority sample
and its nearest neighbor. This interpolation is performed by
calculating the vector between the two samples andmultiplying
it by a random value between 0 and 1. The resulting vector is
then added to the original minority sample, creating a new
synthetic sample.

4. Repeated step 2 and 3 for all samples in the minority class,
generating synthetic samples for each one.

5. Combine synthetic samples with the original dataset to achieve
a balanced class distribution.

SMOTE has beenwidely adopted in the field ofmachine learning to
mitigate the effects of class imbalance and improve the performance of
classification models on minority class samples. And todate, many
extensions and alternatives to the original SMOTE algorithm have been

proposed, including Borderline-SMOTE (Han et al., 2005), Adaptive
Synthetic Sampling (ADASYN) (He et al., 2008), and Density-Based
Synthetic Minority Over-sampling Technique (DBSMOTE)
(Bunkhumpornpat and Sinapiromsaran, 2009). In this work, we
utilized the original SMOTE implementation from the imbalanced-
learn library in Python (Lemaitre et al., 2017) with k = 5.

An illustration of this balancing procedure using SMOTE is
presented in Figure 7. The number of samples for each subject was
set to the same value: (a) equal to the mean value of the original sample
distribution and (b) equal to themaximum value of the original sample.
To generate synthetic instances of the minority class (i.e., the class with
fewer instances), we interpolated the chosen instance with its k-nearest
neighbors (k = 5). This is performed by choosing a random neighbor
and computing the difference between the feature values of the chosen
instance and the neighbor. The difference is then multiplied by a
random value between 0 and 1 and added to the feature values of the
chosen instance. This process was repeated until the ratio between the
minority and majority classes was 1:1 (equal). Then, we trained using
the same proposed framework and evaluated its performance.

2.5 Performance evaluation

The evaluation was performed on both the independent and mixed
datasets. Since our problem is identification (a multi-class problem), we
calculated the performance metrics using the following approach.

1. We first constructed a confusion matrix to summarize the
performance of the classification model.

2. Overall accuracy was computed as the ratio of correctly
classified instances (both true positives and true negatives
instances) to the total number of instances.

3. We computed precision, recall, and F1-score for each class
individually. These metrics help us understand the model’s
performance in terms of correctly identifying each class
(precision), capturing all relevant instances (recall), and
balancing precision and recall (F1-score).

4. Those metrics were then macro-averaged to provide a single
performance score across all classes. Macro-averaging treats
each class equally by computing the metrics for each class
independently and then taking the average, which is useful for
understanding the performance across all classes without being
biased towards more frequent classes.

The mathematical formulation of those metrics was defined
as follows:

Accuracy � TP + TN

TP + FP + TN + FN
(5)

Precision � TP

TP + FP
(6)

Sensitivity � TP

TP + FN
(7)

F1 − Score � 2 ×
Precision × Sensitivity

Precision + Sensitivity
(8)

where TP is a true positive, FP is a false positive, TN is a true
negative, and FN is a false negative. TP refers to the number of test-
set correctly identified as positive when they are positive. In this case,

TABLE 2 Hyper-parameter settings of the proposed model.

Parameter Value

Learning Rate 0.001

Optimizer Adam

Batch Size 32

Epoch 500

Loss Categorical Cross-Entropy

Regulation/Validation Early Stopping
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for example, if the test-set is subject-1, then the model correctly
classifies it as subject-1. FP is otherwise. This reflects the number of
test-set identified in the incorrect class. TN indicates the number of
test sets correctly rejected by the model when they do not belong to
the class. Meanwhile, FN indicates that the model fails to identify
test sets as positive when they are actually positive.

Accuracy measures the proportion of correct predictions (both
true positives and true negatives) among the total number of

examined cases. In the context of an authentication system, this
indicates how often the system correctly identifies or rejects an
individual. Precision, also known as the positive predictive value,
measures the proportion of positive identifications that are actually
correct. High precision indicates that the system rarely misidentifies
an individual. Sensitivity, also known as the Recall or True Positive
Rate, measures the proportion of actual positives that are correctly
identified. High sensitivity indicates that the system correctly

FIGURE 7
The illustration of samples size for each subject used in this study. (A) Example case of imbalanced samples size representing each subject on ECG-
ID dataset. (B) Example case of balanced sample size per subject on ECG-ID dataset (after applying SMOTE Algorithm).
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identifies and authenticates legitimate individuals most of the time,
thereby avoiding wrongly denied access. F1-score takes the
harmonic mean between precision and sensitivity. It provides a
single measure to evaluate the overall effectiveness of an
authentication system when both false positives and false
negatives are equally costly or undesirable.

3 Results

3.1 Performance of the proposed framework
with imbalanced datasets

First, we observed the performance of our proposed framework
on different ECG record databases with various numbers of subjects
(participants) included in the study. The duration of the ECG
records in each database varies, which in turn leads to an
imbalanced number of samples for each subject. For example, in
the ECG-ID database, subject-2 had up to 520 beat samples, while
subject-14 had only 15 samples (see Figure 7A). To evaluate the
performance of the system on such imbalanced datasets, we applied
5-fold cross-validation during the training process. Table 3 presents
the classification accuracy of the proposed system across different
databases, particularly with imbalanced datasets.

The assessment of individual datasets showed that the NSRDB
database with 18 subjects had a minimum of 227 beat samples per
subject, a mean of 370, and a maximum of 718, resulting in an
accuracy of 99.26%. The MIT-ARR database with 27 subjects had a
sample distribution ranging from a minimum of 71 to a maximum
of 429 per subject, with an average of 197. The accuracy of this
database was 98.82%. MIMIC-III, a larger database with 83 subjects,
in which each subject had between 100 and 823 samples, averaging
359 samples each, achieved an accuracy of 98.71%. The ECG-ID
database, which included 90 subjects, had a range of 15–520 samples
per subject and an average of 78, achieving an accuracy of 95.69%.

The assessment of the combined databases showed that the
MIXED-1 dataset, comprising 173 subjects from ECG-ID and
MIMIC-III, attained an accuracy of 98.44%. The number of
samples per subject in this dataset ranged from 15 to 823, with a
mean of 213. In the second combination, the MIXED-2 dataset, with

200 subjects, the sample distribution per subject was the same as
MIXED-1, and the accuracy dropped to 95.59%. Finally, the
MIXED-3 dataset, the largest dataset in this study, involving
218 subjects with the same range of samples as MIXED-1 and
MIXED-2 but a slightly higher mean of 224, obtained an accuracy
of 93.38%.

3.2 Performance of the proposed framework
with balanced datasets

The proposed framework was then evaluated using balanced
datasets. Balanced datasets were obtained by up-sampling and
down-sampling the minority and majority classes, respectively, to
equal values: (i) mean and (ii) the maximum value of the original
sample distribution. Figure 7B) illustrates the appearance of
balanced datasets. Table 4 presents the performance evaluation of
the proposed framework when applied to the balanced datasets,
detailing the number of subjects, number of samples used per
subject, and performance metrics (accuracy, precision, sensitivity,
and F1-score) achieved for each dataset.

The results demonstrated exceptional accuracy, with two
datasets (NSRDB and MIT-ARR) achieving perfect scores across
all metrics, indicating a 100% success rate in authenticating all
subjects. These scores were achieved by balancing the number of
beat samples per subject relative to either the mean or maximum
value of the total sample distribution within the corresponding
dataset. For the NSRDB, the number of beat samples per subject
was set at 370 and 718, respectively. Whereas for MIT-ARR, it was
set to 197 and 429, respectively.

For the MIMIC-III dataset with 83 subjects, the proposed
method reached an accuracy of 98.95% when using 359 beats per
subject, and 99.78% when using 823 beats per subject. The same
upward trend was observed in other metrics, including precision,
sensitivity, and F1-score when the number of samples per subject
was increased.

For the ECG-ID, with a larger subject size, (i.e., 90 subjects), the
authentication accuracy reached 97.78% with 78 samples per subject
and increased to 99.88% with 520 samples per subject. Precision,
sensitivity, and F1-score also increased with an increase in the

TABLE 3 The performance of the proposed framework with imbalanced datasets

No. Database # of Subjects Distribution of samples size per subject Accuracy (%)

Min. Mean Max.

1. NSRDB 18 227 370 718 99.26

2. MIT-ARR 27 71 197 429 98.82

3. MIMIC-III 83 100 359 823 98.71

4. ECG-ID 90 15 78 520 95.69

5. MIXED-1a 173 15 213 823 98.44

6. MIXED-2b 200 15 211 823 95.59

7. MIXED-3c 218 15 224 823 93.38

aMIXED-1: ECGID + MIMIC III;
bMIXED-2: ECGID + MIMIC III + MIT-ARR;
cMIXED-3: ECGID + MIMIC III + MIT-ARR + NSRDB.
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number of samples per subject. In this case, the enhancement rate is
approximately 2% for each metric.

The mixed datasets, which were designed to assess the
framework under more varied conditions, slightly reduced the
performance metrics; however, they remained impressively high.
For the MIXED-1 dataset, the performance scores remained above
99%. On the MIXED-2 and MIXED-3 datasets, which are more
diverse, all metric scores suffer at approximately 93%. Later, these
scores could be elevated to above 99% after employing more samples
per subject, that is, up to 823. As we can see, the MIXED-3 datasets,
the broadest dataset, demonstrated the lowest scores among the
datasets, with 99.7% accuracy, 99.79% precision, 99.67% sensitivity,
and 99.66% F1-score.

3.3 Comparison with the state-of-the-
art methods

We compared the results of our proposed framework with those
of previous studies using the same single heartbeat input to the deep-
learning network. In general, our proposed framework’s
performance is comparable to or superior to state-of-the-art
methods when evaluated on different datasets that have different
characteristics and conditions, as shown in Table 5.

Our proposed framework exhibited optimal performance when
applied to a small number of subjects. A perfect accuracy rate of
100% consistent with the work of El Boujnouni et al. El Boujnouni
et al. (2022) who used an R-centered segment to create a single
heartbeat sample. The same accuracy rate of 100% was also obtained
when authenticating 27 subjects with abnormal heart conditions on
the MIT-ARR database. Using the same MIT-ARR database, the
former work of Ihsanto et al. (2020) achieved 89.58% accuracy when

using a single heartbeat input. However, they included more
subjects (n = 47).

Attempting to use a larger subject population, our framework
achieved a remarkable accuracy of 99.78% when authenticating
83 subjects on the MIMIC-III dataset. It slightly increase to
99.88% when applied to the ECG-ID dataset comprising
90 subjects. These results demonstrate the superior performance
of our framework, beating the previous works that used a single
heartbeat paradigm on the same ECG-ID dataset, that is,
approximately 9% higher than (Prakash et al., 2023) and 2.5%
higher than (AlDuwaile and Islam, 2021). Furthermore,
AlDuwaile and Islam (2021) investigated the feasibility of using
the R-R segment to authenticate 100 individuals on the PTB dataset
and achieved 98% accuracy. Our proposed frameworks still showed
a better accuracy (99.94%) when authenticating more individuals
(173 subjects) but using a different dataset, namely, the MIXED-1
dataset, which was constructed from two different
characteristic datasets.

Hong et al. (2019) used the PTB database consisting of
200 subjects to evaluate their proposed method and achieved an
accuracy of 97.84%. Meanwhile, our proposed frameworks achieved
99.7% accuracy when authenticating the same number of subjects
(200 subjects) but using different datasets. In this case, we used the
MIXED-2 dataset, derived from a combination of ECG-ID, MIMIC-
III, and MIT-ARR databases, which have different characteristics
and conditions of ECG recordings. Moreover, using a larger number
of subjects, that is, 218 on the MIXED-3 dataset, our proposed
framework still surpasses the work of Hong et al. (2019), achieving
99.7% accuracy.

Furthermore, we compared our proposed framework using 1D-
CNN with state-of-the-art methods that employ 2D-CNN for ECG-
based identification task. The comparison is based on the total

TABLE 4 The Performance of the proposed framework with the balanced datasets.

No. Database # Subjects # Samples per Subject Acc. (%) Prec. (%) Sens. (%) F1 (%)

1 NSRDB 18 370 100.00 100.00 100.00 100.00

718 100.00 100.00 100.00 100.00

2. MIT-ARR 27 197 100.00 100.00 100.00 100.00

429 100.00 100.00 100.00 100.00

3. MIMIC-III 83 359 98.95 98.89 98.93 98.88

823 99.78 99.78 99.77 99.77

4. ECG-ID 90 78 97.78 98.01 97.85 97.76

520 99.88 99.88 99.88 99.88

5. MIXED-1a 173 213 98.54 98.59 98.55 98.52

823 99.74 99.75 99.76 99.75

6. MIXED-2b 200 211 96.72 96.9 96.64 96.57

823 99.7 99.72 99.7 99.71

7. MIXED-3c 218 224 93.02 93.1 93.55 92.83

823 99.7 99.79 99.67 99.66

aMIXED-1: ECGID + MIMIC III;
bMIXED-2: ECGID + MIMIC III + MIT-ARR;
cMIXED-3: ECGID + MIMIC III + MIT-ARR + NSRDB.
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number of parameters in the CNN model and the Big O notation,
which represents the computational complexity of the algorithm
(see 6. The Big O notation provides the theoretical time and space
complexities of algorithms or models as the input size grows,
allowing the analysis of efficiency and resource requirements.
The Big O notation is denoted using the mathematical symbol O,
followed by an expression that represents the complexity. In this
case, we used O(n) (Linear Time), indicating the running time grows
linearly with the input size. From 6, we can observe that our
proposed model using 1D-CNN has significantly fewer
parameters (117,770 to 137,948) compared to the other methods
that use 2D-CNN architectures (ranging from 23,800 to
2,664,546 parameters). The Big O complexity of the proposed
1D-CNN model is O (100n), which is lower than the
complexities of the 2D-CNN models, such as O (1000000 +
2048n), O (256 h), O (1792n), and O (1536n).

4 Discussion

This study investigated the potential use of a single heartbeat taken
from the R-R segment of ECG for human authentication by proposing
a 1D-CNN framework comprising only two layers of convolution.
Many studies have suggested the CNN framework using a short
segment around R peak (R-centered paradigm) (Hong et al., 2019;
Pinto and Cardoso, 2019; AlDuwaile and Islam, 2021; Srivastva et al.,
2021; Prakash et al., 2023). We, on the other hand, investigated the
authenticity of a segment between two consecutive R peaks with the
point of view that it holds more holistic information of a single
heartbeat instance because it encapsulates a complete systolic and
diastolic phase. An ECG-authentication system with a single heartbeat
input renders a challenge such as insufficient information to
differentiate individuals and less adaptive to variations in the heart

rate and rhythm within the same individual. The intra-individual
variations stem from factors such as mental state, emotional condition,
experimental setup or acquisition period, physical wellbeing, or drug
consumption, as well as changes in lifestyle or individual traits (Melzi
et al., 2023). Those variations were more noticeable in the signals
recorded across separate sessions. Nevertheless, ECG has also been
reported to be sufficiently stable over the years. Thus, choosing the
appropriate segment to represent a single heartbeat is of utmost
importance in this context because it can improve the learning
process, authentication speed, and accuracy, leading to high
acceptability in real-world scenarios.

The inconsistencies in the number of samples per subject across
databases posed a challenge. Despite these obstacles, our proposed
framework achieved impressive levels of accuracy: NSRDB, 99.26%;
MIT-BIH Arrhythmia, 98.82%; MIMIC-III, 98.71%; and ECG-ID,
95.69% (3). Furthermore, the system’s ability to perform effectively
on combined databases, such as MIXED-1, MIXED-2, and MIXED-
3, with accuracies ranging from 93.38% to 98.44%, highlights its
capacity to effectively manage data variability and distribution—an
essential characteristic for real-world scenarios where data
imbalance is prevalent. The investigation of imbalanced datasets
is of great importance as it reflects real-world clinical scenarios in
which data are often unevenly distributed. For instance, the highest
accuracy obtained on the NSRDB dataset demonstrates the
framework’s proficiency in handling moderate variations in the
sample size per subject. This could indicate either more distinct
ECG data per subject within this dataset or an optimal tuning of the
system to its specific characteristics. However, a progressive decline
in accuracy was observed when tested on larger, single-source, and
mixed datasets. The highest accuracy was gained for the MIXED-1
dataset, while the lowest accuracy was gained for MIXED-3. This
trend aligns with expectations because mixed datasets introduce
greater variability by combining different data sources.

TABLE 5 The comparison of the proposed framework with the state-of-the-art methods using single heartbeat input.

References Segment Database name #Of subjects Acc (%)

El Boujnouni et al. (2022) R-centered NSRDB 18 100

Ihsanto et al. (2020) R-centered MIT-ARR 47 89.58

Prakash et al. (2023) R-centered ECG-ID 90 91

AlDuwaile and Islam (2021) R-centered ECG-ID 90 97.28

R-R PTB 100 98.0

Hong et al. (2019) R-centered PTB 200 97.84

Proposed framework R-R NSRDB 18 100.00

MIT-ARR 27 100.00

MIMIC-III 83 99.78

ECG-ID 90 99.77

MIXED-1a 173 99.74

MIXED-2b 200 99.7

MIXED-3c 218 99.7

aMIXED-1: ECGID + MIMIC III.
bMIXED-2: ECGID + MIMIC III + MIT-ARR.
cMIXED-3: ECGID + MIMIC III + MIT-ARR + NSRDB.
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To address the skewed data distribution commonly found in
real-world scenarios, we applied SMOTE algorithm (Chawla et al.,
2002) from the imbalanced-learn Python library (Lemaitre et al.,
2017) to achieve uniform sample distribution across individuals.
Although numerous extensions and alternatives to the original
SMOTE algorithm have emerged over the years, such as
Borderline-SMOTE, Adaptive Synthetic Sampling (ADASYN),
and Density-Based SMOTE (DBSMOTE), we decided to utilize
the original SMOTE algorithm for two primary reasons. Firstly,
the original SMOTE algorithm has undergone extensive research
and broad adoption within the machine learning domain, making it
a well-established and reliable technique for balancing the
distribution of classes in imbalanced datasets. Secondly, the
imbalanced-learn library provides a simple and robust
implementation of SMOTE, ensuring consistent and reproducible
results across different experiments and datasets. While more
advanced variations may offer incremental improvements in
specific scenarios, the original SMOTE already provided
satisfactory results for our problem. The performance was
improved significantly, achieving 100% scores across all metrics
(accuracy, precision, sensitivity, and F1-score) on individual NSRDB
and MIT-ARR datasets (see Table 4). This outstanding performance
is further exemplified in the individual MIMIC-III and ECG-ID
datasets, surpassing 99.7% for all performance metrics, indicating
the exceptional competency of the framework in authenticating
larger populations. The framework maintained high-performance
metrics when tested on combined datasets, particularly on the
MIXED-3 dataset, the broadest dataset comprising 218 subjects,
achieving 99.7% accuracy and 99.79% precision. The results strongly
suggest that employing a balanced approach to sample distribution
significantly enhances the system performance, not only in single-
source datasets but also inmore diverse and complex mixed datasets.
This outcome substantiates the adaptability and reliability of the
proposed framework across a wide range of ECG databases.

In comparison with existing state-of-the-art methods, our
framework that incorporates balanced sample distribution has
shown superior performance in most cases, especially under the
single heartbeat paradigm (see Table 5). This superiority is evident
when matched against the best-reported accuracy on the NSRDB
database (El Boujnouni et al., 2022), and significantly surpasses
other methods on the MIT-ARR (Ihsanto et al., 2020) and ECG-ID
databases (AlDuwaile and Islam, 2021; Prakash et al., 2023). When
tested on a larger population with more than 100 subjects, our
frameworks obtained 99.7% accuracy with combined datasets,
surpassing the study of AlDuwaile and Islam (2021) and Hong et al.
(2019) that used single-source PTB dataset. Furthermore, we quantified
the benefits of using 1D-CNN over 2D-CNNmodel for single heartbeat

ECG identification in terms of total parameters and BigO complexity as
shown in Table 6. The lower number of parameters and computational
complexity in the proposed 1D-CNNmodel can be attributed to the fact
that it operates directly on the 1D ECG signal, avoiding the need for
transformation to a 2D representation, as required by 2D-CNNmodels.
The reduced number of parameters and lower Big O complexity suggest
that the 1D-CNN model can be trained and deployed more efficiently,
potentially leading to faster inference times and lower memory
requirements. These benefits make the proposed approach attractive
for real-time and resource-constrained applications in ECG-based
identification systems.

Although the proposed ECG-based authentication system
demonstrates high performance across various datasets, several
limitations must be acknowledged.

1. The datasets used for validating the framework involve ECG
signals collected continuously over short periods. This
controlled environment ensures consistency in the ECG
signals but does not account for long-term variability. ECG
signals can vary over time due to changes in the individual’s
physiological and psychological state, health conditions, and
environmental factors. Therefore, the system’s effectiveness in
authenticating individuals based on ECG signals collected a
week, a month, or a year later remains uncertain.

2. The current validation is a closed-set scenario, where the
system knows all potential subjects during the training
phase. This is a common assumption in biometric
authentication but does not reflect real-world scenarios
where new, previously unseen individuals may attempt
authentication. In an open-set environment, the system
must not only correctly authenticate known subjects but
also accurately reject unknown subjects. The performance
metrics presented do not account for this scenario, and the
system’s ability to handle open-set conditions has not
been tested.

3. The variation in sample size per subject significantly affects the
system’s ability to learn and generalize, especially when the
distribution is heavily skewed to certain subjects. This
observation emphasizes the need for algorithmic
improvements to enhance the ability of the framework to
handle complex and diverse data.

Thus, future enhancements should focus on collecting and
analyzing long-term ECG data to evaluate the system’s performance
over extended periods. This would provide insights into the
framework’s robustness and adaptability to temporal variations in
ECG signals. The system’s performance also should be investigated

TABLE 6 The complexity comparison of the proposed framework (using 1D-CNN) with the state-of-the-art methods (using 2D-CNN).

References Deep learning model Total parameters Big O complexity

Hong et al. (2019) 2D-CNN (Inceptionv3) 2,459,546–2,664,546 O (1000000 + 2048n)

Donida Labati et al. (2019) 2D-CNN 891,090–941,490 O (256n)

AlDuwaile and Islam (2021) 2D-CNN 380,714–739,114 O (1792n)

El Boujnouni et al. (2022) 2D-CNN 23,800–243,560 O (1536n)

Proposed framework 1D-CNN 117,770–137,948 O (100n)
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in open-set scenarios by incorporating techniques such as thresholding,
anomaly detection, additional biometric modalities integration or
additional validation steps to improve the system’s discriminative
power (distinguishing between known and unknown subjects).
Evaluating and enhancing the system’s open-set performance is
crucial for practical deployment. Moreover, refining the framework’s
capabilities should also be considered, particularly in managing larger
and more diverse datasets, to solidify its position as a transformative
solution in the field of biometric authentication.

5 Conclusion

This study has investigated the efficacy of using only a single
heartbeat (R-R segment) for reliable human authentication,
addressing a significant challenge in the biometric domain. By
leveraging only two layers of 1D-CNN that process R-R segments
from the ECG signal, this study simplifies the complexity of the deep
learning architecture while maintaining good performance of the
system. Comprehensive evaluations using the NSRDB, MIT-ARR,
MIMIC-III, and ECG-ID databases, have explicitly demonstrated
that the proposed framework can achieve high levels of
authentication accuracy, matching, and even surpassing state-of-
the-art methodologies. A notable result is a perfect authentication
score (100%) on the NSRDB and MIT-ARR database while
maintaining high accuracy on larger mixed datasets, which
consolidates the framework’s applicability to both small and large
subject populations. Furthermore, the hypothesis that balanced
sample sizes per subject could elevate authentication accuracy
was confirmed, thereby underscoring the importance of uniform
data distribution in enhancing the performance of biometric
systems. The integration of a strict thresholding protocol in the
beat clipping process is instrumental in minimizing noise, thereby
reinforcing the robustness of the authentication system. The
findings of this study demonstrated the potential of employing a
single heartbeat for ECG-based authentication in practical scenarios.
This approach not only streamlines the authentication process but
also enhances the security and reliability of biometric systems.
Future directions include optimization of the framework for real-
time processing and the exploration of its scalability and
effectiveness in diverse and larger populations. The success of
this research paves the way for more secure, efficient, and user-
friendly authentication systems in an increasingly digital and
interconnected world.
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