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Abstract: In composite structures, the precise identification and localization of damage is necessary to
preserve structural integrity in applications across such fields as aeronautical, civil, and mechanical
engineering. This study presents a deep learning (DL)-assisted framework for simultaneous damage
localization and severity assessment in composite structures using Lamb waves (LWs). Previous
studies have often focused on either damage detection or localization in composite structures. In
contrast, this study aims to perform damage detection, severity assessment, and localization using
independent DL models. Three DL models, namely the artificial neural network (ANN), convolutional
neural network (CNN), and gated recurrent unit (GRU), are compared. To assess their damage
detection and localization capabilities. Moreover, zero-mean Gaussian noise is introduced as a data
augmentation technique to address the variability and noise inherent in LW signals, improving the
generalization capability of the DL models. The proposed framework is validated on a composite
plate with four piezoelectric transducers, one at each corner, and achieves high accuracy in both
damage localization and severity assessment, offering an effective solution for real-time structural
health monitoring. This dual-function approach provides a scalable data-driven method to evaluate
composite structures, with applications in predictive maintenance and reliability assurance in critical
engineering systems.

Keywords: deep learning; damage detection; damage localization; severity assessment; convolutional
neural network; Lamb wave

1. Introduction

Among a variety of composite materials, laminated composites stand out, due to their
high strength and exceptional mechanical performance. These materials offer significant
weight savings, which contribute to their widespread acceptance across various sectors
including the marine, automotive, aerospace, and civil engineering industries [1,2]. Under
in-service loadings, many interrelated damage mechanisms are sequentially induced in
laminated composites, and can potentially lead to catastrophic structural collapse [3]. Thus,
ultrasonic guided wave (UGW)-based structural health monitoring (SHM) technology has
been created to rapidly detect internal structural abnormalities [4-6]. When Lamb waves
(LWs), a type of UGW, traverse the flat laminated composite, they are sensitive to local flaws
and lose energy during transmission. Generally, piezoelectric (PZT) sensors are attached
to the composite structures to detect LWs and convert impulses into electrical signals, to
evaluate the location or area of the damage. However, the inherent dispersion features
and multimodal occurrences of LWs make it more difficult to extract information related to
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different damage severities [7]. Examination of LW signals reveals that the current detection
methods consist mainly of either physics-based approaches or data-driven approaches.

In the conventional physics-based methods for damage diagnosis and localization in
laminated composites, most research focuses on extracting characteristics from the raw
ultrasonic-guided waves, which are responsive to common failure types. The LW data
is monitored across the entire life of the composites, where the time of flight (TOF) [8],
variations in the power spectral density (PSD) [9], or energy scattering (ES) [10], serve as
indicators of damage detection in composite structures. According to the physics-based
explanation, when LWs propagate through the composite structure, the damage inside
causes discontinuities that increase reflection and energy dissipation in the sensor signals.
The temporal waveform and spectral energy distribution of LWs are substantially altered
by the reflection components brought about by the damage. Thus, to create the physics-
based damage detection model, certain damage-sensitive characteristics are chosen as
the damage index (DI). To predict transverse matrix fractures in laminated composite
structures, Wilson and Chang [9] developed a physical model using PSD and evaluated
the DI by identifying the change in the PSD. Muralidhar et al. [11] employed three factors
to define damage in the hybrid fiber metal composite laminates. These factors included
Young’s modulus, damage magnitude, and damage position throughout the length of the
composite, and an inverse Bayesian technique was applied to identify damage. Various
other DI-based approaches have utilized the amplitude of the symmetric/antisymmetric
(So/Ap) waves [12], local correlation coefficient [13], and first-to-residual energy ratio [14].
While these physical models are capable of linking the variations in LW signals to the
damage in composite structures, it is essential to recognize that, when adapting the models
to particular experimental conditions, some degree of approximation is often required. Due
to this constraint, the physical model may not apply to a wider range of applications [15].
Moreover, with the rise in complexity of the structural geometry and the circumstances
of service environments, as well as when there is a change in the structural features of
laminated composites, it is anticipated that the effectiveness of the physics-based model
will decrease. In real-world scenarios, this decrease may result in difficulties.

Conversely, the data-driven approaches utilize artificial intelligence (Al) techniques,
like machine learning (ML) and deep learning (DL), that seek to derive intricate represen-
tations from extensive monitoring data, therefore training a classifier to estimate damage
conditions, or a regressor to determine the damage location [16,17]. Among such ap-
proaches, Wu et al. [18] used the continuous wavelet transform (CWT) to convert raw
LW signals into time—frequency domain images known as scalograms; following this, a
2D-convolutional neural network (2DCNN) model was utilized to determine the state of
the composite structure. Lee et al. [19] employed pre-processed UGW signals to train an
autoencoder-based DL model to identify fatigue damage in laminated composites, enabling
the autonomous extraction of damage-sensitive features from the autoencoder’s feature
space. Various other data-driven methods include artificial neural networks [20,21], the
Bayesian model [22,23], clustering algorithms [24], the differential evolution algorithm [25],
extreme learning machine [26], the Gaussian process regression model [27], the gated
recurrent unit [28], the Kalman filter [29], random forest [30], stacked autoencoder [31], the
support vector machine [32], and transfer learning [33]. These data-driven approaches are
further divided into shallow machine learning models or deep learning models. While
shallow learning models can perform well, their effectiveness relies heavily on manually
extracted features, which is time-consuming and requires significant domain expertise [34].
Furthermore, different objectives, such as damage detection, severity assessment, and local-
ization, demand separate feature engineering efforts. In contrast, deep learning models
autonomously extract task-specific features directly from raw data, enabling adaptability
to multiple objectives. Therefore, the deep learning-based data-driven approaches have the
potential to match, or even surpass, the performance of physics-based methods, all while re-
quiring minimal domain-specific expertise. However, the limited availability of monitoring
data in damaged conditions could lead to the overfitting of data-driven models, ultimately
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compromising their accuracy in detecting and localizing damage. Thus, their reliability
remains a subject of interest, particularly in scenarios with limited amounts of data.

To address the limitations of current methods in damage detection, severity assess-
ment, and localization for laminated composites, a DL-based framework is proposed that
directly utilizes raw LW signals, rather than relying on imaging methods. This approach
preserves signal fidelity and streamlines the detection process, offering a direct analysis
pathway that bypasses the need for intricate signal transformations. Firstly, independent
DL models, including artificial neural network (ANN), convolutional neural network
(CNN), and gated recurrent units (GRU), are trained to perform both damage severity
assessment and localization tasks, thus enabling a comprehensive assessment of structural
health. This dual functionality moves beyond the singular focus of either detection or
localization seen in many existing studies. Secondly, the DL models are designed to address
the challenges of low signal-to-noise ratios in raw LW data by incorporating zero-mean
Gaussian noise augmentation. This approach enables the models to autonomously extract
damage-related features, eliminating the need for the pre-defined features that are typically
required in conventional machine learning methods. The capacity of the model to identify
intricate patterns directly from data improves robustness and reduces dependence on the
manually extracted hand-crafted features that are required for traditional machine learning
approaches. Finally, the proposed approach is validated on a composite plate equipped
with piezoelectric (PZT) sensors, which provide LW data for three damage severity levels
and nine distinct damage locations.

2. Methods

Figure 1 illustrates the proposed damage detection and localization framework for
laminated composite, and is comprised of three modules: experimentation, feature ex-
traction, and damage diagnosis. In the experimentation module, composite samples are
fabricated and subjected to LW experiments to simulate damage conditions that affect the
stiffness of the structure due to varying severity levels. This setup enables precise control
over damage variables, allowing for data collection across multiple damage severities and
locations, which are critical for subsequent analysis. In the feature extraction module, the
acquired LW data undergoes a series of pre-processing steps to enhance feature extraction
processes. First, data normalization is applied to ensure consistency across the dataset.
Then, data augmentation is performed using zero-mean Gaussian noise, generalizing the
model by mimicking the variability inherent in real-world conditions. These pre-processed
signals are then fed into DL models for autonomous feature extraction. By relying on
data-driven methods, rather than manual feature engineering, the framework achieves an
end-to-end scalable approach to learning damage-sensitive features directly from raw LW
signals, which reduces dependence on expert knowledge and prior assumptions. Finally,
the diagnosis module is structured to perform damage detection, severity assessment,
and localization. The high-dimensional feature representations extracted in the previous
module are utilized in this module to classify the health state of the composite and identify
the severity level. Additionally, the model independently localizes the damage using
spatial information derived from the sensor layout. This multi-task approach enables
comprehensive monitoring, providing an efficient and adaptable method for the real-time
SHM of composite structures.

2.1. Experimentation
2.1.1. Composite Fabrication

Carbon fiber-reinforced polymer (CFRP) composites are among the most widely used
laminated composites; hence, CFRP laminates were fabricated for LW-based SHM exper-
iments using T700SC-12k—60E epoxy-based carbon fiber prepreg. The laminates were
manufactured through a hot press compression molding process to ensure uniform thick-
ness and a high-quality fiber-matrix interface with minimal void content. This process is
critical, as a weak fiber-matrix interface can act as an artificial delamination in laminated
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composites, causing unintended wave scattering and reducing the reliability of damage
detection. Uniform thickness is also essential as it ensures consistent Lamb wave propaga-
tion by maintaining a stable wave velocity and avoiding unwanted reflections or scattering
caused by thickness variations. Moreover, square-shaped CFRP laminates were prepared
to facilitate the fabrication process, ensuring uniform compression during molding and
simplifying the trimming of rough edges before LW testing. The layup sequence consisted
of eight plies in a [0/90/0/90]s cross-ply orientation, designed to impart the necessary
anisotropic properties to effectively capture LW interactions with internal defects. After the
initial fabrication of a 35 cm x 35 cm CFRP sheet, the specimen was trimmed to a 30 cm
square to remove rough edges, creating a uniform boundary that was conducive to accurate
signal acquisition. This careful specimen preparation facilitates controlled testing across
varying damage severities and locations, supporting robust data collection for subsequent
DL analysis.
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Figure 1. Schematics of the proposed approach, comprising three modules.

2.1.2. Lamb Wave Testing

To conduct Lamb wave-based testing, a piezoelectric (PZT) sensor array was deployed,
with four PZT sensors (PI Ceramic) positioned at each corner of the square CFRP laminate.
Such configurations of the PZTs were used to ensure maximum coverage of the area for
wave propagation, thus facilitating damage localization. An NI USB—6341 data acquisition
system (DAS) was used to excite the PZT sensors and record the response signals. Lamb
wave generation and data acquisition were managed using a LabVIEW interface on a con-
nected PC through MATLAB R2022b, which enabled precise control over signal parameters
and data flow. A PZD700A dual-channel amplifier was employed to amplify the excitation
signal. The experimental setup and components are shown in Figure 2. Each test used
a 5-cycle sinusoidal tone burst signal at 150 kHz as the excitation signal. The excitation
frequency of 150 kHz was chosen as it falls within the optimal range for generating distinct
Lamb wave modes in the CFRP laminates. The reason is that using lower frequencies,
such as 100 kHz, results in reduced spatial resolution due to longer wavelengths, which
limits sensitivity to small defects, whereas higher frequencies such as 200 kHz result in
excessive wave dispersion and energy loss which restricts reliable defect characterization
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over longer distances [35,36]. In each testing sequence, one of the four PZT sensors was
designated as the actuator to generate Lamb waves, while the remaining three PZT sensors
served as receivers to capture the propagated wave signals. This configuration allowed for
a sequential arrangement where each PZT sensor took turns acting as the actuator, resulting
in four separate excitation cycles. During each cycle, the actuator PZT emitted Lamb waves
across the CFRP laminate, and the waves were received by the other three PZTs positioned
at different corners. By rotating the role of the actuator among the four PZT sensors, a
comprehensive network of 12 unique sensing paths was created across the laminate. These
sensing paths provide diverse spatial perspectives on Lamb wave propagation, which is
critical to accurately identify and localize damage within the composite structure. The
DAS collected response signals from each PZT sensor at a sampling frequency of 500 kHz,
providing high-resolution data DL models. To simulate damage of varying severities,
masses of (6, 12, and 18) g were applied to the laminate, simulating three distinct damage
levels (D1, D2, and D3), as shown in Figure 2. This method was chosen for its simplicity,
repeatability, and ability to control multiple damage severities [37]. The additional mass
changes the local stiffness of the laminate, altering Lamb wave propagation characteristics
such as amplitude and phase, enabling effective damage simulation without artificially
induced delamination. Moreover, testing with artificially induced delaminations would
require multiple laminates with delaminations at various locations introducing challenges
during and lower precision in locating the delaminations as they are not visible externally.
For localization, the CFRP sheet was divided into nine zones, with data acquisition per-
formed at the center of each zone to establish localized response patterns, as shown in
Figure 2. Each test was repeated 10 times to ensure consistency, generating 3240 damage
signals and 360 baseline (healthy) signals in total. A representative LW signals for three
damage severities and nine locations are shown in Figure 2. This setup allowed for robust
and comprehensive data collection, covering multiple damage severities and locations
across the CFRP laminate. The collected data set provides a strong foundation for DL-based
damage detection, severity assessment, and localization.
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Figure 2. (a) The components of the experimental setup, (b) schematic representation of CFRP
laminated with three damage severities at nine zones, (c) the waveform for different damage severities,
and (d) the waveform obtained for same damage at nine different locations.
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2.2. Data Pre-Processing
2.2.1. Data Normalization

Data normalization is an important pre-processing step in developing DL models,
especially for LW signal analysis in SHM applications. Normalizing data scales the values
to a specific range, which reduces variability and ensures consistent feature ranges across
the dataset. This process improves model convergence during training by preventing
features with larger magnitudes from disproportionately influencing the learning process,
ultimately enhancing model accuracy and robustness. In this study, data normalization
was implemented using a Min—-Max scaler, which linearly transforms the raw LW signal
data to a standardized range of [—1, 1]. This normalized range allows each feature to
contribute equally, minimizing the effects of outliers and differing signal intensities. Such
scaling is particularly advantageous in DL, as it leads to more efficient feature extraction by
standardizing input data, without altering the inherent signal properties.

Following normalization, the dataset was divided into the training and testing sets in a
60:40 ratio. The training set, which included 60% of the normalized data, was subsequently
increased via data augmentation to improve the generalization capabilities of the DL model,
as discussed in the next section. The remaining 40% of the testing set was kept as unseen
data to assess the built DL models. This partitioning strategy provides a solid framework
to validate the ability of the model to precisely detect, localize, and assess damage severity
in composite structures based on raw LW signals.

2.2.2. Data Augmentation

Data augmentation is known to improve the performance of DL models, particularly
with limited datasets [34,38]. By introducing controlled variations, augmentation signifi-
cantly expands the training set and improves the model’s ability to generalize, which is
essential for robust performance in real-world conditions. In this study, zero-mean Gaus-
sian noise was added to the raw LW signals in the training set with standard deviations of
0.025 and 0.05. This approach tripled the training dataset, making the model more resilient
to noise, and capable of handling the signal variability commonly encountered in SHM
applications. Augmentation with zero mean Gaussian noise also prepares the DL model to
accurately interpret signals, even when affected by environmental factors or minor sensor
inconsistencies [39]. The augmented training data was then divided into 80% training and
20% validation datasets. This split allowed the model to train on a comprehensive dataset
while using a dedicated validation set to assess its performance during development. By
exposing the model to both noise-augmented training data and distinct validation data, this
approach enabled precise model tuning, enhancing its reliability in detecting, localizing,
and accurately assessing damage severity, even under varied and noisy conditions.

2.3. Deep Learning

SHM has evolved significantly with advancements in Al-based methods, especially DL.
DL methods are of interest in damage identification and structural condition assessment
due to their ability to autonomously extract damage-sensitive features, unlike traditional
machine learning methods that require manual feature extraction. This study further
explores the use of raw LW data with DL to directly capture the underlying features
essential for damage detection, severity assessment, and localization. This approach
simplifies the process by eliminating the need for extensive data pre-processing. In contrast,
imaging-based methods require additional computational resources for pre-processing and
post-processing, which increase complexity and reduce efficiency in practical applications.
Therefore, DL has attracted significant attention in SHM, particularly concerning damage
identification and the assessment of structural states. Among various DL models, ANN,
CNN, and GRU have shown great promise in addressing SHM challenges for various
types of structures [18,20,28]. Therefore, this study explores the potential of these three
DL models. However, previous studies focused mostly on damage detection and the use
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of imaging-based methods; thus, this study proposes the use of raw LW data for damage
detection, severity assessment, and localization.

2.3.1. Artificial Neural Networks

ANN:Ss are intelligent computational algorithms that are designed to emulate the
learning mechanisms of the human brain [40]. They consist of inter-connected artificial
neurons in the form of layers, enabling the network to learn complex relationships and
patterns within data by adjusting weights through iterative training [41]. A typical ANN
model consists of at minimum one hidden layer sandwiched between an input and an
output layer. Figure 3 shows an ANN model comprising one hidden layer, where:

—)
Input vector = Z = (21,Z3,23,...,Zm) 1)
-
Hidden layer vector = X = (X1, X2, X3,..., Xn) 2)
—
Output vector =Y = (Y1,Y2,Y3,...,Yy) 3)

Herein, m, n, and k are the number of neural units in the input, hidden, and output
layers, respectively. Based on the series of inputs through the input neurons, the neural
units in the hidden and output layers can be described as:

M
Xp = g1 ( Y. Vnmzm + bi‘n> (4)

m=1

N

Yk =$2 ( Y Wi + b%) ()
n=1

where, g represents the activation function that introduces non-linearity, v and w are the

weight parameters that connect the input with the outputs, z and x represent the input

to the hidden and output layer, respectively, b represents the bias terms, while M and N

denote the numbers of neural units in the output layer.

Input layer Hidden layer Output layer

0 & .0
000
000450

—>v—0

Figure 3. A typical ANN model with an input layer, a single hidden layer, and an output layer.

2.3.2. Convolutional Neural Network

CNN s are inspired by the configuration of the mammalian visual cortex and are
commonly applied to regression and classification tasks, owing to their capability to
autonomously extract and learn hierarchical spatial features from input data [42]. A typical
CNN architecture involves three important layer types: convolutional layers, pooling
layers, and fully connected layers (FCLs), together with the final classification or regression
layer [43]. Figure 4 shows a 1ID—CNN model consisting of two convolutional and two FCL
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layers. The implementation of the convolutional operation at an input signal to extract
relevant features is described as:

Nj_q
yh = f(b,l( Y Conle(wﬁkl,sél)) (6)

i=1

where, y represents the output features extracted by implementing convolutional operation
at layer 1, f is the activation function that introduces non-linearity to the output layer,
b represents the bias term with the k-th output in layer 1, N represents the number of fea-
tures/channels taken as input from the previous layer, Conv1D represent the convolutional
operation implemented on a 1D time series LW signal, w is the weight associated with the
convolutional kernel, and s represents the input feature map from the preceding layer. In
a typical CNN model, a pooling layer follows a convolutional layer to perform a down-
sampling option for dimensionality reduction. After several convolutional and pooling
layers, there are two FCLs, where each neural unit is linked to its counterpart in the preced-
ing layer, allowing it to combine features learned by earlier layers for final classification or
regression tasks. The final output layer consists of several neurons that are equivalent in
number to the number of outputs required by the classification or regression tasks.

Figure 4. A typical CNN model comprises two convolutional layers (CLs), two pooling layers (PLs),
two fully connected layers (FCLs), and an output layer (OL).

2.3.3. Gated Recurrent Unit

GRUs are a sub-class of recurrent neural networks (RNNs) that are capable of handling
sequential data by efficiently capturing long-range dependencies across time steps. This
feature of the GRU makes it well-suited for tasks involving time series analysis [44]. GRUs
achieve this by employing a gating mechanism that dynamically controls the flow of
information through the network, ensuring efficient handling of both short-term and long-
term dependencies. The gating mechanism containing two main gates, an update gate,
and a reset gate [28,45], controls the influence of past hidden states and current inputs on
the computation of new hidden states. The update gate determines how much of the past
information is retained, facilitating the preservation of long-term dependencies, while the
reset gate decides how much past information is ignored, enabling the network to focus on
relevant recent inputs. Together, these gates dynamically balance the contribution of past
and current information, ensuring effective sequential data processing. Figure 5 shows a
typical GRU cell with basic gates and states. The update gate identifies how much of the
past information should be carried forward to future steps, while the reset gate controls the
degree of influence of the previous hidden state on the current computation, and allows
the network to disregard the unnecessary information from the past. For a given time, step
t, and hidden state, /1, the update gate is described as:

Zy = U(WZ.[ht,l,xt] + bz) (7)
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where, z; denotes the update gate output, W, denotes the weight matrix for the update
gate, h;_1 denotes the preceding hidden state, x; denotes the current input, and b, is the
bias term. Thus, the amount of the previous hidden state retained in the current state
is controlled by the update gate, which determines its contribution to the current state.
Similarly, the reset gate is described as:

ry = (T(Wr.[ht_l,x& + b;’) (8)

where, 7; denotes the reset gate output, W, denotes the reset gate’s weight matrix, and
b, denotes the bias term. The candidate hidden state introduces new information, regulated
by the reset gate, enabling selective integration of past data. The final hidden state at time

t merges this candidate state (h;) with the previous hidden state, weighted by the update
gate to effectively balance old and new information. This enables the GRU to efficiently
capture sequential information, making it suitable for processing temporal raw LW signals
in the SHM of composite structures.

_J

hes

Tht 5
Vd

Xt

Figure 5. A typical cell of the GRU model comprises a reset gate (RG), an update gate (UG), and a
candidate state (CS).

3. Results and Discussion
3.1. Damage Detection and Severity Assessment

The deep learning models (ANN, CNN, and GRU) were trained using the prepared
training and validation datasets to achieve accurate damage detection and severity assess-
ment. Each DL model was trained for 50 epochs using the categorical cross-entropy loss
function. The training process employed the Adam optimizer with a fixed learning rate of
0.001. These training parameters were selected to optimize convergence and ensure consis-
tent learning across all DL models. To further improve the DL models, the architecture of
all DL models was optimized through a random search technique, which systematically
explored the number of layers and number of neurons to identify the most effective layer
configurations. To further ensure the reliability and robustness of the model evaluations, a
5-fold cross-validation technique was applied. Through this approach, the data was split
into five subsets, with each subset taking a turn as the validation set, while the others
were used for training. By repeating this process five-fold, each model’s performance was
comprehensively evaluated, reducing the likelihood of overfitting, and providing a more
accurate measure of generalization capability. Figure 6 presents the training and validation
accuracies for each model, illustrating the performance of each model after 50 epochs. The
close alignment between the training and validation accuracy across all models indicates
minimal overfitting, with the models maintaining high training and validation accuracies.
The CNN-based DL model showed the best training accuracy of 99.57%, followed by ANN
and GRU at 98.26% and 84.57%, respectively. However, in terms of validation accuracy, both
ANN and CNN showed the same validation accuracies of 93.10%, while the GRU model
showed a relatively lower validation accuracy of 81.03%. The high training and validation
accuracies achieved by the CNN and ANN models suggest their ability to capture the
spatial features and changes in signal patterns associated with different damage severities,
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which are essential for accurate detection and assessment. The GRU model, while lower in
accuracy, still captures relevant temporal patterns in the LW signals, reflecting its strength
in handling temporal data.

| mTrain = Validation |

—_

(=]

(=]
L

z I

Accuracy (%)
I )
[e] (e (e

L L L
H

[\e]
(e
1

0 -
ANN CNN GRU

Figure 6. The training and validation accuracy for the trained DL models.

The trained DL models were further evaluated on unseen test data to assess their
generalization capabilities. The testing accuracy for ANN, CNN, and GRU was 89.84%,
92.19%, and 65.62%, respectively, with CNN showing the highest performance, and GRU
showing the worst performance, indicating over-fitting. Figure 7 shows the results of test
data in terms of the confusion matrix. The confusion matrix demonstrates that ANN and
CNN achieved 100% accuracy in identifying the healthy state, while GRU achieved 90%.
When detecting damaged states regardless of severity, the combined accuracy for ANN,
CNN, and GRU was 87.96%, 90.74%, and 61.11%, respectively, indicating that ANN and
CNN are reliable for damage detection, with CNN performing slightly better overall. In
damage severity assessment, the results showed that the higher severities (D2 and D3) were
well captured by LWs, allowing the DL models to effectively learn features linked to severe
damage, whereas lower severity damage (D1) presented more classification challenges
across all models. Overall, the CNN model performed better in severity assessment for D1,
D2, and D3, with accuracies of 83.33%, 94.44%, and 94.44%, respectively, demonstrating its
superior ability to capture detailed features related to different levels of damage. Figure 8
shows the precision, recall, and Fl-scores, which further highlight the capabilities of the
DL models in damage detection and severity assessment. The CNN model revealed
the highest scores with precision, recall, and F1-score of 92.52%, 93.06%, and 92.74%,
respectively, reflecting its effectiveness in capturing the spatial features in LW data necessary
for differentiating damage levels. The ANN model also showed slightly lower performance
compared to the CNN model, indicating that the convolutional operations can help extract
the discriminative features more efficiently from LW, as compared to the dense layers
only. The GRU model, with precision, recall, and F1-score of 66.18%, 68.33%, and 66.91%,
respectively, showed the lowest performance, likely due to its focus on temporal patterns,
rather than spatial features. Thus, although the GRU can capture long-range dependencies,
it is not able to effectively extract sensitive features for damage severity from the LW
data. Additionally, the GRU model relies more on sequential processing, which limits its
efficiency in identifying the spatial relationships among the provided sensing paths, which
are critical for damage quantification. In contrast, the ANN model shows better feature
extraction ability compared to GRU, due to its focus on extracting spatial relationships
between sensing paths, instead of sequential order. Moreover, the CNN model provides a
more advanced ability to extract localized spatial features using convolutional operations,
making it particularly effective in identifying subtle changes in signals with different levels
of severity and capturing the spatial dependencies that are critical for accurate damage
detection and severity assessment. Therefore, the 1ID—CNN model outperformed both
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ANN and GRU in terms of accuracy, precision, recall, and Fl-score, demonstrating a
superior capability for damage detection and severity assessment. Table 1 presents the
architectural details of the proposed 1D CNN-based DL model.

2.78 ERIERE 2.78 11.11
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11.11 gLN!

H D1 D2 D3
Predicted Predicted Predicted

Figure 7. The confusion matrix represents the correct and incorrect prediction for damage detection
and severity assessment on unseen test data for (a) ANN, (b) CNN, and (c) GRU.
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Figure 8. The precision, recall, and F1-scores for the ANN, CNN, and GRU models on the test set.

Table 1. The architectural details of the 1ID—CNN-based optimum model for damage severity
assessment and localization.

Layer Output Shape Parameters Optimized Hyperparameters
Input (None, 1500, 12) - -
Conv1D (None, 1498, 16) 592 Filters: 16, Kernel Size: 3, Activation: ReLU
MaxPooling1D (None, 749, 16) - Pool Size: 2
Conv1D (None, 747, 32) 1568 Filters: 32, Kernel Size: 3, Activation: ReLU
MaxPooling1D (None, 373, 32) - Pool Size: 2
Conv1lD (None, 371, 64) 6208 Filters: 64, Kernel Size: 3, Activation: ReLU
MaxPooling1D (None, 185, 64) - Pool Size: 2
Flatten (None, 11840) - -
Dense (None, 64) 757,824 Units: 64, Activation: ReLU
Dense (Severity) (None, 4) 260 Activation: Sigmoid
Dense (Localization) (None, 2) 130 Activation: Linear

3.2. Damage Localization

The DL models developed in Section 3.1 for damage detection and severity assessment
were adapted for damage localization by replacing the final classification layer with a
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regression layer to predict the damage location in x and y coordinates. Localization perfor-
mance was evaluated using the mean absolute error (MAE) and coefficient of determination
(R?) to evaluate the ability of the model to accurately identify damage locations. Figure 9
shows the MAEs for ANN, CNN, and GRU. In training and validation, the CNN model
achieved the best overall localization performance, with a training MAE of 7.81 mm and
R? of 97.37%, and a validation MAE of 10.17 mm and R? of 95.78%, indicating effective
spatial feature extraction. The ANN model showed reasonable localization capability with
a training MAE of 12.44 mm and R? of 90.76%, and a validation MAE of 15.46 mm and R?
of 89.34%. In contrast, the GRU model exhibited poor localization results, with training
and validation MAE of 52.28 mm and 53.89 mm, respectively.

75 - T
| mTrain = Validation |
60 -
I
E 45 |
g 45
z
30 -
=
15 - z
.
ANN CNN GRU

Figure 9. The training and validation MAEs for the trained DL models.

Similar to the damage detection and severity assessment model, the damage local-
ization model was also evaluated on an unseen test dataset. On the unseen test set, the
1D—CNN model again outperformed the other DL models with an x-coordinate MAE
of 13.32 mm and R? of 93.44%, and a y-coordinate MAE of 11.07 mm and R? of 94.19%,
resulting in an overall MAE of 12.20 mm and R? of 93.82%. This strong performance
demonstrates the robustness of the CNN model in effectively capturing the spatial fea-
tures required for precise damage localization. The ANN model displayed moderate test
performance, with an x-axis MAE of 24.07 mm and R? of 81.33%, and a y-axis MAE of
13.84 mm with R? of 91.33%, yielding an overall MAE of 18.95 mm and R? of 86.33%,
indicating adequate but less precise localization, compared to CNN. The GRU model with
an overall MAE of 54.45 mm was unable to localize the damage well, demonstrating its
limitation in spatial localization. Thus, similar to damage detection and severity assessment,
the GRU model is unable to identify the LW patterns for damage location, due to its focus
on sequential information. However, the ANN and CNN models showed better feature
extraction ability for damage localization as well. Figure 10 presents the average predicted
damage locations by the better damage localization models (ANN and CNN), alongside
the true damage locations in the composite structure. The CNN model (Figure 10b) exhibits
superior localization accuracy, with predicted points closely aligning with true damage
coordinates, demonstrating its capability to effectively capture spatial dependencies within
LW data. Conversely, the ANN model (Figure 10a) displays slightly larger deviations
from the true locations, particularly when the locations are far from the origin, indicating
comparatively reduced spatial precision. Moreover, the results highlight the effectiveness
of processing raw LW signals using CNN and prove its advantage over imaging methods
by showing low MAE. This signifies the direct capturing of wave propagation features
through CNN by eliminating complex pre-processing steps and additional computation
requirements of imaging methods. These observations highlight the precision of the CNN
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model to accurately localize damage, demonstrating its advantage in handling both damage
severity assessment and localization in the SHM of laminated composites.
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Figure 10. The average predicted damage locations by the DL model showing effective performance
using (a) ANN, and (b) CNN.

4. Conclusions

This study developed a DL-based framework for the simultaneous damage severity
assessment and localization of laminated composite structures using raw LWs. Three
DL models, namely ANN, CNN, and GRU, were explored for this purpose. For damage
severity assessment, CNN showed a test accuracy of 92.19% and an F1 score of 92.74%,
showcasing its effectiveness in distinguishing between varying levels of structural dam-
age. In terms of damage localization, the CNN model also showed better performance,
achieving a test MAE of 12.20 mm, showcasing its precision in locating the damage. In
comparison, the ANN model displayed moderate localization capability with an MAE
of 18.95 mm, while the GRU model was less effective with a significantly higher MAE of
54.45 mm, underscoring its limitations in spatial feature extraction. The superior accuracy
and localization precision of the CNN model demonstrates its potential for application
in SHM, providing a scalable and reliable solution for predictive maintenance using raw
LW signals, rather than computationally expensive imaging methods, across fields such as
aerospace and civil engineering, where maintaining structural integrity is critical. Despite
the promising results of the CNN-based DL model, this work has focused on damage
severity assessment and localization for laminated composite plates using raw LW signals.
Therefore, future work could extend the proposed approach to complex composite struc-
tures, such as stiffened panels and sandwich structures, and the application of hybrid DL
methods for improved performance. Additionally, the proposed approach could also be
extended to real-time monitoring of composite structures in future studies.
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