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Abstract: Based on finite-dimensional time-frequency analysis, we study the properties of time-
frequency shift equivariant maps that are generally nonlinear. We first establish a one-to-one corre-
spondence between Λ-equivariant maps and certain phase-homogeneous functions and also provide
a reconstruction formula that expresses Λ-equivariant maps in terms of these phase-homogeneous
functions, leading to a deeper understanding of the class of Λ-equivariant maps. Next, we consider the
approximation of Λ-equivariant maps by neural networks. In the case where Λ is a cyclic subgroup of
order N in ZN × ZN , we prove that every Λ-equivariant map can be approximated by a shallow
neural network whose affine linear maps are simply linear combinations of time-frequency shifts
by Λ. This aligns well with the proven suitability of convolutional neural networks (CNNs) in tasks
requiring translation equivariance, particularly in image and signal processing applications.
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1. Introduction

Over the past decade, machine learning techniques based on deep neural networks,
commonly referred to as deep learning [1], have achieved significant breakthroughs across a
wide range of fields, including image recognition [2,3], speech recognition [4], language
translation [5,6], and game playing [7], among others. These advancements are largely
driven by the availability of increasingly large training datasets and greater computational
resources. Another important factor is the development of specialized neural network
architectures, including convolutional neural networks [2], residual networks [3], recurrent
networks (notably LSTMs [5]), and transformer networks [6].

A common theme in the design of neural network architectures is the necessity to
respect the symmetries inherent in the task at hand. For instance, in image classification,
the classification result should remain invariant under small translations of the input
image, making convolutional neural networks a suitable choice. Likewise, in audio clas-
sification [8], the classification result should be invariant to shifts in time or changes in
pitch. In principle, a fully connected neural network can learn to respect such symmetries
provided that training data are sufficiently given. Nevertheless, architectures that are
inherently aligned with these symmetries tend to exhibit improved generalization and thus
show better performance.

In mathematical terms, symmetries can be expressed as follows. Let V be a vector space
and let GL(V) be the general linear group of V. For a group G and a map ρ : G → GL(V),
we say that a map F : V → V is equivariant under group actions of G (or simply G-equivariant)
if Fρ(λ) = ρ(λ)F for all λ ∈ G, and invariant under group actions of G (or simply G-invariant)
if Fρ(λ) = F for all λ ∈ G. We will be focusing on the case where V is a Hilbert space
and ρ(λ) is a unitary operator for all λ ∈ G. (A Hilbert space is a vector space equipped
with an inner product that induces a distance function, making it a complete metric space.
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Examples of Hilbert spaces include Rd and Cd, and Hilbert spaces are often regarded as
natural generalizations of signal spaces.)

A particularly important and well-studied example of equivariance involves transla-
tions. It is well known that translation-equivariant linear operators are exactly the convolu-
tion operators (see, e.g., Section 2.3 of [9], Theorem 4.12 of [10], and Theorem 2.17 of [11]),
and that convolutional neural networks (CNNs) are well-suited for approximating these
operators. As a natural generalization of CNNs, Cohen and Welling [12] introduced the so-
called group equivariant convolutional neural networks (GCNNs), which can handle more
general symmetry groups than just translations. Later, Cohen et al. [13] developed a gen-
eral framework for GCNNs on homogeneous spaces such as Rd and S2, and Yarotsky [14]
investigated the approximation of equivariant operators using equivariant neural net-
works. More recently, Cahill et al. [15] introduced the so-called group-invariant max filters,
which are particularly useful for classification tasks involving symmetries, and Balan and
Tsoukanis [16,17] constructed stable embeddings on quotient space modulo group action,
yielding group-invariant representations via coorbits. Further advances include the work
of Huang et al. [18], who designed approximately group-equivariant graph neural net-
works by focusing on active symmetries, and Blum-Smith and Villar [19], who introduced
a method for parameterizing invariant and equivariant functions based on invariant theory.
In addition, Wang et al. [20] provided a theoretical analysis of data augmentation and
equivariant neural networks applied to non-stationary dynamics forecasting.

In this paper, we are particularly interested in the setting of finite-dimensional time-
frequency analysis, which provides a versatile framework for a wide range of signal
processing applications, see, e.g., [21,22]. It is known that every linear map from CN to CN

can be expressed as a linear combination of compositions of translations and modulations
(see (3) below). We consider maps F : CN → CN that are generally nonlinear and are
Λ-equivariant for a given subgroup Λ of ZN ×ZN , that is, F ◦ π(k, ℓ) = π(k, ℓ) ◦ F for
all (k, ℓ) ∈ Λ. Here, π(k, ℓ) := MℓTk represents the time-frequency shift by (k, ℓ), where
T, M : CN → CN are the translation and modulation operators defined as
Tx = (xN−1, x0, x1, . . . , xN−2) and Mx = (ω0x0, ω1x1, . . . , ωN−1xN−1), ω := e2πi/N ,
for x = (x0, x1, . . . , xN−1) ∈ CN , respectively (see Section 2.1 for further details). For any
F : CN → CN and any nonzero v ∈ CN , we define Fv : CN → C by Fv(x) =

〈
F(x), v

〉
,

x ∈ CN . For any Ω ⊂ ZN , we say that a function H : CN → C is Ω-phase homogeneous if
H(e2πis/N x) = e2πis/N H(x) for all s ∈ Ω and x ∈ CN .

We first address the properties of the mapping F 7→ Fv from the space of Λ-equivariant
functions CN → CN to the space of certain phase homogeneous functions.

Theorem 1 (see Theorem 3 below). Assume that span{π(k, ℓ)v : (k, ℓ) ∈ Λ} = CN for
some subgroup Λ of ZN ×ZN and some vector v ∈ CN . Then, the mapping F 7→ Fv is an
injective map from the space of Λ-equivariant functions CN → CN to the space of ΩΛ-phase
homogeneous functions CN → C, where ΩΛ := {kℓ′ mod N : (k, ℓ), (k′, ℓ′) ∈ Λ}. Moreover,
if {π(k, ℓ)u}(k,ℓ)∈Λ is a dual frame of {π(k, ℓ)v}(k,ℓ)∈Λ in CN , then a Λ-equivariant function
F : CN → CN can be expressed as

F(x) = ∑
(k,ℓ)∈Λ

e−2πikℓ/N Fv
(
π(−k,−ℓ)x

)
π(k, ℓ)u.

If |Λ| = N, then the mapping F 7→ Fv is a bijective map from the space of Λ-equivariant functions
CN → CN to the space of ΩΛ-phase homogeneous functions CN → C.

We then consider the approximation of Λ-equivariant maps. In particular, we show
that if Λ is a cyclic subgroup of order N in ZN × ZN , then every Λ-equivariant map can
be easily approximated by a shallow neural network whose affine linear maps consist of
linear combinations of time-frequency shifts by Λ.
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Theorem 2 (see Theorem 5 below). Assume that σ : C → C is shallow universal and satisfies
σ(eπi/Nz) = eπi/Nσ(z) for all z ∈ C. Let Λ = {(0, 0), (1, s), . . . , (N − 1, (N − 1)s)} for
some s ∈ {0, 1, . . . , N − 1}. Then, any continuous Λ-equivariant map F : CN → CN can be
approximated (uniformly on compact sets) by a shallow neural network

x 7→
J

∑
j=1

cj σ(Ajx + bjv),

where Aj ∈ span{π(k, ℓ) : (k, ℓ) ∈ Λ}, bj ∈ C for j = 1, . . . , J, and v ∈ CN satisfies
π(k, ℓ)v = ekℓπi/Nv for all (k, ℓ) ∈ Λ. Moreover, every map of this form is Λ-equivariant.

In the case s = 0, i.e., Λ = {(0, 0), (1, 0), . . . , (N − 1, 0)}, the Λ-equivariant maps
F : CN → CN are precisely those that are translation equivariant, meaning that FT = TF.
Furthermore, if F is linear, then F is just a convolutional map, which can be expressed as a
linear combination of Tk, k = 0, . . . , N − 1, or simply as an N × N circulant matrix. If F is
nonlinear, then Theorem 2 shows that F can be approximated by a shallow neural network
whose affine linear maps are convolutional maps, i.e., by a shallow convolutional neural
network. This agrees with the well-established fact that convolutional neural networks
(CNNs) are particularly well-suited for applications involving translation equivariance,
especially in image and signal processing.

Organization of the Paper

In Section 2, we begin by reviewing some basic properties of time-frequency shift
operators, followed by a discussion on time-frequency group equivariant maps, and then
prove our first main result, Theorem 1, which establishes a 1:1 correspondence between
Λ-equivariant maps and certain phase-homogeneous functions. Section 3 is devoted to
the approximation of Λ-equivariant maps. We first discuss the embedding of Λ into
the Weyl–Heisenberg group, which allows for the use of tools from group representation
theory. (The finite Weyl–Heisenberg group HN is the set ZN×ZN×ZN equipped with group
operation (k, ℓ, s) + (k′, ℓ′, s′) := (k + k′, ℓ+ ℓ′, s + s′ − kℓ′). The noncommutativity of HN
plays an important role in finite-dimensional time-frequency analysis; see, e.g., [21,23].)
After reviewing key concepts from group representation theory, we consider the case of
cyclic subgroups of ZN ×ZN , where group representations can be defined directly without
embedding into the Weyl–Heisenberg group. Section 3 concludes with the proof of our
second main result, Theorem 2, which establishes the approximation of Λ-equivariant maps
by a shallow neural network whose affine linear maps consist of linear combinations of
time-frequency shifts by Λ.

2. Time-Frequency Shift Equivariant Maps
2.1. Time-Frequency Shift Operators

We define the translation (time shift) operator T : CN → CN by

Tx = (xN−1, x0, x1, . . . , xN−2), x = (x0, x1, . . . , xN−1) ∈ CN ,

and the modulation (frequency shift) operator M : CN → CN by

Mx = (ω0x0, ω1x1, . . . , ωN−1xN−1) with ω := e2πi/N .

These operators are linear unitary operators, which can be represented by N×N unitary matrices:

T =



0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 0
0 0 0 · · · 1 0


, M =



1 0 0 · · · 0 0
0 ω 0 · · · 0 0
0 0 ω2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · ωN−2 0
0 0 0 · · · 0 ωN−1


.
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Note that since TN = MN = IN , we have TN+k = Tk and MN+ℓ = Mℓ for all integers k
and ℓ. The time-frequency shift by (k, ℓ) ∈ ZN×ZN is defined by π(k, ℓ) := MℓTk. Since
T, M : CN → CN are linear unitary operators, the operator π(k, ℓ) is also linear and unitary.

For a Hilbert space H, we will denote the class of all linear operators on H by L(H),
and the class of all linear unitary operators on H by U (H).

Proposition 1. For any k, ℓ = 0, . . . , N − 1, we have

MℓTk = ωkℓ Tk Mℓ. (1)

This implies (MℓTk)(MqTp) = ω−kq Mℓ+qTk+p = ωℓp−kq (MqTp)(MℓTk) for k, ℓ, p, q = 0, . . . ,
N−1, and consequently, the operators MℓTk and MqTp commute if and only if [(k, ℓ), (p, q)] := ℓp− kq
is a multiple of N. Moreover, for any k, ℓ = 0, . . . , N − 1, we have

(MℓTk)−1 = ω−kℓM−ℓT−k, (2)

that is, π(k, ℓ)−1 = ω−kℓ π(−k,−ℓ).

Proof. The relation (1) is easily seen by computation. Using (1), we obtain

(MℓTk)−1 = T−k M−ℓ = ω−kℓM−ℓT−k,

which is exactly (2).

Remark 1. The definition of [·, ·] remains unchanged for time-frequency shift operators of the form
Tk Mℓ with (k, ℓ) ∈ ZN×ZN . Indeed, (1) implies (Tk Mℓ)(Tp Mq) = ωℓp−kq (Tp Mq)(Tk Mℓ)
for k, ℓ, p, q = 0, . . . , N − 1, and consequently, the operators Tk Mℓ and Tp Mq commute if and
only if [(k, ℓ), (p, q)] = ℓp − kq is a multiple of N.

For a subgroup Λ of ZN ×ZN , its adjoint group is defined by

Λ◦ := {(p, q) ∈ ZN×ZN : (MℓTk)(MqTp) = (MqTp)(MℓTk) for all (k, ℓ) ∈ Λ}
= {(p, q) ∈ ZN×ZN : ℓp − kq ∈ NZ for all (k, ℓ) ∈ Λ}.

Since {MℓTk : k, ℓ = 0, . . . , L − 1} forms a basis for L(CN) (see, e.g., Lemma 1 of [24]),
every linear operator F ∈ L(CN) can be expressed as

F =
L−1

∑
k,ℓ=0

ak,ℓ MℓTk for some ak,ℓ ∈ C, k, ℓ = 0, . . . , L − 1. (3)

If F commutes with MℓTk for (k, ℓ) ∈ Λ, then we must have ak,ℓ = 0 for (k, ℓ) /∈ Λ◦, so that

F = ∑
(k,ℓ)∈Λ◦

ak,ℓ MℓTk.

Therefore, the commutant (or centralizer) of (π, Λ) (see, e.g., Proposition 4.14 of [25]) is given by

C(π, Λ) := {F ∈ L(CN) : Fπ(k, ℓ) = π(k, ℓ)F for all (k, ℓ) ∈ Λ}
= span{π(k, ℓ) : (k, ℓ) ∈ Λ◦}.

(4)

Remark 2. For a subgroup Λ of ZL×ZL, its adjoint group Λ◦ has cardinality L2/|Λ|. While this
fact is somewhat considered folklore, we could not find a suitable reference in the literature, so we
provide a short proof of this fact in Appendix A.
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2.2. Λ-Equivariant Maps

Definition 1. For any Λ ⊂ ZN×ZN , we say that a map F : CN → CN is Λ-equivariant if

F ◦ π(k, ℓ) = π(k, ℓ) ◦ F for all (k, ℓ) ∈ Λ. (5)

Clearly, the set of Λ-equivariant linear maps is precisely C(π, Λ), the commutant of
(π, Λ). According to (4), every (π, Λ)-equivariant linear map is of the form

∑
(k,ℓ)∈Λ◦

ak,ℓ MℓTk for some {ak,ℓ}(k,ℓ)∈Λ◦ ∈ CΛ◦
.

Since the case of linear maps is obvious, our consideration of Λ-equivariant maps will be
focused on nonlinear maps.

We first observe some necessary conditions for Λ-equivariance.

Proposition 2. Let Λ be a subgroup of ZN ×ZN , and assume that F : CN → CN is Λ-equivariant.
If Λ contains (k, ℓ) and (k′, ℓ′) with s = gcd(kℓ′, N), then

F(e2πis/N x) = e2πis/N F(x) for all x ∈ CN . (6)

Proof. Note that since Λ is a subgroup, we have (k + k′, ℓ+ ℓ′) ∈ Λ. Using Proposition 1
and (5), we have

ω−kℓ′π(k + k′, ℓ+ ℓ′)F(x) = π(k, ℓ)π(k′, ℓ′)F(x) = F
(
π(k, ℓ)π(k′, ℓ′)x

)
= F

(
ω−kℓ′π(k + k′, ℓ+ ℓ′)x

)
= π(k + k′, ℓ+ ℓ′) F(ω−k′ℓx),

so that ω−kℓ′ F(x) = F(ω−kℓ′x). Since gcd(kℓ′, N) = s, there exist some p, q ∈ Z with
p(−k′ℓ) + qN = s. In fact, we can choose p ∈ {0, . . . , N − 1} such that p(−k′ℓ) ≡ s
mod N. Then, for any x ∈ CN , we have

ωsF(x) =
(
ω−kℓ′)pF(x) =

(
ω−kℓ′)p−1F(ω−kℓ′x) = . . . = F

(
(ω−kℓ′)px

)
= F(ωsx),

which is equivalent to (6).

It is easily seen that for a subgroup Λ of ZN ×ZN , the set

ΩΛ := {kℓ′ mod N : (k, ℓ), (k′, ℓ′) ∈ Λ}

forms a subgroup ofZN ; in fact, ΩΛ = s0Z/NZ, where s0 := min{gcd(kℓ′, N) : (k, ℓ), (k′, ℓ′)
∈ Λ}. This leads to the following definition.

Definition 2. Let m, n ∈ N and N ∈ N. For any Ω ⊂ ZN , we say that a map F : Cn → Cm is
Ω-phase homogeneous if

F(e2πis/N x) = e2πis/N F(x) for all s ∈ Ω, x ∈ Cn.

Definition 3. For any F : CN → CN and any nonzero v ∈ CN , we define Fv : CN → C by

Fv(x) =
〈

F(x), v
〉
, x ∈ CN .

We now present our first main theorem, which addresses the properties of the mapping
F 7→ Fv. Note that if F : CN → CN is Λ-equivariant for a subgroup Λ of ZN ×ZN , then it is
ΩΛ-phase homogeneous by Proposition 2, and so is Fv.

Before stating the theorem, we note that {π(k, ℓ)v : (k, ℓ) ∈ ZN×ZN} is a tight frame
for CN whenever v ̸= 0 (see, e.g., Proposition 2 of [24]). Moreover, there exists a nonzero
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vector v ∈ CN such that every N elements of {π(k, ℓ)v : (k, ℓ) ∈ ZN×ZN} are linearly
independent in CN . In fact, such vectors form a dense open set WN of full measure in
CN (see Theorem 1 of [24]). If Λ ⊂ ZN×ZN is a set of cardinality at least N, then for any
v ∈ WN we have span{π(k, ℓ)v : (k, ℓ) ∈ Λ} = CN , in which case {π(k, ℓ)v}(k,ℓ)∈Λ forms
a frame of CN .

Theorem 3. Assume that span{π(k, ℓ)v : (k, ℓ) ∈ Λ} = CN for some subgroup Λ of ZN ×ZN
and some vector v ∈ CN . Then, the mapping F 7→ Fv is an injective map from the space of
Λ-equivariant functions CN → CN to the space of ΩΛ-phase homogeneous functions CN → C.
Moreover, if {π(k, ℓ)u}(k,ℓ)∈Λ is a dual frame of {π(k, ℓ)v}(k,ℓ)∈Λ in CN , then a Λ-equivariant
function F : CN → CN can be expressed as

F(x) = ∑
(k,ℓ)∈Λ

ω−kℓ Fv
(
π(−k,−ℓ)x

)
π(k, ℓ)u. (7)

If |Λ| = N, then the mapping F 7→ Fv is a bijective map from the space of Λ-equivariant functions
CN → CN to the space of ΩΛ-phase homogeneous functions CN → C.

Proof. To prove the injectivity of F 7→ Fv, suppose that Fv = Hv for some Λ-equivariant
functions F, H : CN → CN . Then, for any (k, ℓ) ∈ Λ and x ∈ CN , we have〈

F(x), π(k, ℓ)v
〉
=
〈
π(k, ℓ)−1F(x), v

〉
=
〈
ω−kℓπ(−k,−ℓ)F(x), v

〉
=
〈
ω−kℓF(π(−k,−ℓ)x), v

〉
= ω−kℓFv(π(−k,−ℓ)x)

= ω−kℓHv(π(−k,−ℓ)x) =
〈
ω−kℓH(π(−k,−ℓ)x), v

〉
=
〈
ω−kℓπ(−k,−ℓ)H(x), v

〉
=
〈
π(k, ℓ)−1H(x), v

〉
=
〈

H(x), π(k, ℓ)v
〉
.

Since {π(k, ℓ)v : (k, ℓ) ∈ Λ} is complete in CN , we obtain that F(x) = H(x) for all x ∈ CN .
Now, let {π(k, ℓ)u}(k,ℓ)∈Λ be a dual frame of {π(k, ℓ)v}(k,ℓ)∈Λ in CN, which means that

z = ∑
(k,ℓ)∈Λ

〈
z, π(k, ℓ)v

〉
π(k, ℓ)u, z ∈ CN .

Then, for any x ∈ CN , we have

∑
(k,ℓ)∈Λ

ω−kℓ Fv
(
π(−k,−ℓ)x

)
π(k, ℓ)u = ∑

(k,ℓ)∈Λ
ω−kℓ〈F(π(−k,−ℓ)x), v

〉
π(k, ℓ)u

= ∑
(k,ℓ)∈Λ

〈
ω−kℓ π(−k,−ℓ)F(x), v

〉
π(k, ℓ)u

= ∑
(k,ℓ)∈Λ

〈
π(k, ℓ)−1F(x), v

〉
π(k, ℓ)u

= ∑
(k,ℓ)∈Λ

〈
F(x), π(k, ℓ)v

〉
π(k, ℓ)u

= F(x),

which establishes (7).
Finally, assume that |Λ| = N. Then, {π(k, ℓ)v}(k,ℓ)∈Λ forms a Riesz basis for CN, so

there exists a unique dual Riesz basis {π(k, ℓ)u}(k,ℓ)∈Λ of {π(k, ℓ)v}(k,ℓ)∈Λ in CN, which
is necessarily biorthogonal to {π(k, ℓ)v}(k,ℓ)∈Λ (see, e.g., [26]). To prove the surjectivity of
F 7→ Fv, we pick any ΩΛ-phase homogeneous function g : CN → C and set F : CN → CN by

F(x) := ∑
(k,ℓ)∈Λ

ω−kℓ g
(
π(−k,−ℓ)x

)
π(k, ℓ)u, x ∈ CN .
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Then, for any (p, q) ∈ Λ and x ∈ CN , we have

F(π(p, q)x) = ∑
(k,ℓ)∈Λ

ω−kℓ g
(
π(−k,−ℓ)π(p, q)x

)
π(k, ℓ)u

= ∑
(k,ℓ)∈Λ

ω−(k+p)(ℓ+q) g
(
π(−k − p,−ℓ− q)π(p, q)x

)
π(k + p, ℓ+ q)u

(8)
= ∑

(k,ℓ)∈Λ
ω−(k+p)(ℓ+q) g

(
ω−(k+p)q π(−k,−ℓ)x

)
ωpℓ π(p, q)π(k, ℓ)u

= ∑
(k,ℓ)∈Λ

ω−(k+p)(ℓ+q) ω−(k+p)q g
(
π(−k,−ℓ)x

)
ωpℓ π(p, q)π(k, ℓ)u

= ∑
(k,ℓ)∈Λ

ω−kℓ g
(
π(−k,−ℓ)x

)
π(p, q)π(k, ℓ)u

= π(p, q) ∑
(k,ℓ)∈Λ

ω−kℓ g
(
π(−k,−ℓ)x

)
π(k, ℓ)u

= π(p, q)F(x),

which shows that F is Λ-equivariant. Since {π(k, ℓ)u}(k,ℓ)∈Λ and {π(k, ℓ)v}(k,ℓ)∈Λ are
biorthogonal, it holds for any x ∈ CN that

Fv(x) = ⟨F(x), v⟩ =
〈

∑
(k,ℓ)∈Λ

ω−kℓ g
(
π(−k,−ℓ)x

)
π(k, ℓ)u, v

〉
=
〈

∑
(k,ℓ)∈Λ

g
(
ω−kℓ π(−k,−ℓ)x

)
π(k, ℓ)u, v

〉
=
〈

∑
(k,ℓ)∈Λ

g
(
π(k, ℓ)−1x

)
π(k, ℓ)u, v

〉
= g(x).

Hence, we conclude that the mapping F 7→ Fv is also surjective.

Remark 3. As one would expect, the mapping F 7→ Fv is not surjective if |Λ| > N. Indeed, if
|Λ| > N and span{π(k, ℓ)v : (k, ℓ) ∈ Λ} = CN , then there are many dual frames of {π(k, ℓ)v :
(k, ℓ) ∈ Λ} in CN . If g = Fv for some F and v, then for any dual frames {π(k, ℓ)w}(k,ℓ)∈Λ and
{π(k, ℓ)w̃}(k,ℓ)∈Λ of {π(k, ℓ)v}(k,ℓ)∈Λ we have

∑
(k,ℓ)∈Λ

ω−kℓ g
(
π(−k,−ℓ)x

)
π(k, ℓ)w = F(x) = ∑

(k,ℓ)∈Λ
ω−kℓ g

(
π(−k,−ℓ)x

)
π(k, ℓ)w̃

for all x ∈ CN by (7). Certainly, not every ΩΛ-phase homogeneous function g : CN → C satisfies
this property.

3. Approximation of Λ-Equivariant Maps

In this section, we consider an approximation of continuous Λ-equivariant maps
F : CN → CN that are generally nonlinear, where Λ is a subgroup of ZN ×ZN and
the Λ-equivariance is defined by (5). For instance, the map F : CN → CN given by
F(x) = ∥x∥p x with p > 0, is a nonlinear continuous Λ-equivariant map.

As seen in Section 2.2 (particularly in Theorem 3 and its proof), working with the
time-frequency shift operators π(k, ℓ), (k, ℓ) ∈ Λ, usually requires careful bookkeeping
of extra multiplicative phase factors due to the non-commutativity of T and M. (The
non-commutativity of T and M can often be frustrating. However, it is precisely this
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non-commutativity that has given rise to the deep and rich theory of time-frequency
analysis [23].) In fact, the map

π|Λ : Λ → U (CN), (k, ℓ) 7→ MℓTk,

is generally not a group homomorphism; indeed,

π(k, ℓ)π(k′, ℓ′) = e−2πikℓ′/Nπ(k + k′, ℓ+ ℓ′) (8)

is equal to π(k + k′, ℓ+ ℓ′) only if kℓ′ is a multiple of N (see Proposition 1). (Although π|Λ
is not a group homomorphism and thus not a group representation, it is often referred
to as a projective group representation of G on CN . In general, a map ρ : G → U (H)
is called a projective group representation of G on H if for each pair of g1, g2 ∈ G, there
exists a unimodular c(g1, g2) ∈ C such that ρ(g1g2) = c(g1, g2) ρ(g1)ρ(g2); see, e.g., [25].)
Obviously, the computations involved would be simplified significantly if π|Λ were a group
homomorphism in general. Note that, as mentioned in Section 1, a group homomorphism
ρ : G → U (H) whose images are unitary operators on H is called a (unitary) group
representation of G on H, where G is a group and H is a separable Hilbert space. Therefore,
the map π|Λ would be a unitary representation if it were a group homomorphism.

In the following, we first discuss a systematic method of avoiding such extra multi-
plicative phase factors by embedding Λ ⊂ ZN×ZN into the Weyl–Heisenberg group. After
briefly reviewing essential concepts on group representations and neural networks, we
consider cyclic subgroups of ZN ×ZN , in which case the map π|Λ can be replaced by a
unitary group representation. We show that if Λ is a cyclic subgroup of ZN ×ZN , then
any Λ-equivariant map CN → CN can be approximated with shallow neural networks
involving the adjoint group Λ◦, which has significantly fewer degrees of freedom compared
with standard shallow neural networks.

3.1. Embedding of Λ into the Weyl–Heisenberg Group

To avoid the bookkeeping of extra multiplicative phase factors, we can simply embed
the subgroups of ZN ×ZN into the finite Weyl–Heisenberg group HN = ZN×ZN×ZN ,
on which group representations can be defined. There exists a group representation
τ : HN → U (CN), known as the Schrödinger representation, which satisfies τ(k, ℓ, 0) = π(k, ℓ)
for all (k, ℓ) ∈ ZN × ZN . In fact, for any subgroup Λ of ZN ×ZN and any subgroup Ω of
ZN containing ΩΛ := {kℓ′ mod N : (k, ℓ), (k′, ℓ′) ∈ Λ}, the map

τ : Λ × Ω → U (H), τ(k, ℓ, s) = e2πis/N MℓTk, (9)

is a group representation of G = Λ×Ω on CN , with the group operation on G given by

(k, ℓ, s) + (k′, ℓ′, s′) := (k + k′, ℓ+ ℓ′, s + s′ − kℓ′).

Clearly, we have τ(k, ℓ, 0) = MℓTk = π(k, ℓ) for all (k, ℓ) ∈ Λ.
It is clear that a map F : CN → CN is Λ-equivariance in the sense of (5) if and only if it

is (τ, Λ×{0})-equivariant in the sense of Definition 4. Moreover, in this case, Proposition 2
implies that F is ΩΛ-phase homogeneous, which is equivalent to F ◦ τ(0, 0, s) = τ(0, 0, s) ◦ F
for all s ∈ ΩΛ. Consequently, we have the following proposition.

Proposition 3. For any subgroup Λ of ZN ×ZN and any F : CN → CN , the following
are equivalent.

(i) F is Λ-equivariant;
(ii) F is (τ, Λ×{0})-equivariant;
(iii) F is (τ, Λ×ΩΛ)-equivariant.
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Using the true group representation τ instead of π|Λ allows us to avoid the tedious
bookkeeping of extra multiplicative phase factors. Note, however, that τ requires three
input parameters, while π|Λ involves only two. In fact, the description of the extra phase
factors is simply transferred to the third parameter of τ. Nevertheless, an important
advantage of using τ instead of π|Λ is that it allows for the use of tools from group
representation theory.

3.2. Group Representations and Neural Networks

In this section, we review some concepts and tools from group representation theory
and introduce the so-called ♮-transform and its inverse transform for later use. We also
review the basic structure of neural networks and the universal approximation theorem.

We assume that G is a finite group, and consider maps of the form F : H → H, where
H is a finite-dimensional Hilbert spaces on which a unitary representation ρ of G is defined.
This means that for each λ ∈ G, the map ρ(λ) : H → H is a linear unitary operator, and that
ρ : G → U (H) is a group homomorphism, i.e., ρ(λ1λ2) = ρ(λ1)ρ(λ2) for all λ1, λ2 ∈ G.
Let us formally state the definition of equivariance and invariance in this setting.

Definition 4 (Equivariance and Invariance). For a group G and a unitary representation ρ of G
on a Hilbert space H, we say that a map F : H → H is

• (ρ, G)-equivariant if Fρ(λ) = ρ(λ)F for all λ ∈ G;
• (ρ, G)-invariant if Fρ(λ) = F for all λ ∈ G.

Note that a (ρ, G)-equivariant/invariant map F : H → H is not necessarily linear
or bounded.

Definition 5. For a group G, the left translation of a vector x ∈ CG by λ ∈ G is given by

Lλx(ν) := x(λ−1ν) for ν ∈ G.

In fact, the map λ 7→ Lλ is a group homomorphism from G to U (CG), that is,
Lλ1λ2 = Lλ1 Lλ2 for all λ1, λ2 ∈ G, and therefore, it induces a group representation of
G on CG. We say that a map Φ : CG → CG is left G-translation equivariant if ΦLλ = LλΦ for
all λ ∈ G.

Definition 6. Let G be a group and let ρ be a unitary representation of G on a Hilbert space H.
Given a window g ∈ H, the set {ρ(λ)g : λ ∈ G} is called the orbit of g under ρ(λ) for λ ∈ G.
The map Ug : H → CG defined by

Ug( f ) = {⟨ f , ρ(λ)g⟩}λ∈G

is called the analysis operator of {ρ(λ)g : λ ∈ G}, and its adjoint operator U∗
g : CG → H given by

U∗
g (x) = ∑

λ∈G
xλ ρ(λ)g

is called the synthesis operator of {ρ(λ)g : λ ∈ G}.

It is easy to check that

Ug ρ(λ) = Lλ Ug and U∗
g Lλ = ρ(λ)U∗

g , λ ∈ G. (10)

We are particularly interested in the case where the orbit of g spans H, that is,
span{ρ(λ)g : λ ∈ G} = H. Since H is finite-dimensional, this implies that {ρ(λ)g :
λ ∈ G} is a frame for H and the associated frame operator Sg := U∗

g Ug is a positive,
self-adjoint bounded operator on H. It follows from (10) that Sgρ(λ) = ρ(λ)Sg and thus
S−1

g ρ(λ) = ρ(λ)S−1
g for all λ ∈ G. For any f ∈ H, we have
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f = S−1
g Sg f = S−1

g

(
∑

λ∈G
Ug f (λ) ρ(λ)g

)
= ∑

λ∈G
Ug f (λ) S−1

g
(
ρ(λ)g

)
= ∑

λ∈G
Ug f (λ) ρ(λ)S−1

g (g) = ∑
λ∈G

Ug f (λ) ρ(λ)g∗ = U∗
g∗Ug f ,

where g∗ := S−1
g (g) ∈ H. This shows that U∗

g∗Ug is the identity operator on H, i.e.,

U∗
g∗Ug = IdH, (11)

and correspondingly, {ρ(λ)g∗ : λ ∈ G} is the canonical dual frame of {ρ(λ)g : λ ∈ G}.
In light of (11), we newly introduce a transform which lifts a map H → H to a map

CG → CG, and also its inverse transform.

Definition 7. Let G be a finite group and let ρ be a unitary representation of G on a finite-
dimensional Hilbert space H. Assume that span{ρ(λ)g : λ ∈ G} = H, and let Sg := U∗

g Ug and
g∗ := S−1

g (g). For any map F : H → H, the ♮-transform of F is defined by

F♮ := Ug ◦ F ◦ U∗
g∗ : CG → CG.

For any map Φ : CG → CG, the inverse ♮-transform of Φ is defined by

Φ−♮ := U∗
g∗ ◦ Φ ◦ Ug : H → H.

As shown in Figure 1, the ♮-transform converts a map H → H into a map CG → CG,
and the inverse ♮-transform converts a map CG → CG into a map H → H.

CG CG

H H
F

UgU∗
g∗

F♮ :=Ug◦F◦U∗
g∗

CG CG

H H

Φ

U∗
g∗Ug

Φ−♮ :=U∗
g∗◦Φ◦Ug

Figure 1. The ♮-transform and its inverse transform

Proposition 4. Let G be a finite group, and let ρ be a unitary representation of G on a finite-
dimensional Hilbert space H. Assume that span{ρ(λ)g : λ ∈ G} = H, and let Sg := U∗

g Ug and
g∗ := S−1

g (g). Then, the following hold.

(i) (F♮)−♮ = F for any map F : H → H.
(ii) A map F : H → H is continuous if and only if F♮ is continuous.
(iii) A map F : H → H is (ρ, G)-equivariant if and only if F♮ is left G-translation equivariant.

Proof. (i) It follows from (11) that (F♮)−♮ = U∗
g∗(UgF U∗

g∗)Ug = F for any F : H → H.
(ii) Since the maps Ug : H → CG and U∗

g∗ : CG → H are bounded linear operators, the

continuity of F implies the continuity of F♮ = UgF U∗
g∗ . Similarly, the continuity of F♮

implies the continuity of F = (F♮)−♮ = U∗
g∗ F♮ Ug.

(iii) It follows from (10) that the G-equivariance of F implies the left G-translation equiv-
ariance of F♮ = UgF U∗

g∗ . Similarly, the left G-translation equivariance of F♮ implies the

G-equivariance of F = (F♮)−♮ = U∗
g∗ F♮ Ug.
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We now provide a brief review of neural networks and the universal approximation theorem.
Let K be either R or C. An activation function is a function σ : K → K that acts compo-

nentwise on vectors; that is, σ(x1, . . . , xn) =
(
σ(x1), . . . , σ(xn)

)
for any (x1, . . . , xn) ∈ Kn.

A fully connected feedforward neural network with P hidden layers is given by

Ψ : Kd → Kn, Ψ(x) = R(P) ◦
(
σ ◦ R(P−1)) ◦ · · · ◦ (σ ◦ R(0)), (12)

where R(p) : KNp → KNp+1 , x 7→ A(p) x + b(p) is affine-linear with N0 = d and NP+1 = n.
Such a function Ψ is often called a neural network, but we will call it a σ-neural network to
specify the activation function employed.

A shallow neural network is a neural network with a single (P = 1) hidden layer. In
particular, a shallow neural network with output dimension n = 1 is given by

Ψ : Kd → K, Ψ(x) =
J

∑
j=1

cj σ(wT
j x + bj) with some J ∈ N, cj, bj ∈ K, wj ∈ Kd. (13)

Definition 8. A function σ : K → K is called shallow universal if the set of K-valued shallow
σ-networks is dense in the set of all continuous functions f : Kd → K, with respect to locally
uniform convergence.

The following theorem, known as the universal approximation theorem, is a fundamental
result in the theory of neural networks.

Theorem 4 (The universal approximation theorem; see [27–31] for K = R, and [32] for
K = C). Let d ∈ N.

• A function σ : R → R is shallow universal if and only if σ is not a polynomial.
• A function σ : C → C is shallow universal if and only if σ is not a polyharmonic. Here, a

function τ : C → C is called polyharmonic if there exists m ∈ N such that τ ∈ C2m in the
sense of real variables and ∆mσ ≡ 0, where ∆ = ∂2

∂x2 +
∂2

∂y2 is the usual Laplace operator on

C ∼= R2.

In 1996, Mhaskar [33] obtained a quantitative result for approximation of Cn functions
using shallow networks with smooth activation functions. More recently, Yarotsky [34]
derived a quantitative approximation result for deep ReLU networks, where ReLU net-
works are given by (12) with K = R and the ReLU activation function σ : R → R,
σ(x) = max{x, 0}, and “deep” refers to having a large P ∈ N in (12). For the case of
complex-valued deep neural networks, we refer to [35].

3.3. Cyclic Subgroups Λ of ZN ×ZN

We now consider the case of cyclic subgroups of ZN ×ZN , where group representa-
tions can be defined directly without embedding into the Weyl–Heisenberg group. The
cyclic subgroups of order N in ZN ×ZN are given by

Λs = {(0, 0), (1, s), . . . , (N − 1, (N − 1)s)} = ⟨(1, s)⟩, s = 0, . . . , N − 1,

Λ∞ = {(0, 0), (0, 1), . . . , (0, N − 1)} = ⟨(0, 1)⟩.

If N is prime, these are the only nontrivial proper subgroups of ZN ×ZN , but if N is com-
posite, there exist noncyclic subgroups of order N in ZN ×ZN ; for instance, {0, 2, 4}×{0, 3}
is a noncyclic subgroup of order 6 in Z6×Z6. It is easily seen that the adjoint group of Λs in
ZN ×ZN is Λs itself; that is, (Λs)◦ = Λs (see Section 2.1).

We define the map ρ : Λs → U (CN) by(
ρ(k, ℓ)x

)
(n) = e−kℓπi/Ne2πiℓn/N x(n − k), (k, ℓ) ∈ Λs, x ∈ CN .
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Setting ω0 := eπi/N , we may simply write

ρ(k, ℓ) = ω−kℓ
0 MℓTk = ωkℓ

0 Tk Mℓ, (k, ℓ) ∈ Λs. (14)

For any (k, ℓ), (k′, ℓ′) ∈ Λs, we have

ρ(k + k′, ℓ+ ℓ′) = ω
−(k+ℓ)(k′+ℓ′)
0 Mℓ+ℓ′Tk+k′ = ω−kℓ−k′ℓ′−2kℓ′

0 Mℓ+ℓ′Tk+k′

(8)
= ω−kℓ−k′ℓ′

0 MℓTk Mℓ′Tk′ = ρ(k, ℓ)ρ(k′, ℓ′),

where we used the fact that k′ℓ = kℓ′ for all (k, ℓ), (k′, ℓ′) ∈ Λs. This shows that ρ is a group
homomorphism and thus a unitary group representation of Λs on CN . Due the symmetry
in (14), ρ is called the symmetric representation of Λs on CN .

Note that for any F : CN → CN and (k, ℓ) ∈ ZN×ZN , we have Fπ(k, ℓ) = π(k, ℓ)F if
and only if Fρ(k, ℓ) = ρ(k, ℓ)F, where we used the relation ρ(k, ℓ) = ω−kℓ

0 π(k, ℓ) from (14).
This implies that a map F : CN → CN is Λs-equivariant in the sense of Definition 1 if
and only if it is (ρ, Λs)-equivariant in the sense of Definition 4. Importantly, employing
(ρ, Λs)-equivariance in place of Λs-equivariance will allow us to apply the tools from group
representation theory described in Section 3.2.

We are interested in approximating Λs-equivariant (or (ρ, Λs)-equivariant) maps
F : CN → CN by neural networks. For this, we need to choose a complex-valued activation
function σ : C → C (see Section 3.2) for the neural networks. Since σ acts componentwise on
its input, i.e., (x1, . . . , xN) 7→ (σ(xN), . . . , σ(xN)), it clearly commutes with all translations,
i.e., σT = Tσ; however, σ does not commute with modulations in general. As shown in (14),
the representation ρ includes the multiplicative phase factor ω0 = eπi/N , so we will assume
that σ : C → C is eπi/N-phase homogeneous (see Definition 2):

σ(eπi/Nz) = eπi/Nσ(z), z ∈ C,

which ensures that σ commutes with all ρ(k, ℓ) and all modulations.
We first need the following lemma. Below, we denote by 1N := (1, 1, . . . , 1) ∈ CN the

vector whose entries are all equal to 1.

Lemma 1. Assume that σ : C → C is shallow-universal. If a map F : CN → CN satisfies
FT = TF, then there exists a shallow convolutional neural network

Ψ : CN → CN , Ψ(x) =
J

∑
j=1

cj σ(Bjx + bj1N), x ∈ CN ,

where Bj ∈ span{Tk : k = 0, . . . , N − 1} and bj ∈ C for j = 1, . . . , J, which approximates F
uniformly on compact sets in CN .

Proof. Using the universal approximation theorem (see Theorem 4), the first output com-
ponent map F0 : CN → C, x 7→ (Fx)(0), can be approximated by a shallow network

ψ : CN → C, x 7→
J

∑
j=1

cj σ(wT
j x + bj)

with some J ∈ N, bj, cj ∈ C, wj ∈ CN . Note that since FT = TF and since TN is the identity
map on CN , we have FTn = TnF for all n ∈ Z. This condition provides approximations for
other component maps Fn : CN → C, x 7→ (Fx)(n), with n = 1, . . . , N − 1, in terms of Ψ.
In fact, we have

(Fx)(n) = (T−nFx)(0) = (FT−nx)(0) ≈ ψ(T−nx), x ∈ CN , n = 1, . . . , N − 1.
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Consequently, the map F : CN → CN , x 7→ {(Fx)(n)}N−1
n=0 , is approximated by the map

Ψ : CN → CN defined by (Ψx)(n) = ψ(T−nx) for n = 0, . . . , N − 1. For x, y ∈ CN , let
x ∗ y be the circular convolution of a and b defined by (x ∗ y)(n) = ∑N−1

k=0 xkyn−k, where x
and y are understood as N-periodic sequences on the integers. Then, for any x ∈ CN and
n = 0, . . . , N − 1, we have

Ψ(T−nx) =
J

∑
j=1

cj σ
(
(wj ∗ x)(n) + bj

)
,

and therefore, we may write

Ψ : CN → CN , Ψ(x) = {ψ(T−nx)}N−1
n=0 =

{ J

∑
j=1

cj σ
(
(wj ∗ x)(n) + bj

)}N−1

n=0
.

It is easily seen that every convolutional map CN → CN , x 7→ w ∗ x, is a linear map, and
in fact, a linear combination of Tk, k = 0, . . . , N − 1. Hence, the map Ψ : CN → CN can be
rewritten as

Ψ(x) =
J

∑
j=1

cj σ(Bjx + bj1N), x ∈ CN ,

where Bj ∈ span{Tk : k = 0, . . . , N − 1} for j = 1, . . . , J. The fact that Ψ approximates
F uniformly on compact sets in CN follows from the uniform approximation of F0 by ψ
on compact sets in C. Finally, we note that Ψ expressed above is a shallow convolutional
neural network described in Section 3.2. This completes the proof.

Theorem 5. Assume that σ : C → C is shallow universal and satisfies σ(eπi/Nz) = eπi/Nσ(z)
for all z ∈ C. Let Λ = Λs for some s ∈ {0, 1, . . . , N − 1}. Then, any continuous (ρ, Λ)-
equivariant (or Λ-equivariant) map F : CN → CN can be approximated (uniformly on compact
sets) by a shallow neural network

x 7→
J

∑
j=1

cj σ(Ajx + bjv),

where Aj ∈ span{ρ(k, ℓ) : (k, ℓ) ∈ Λ} and bj ∈ C for j = 1, . . . , J, and v ∈ CN satisfies
ρ(k, ℓ)v = v for all (k, ℓ) ∈ Λ. Moreover, every map of this form is (ρ, Λ)-equivariant (or
Λ-equivariant).

Remark 4. Since ρ(k, ℓ) = ω−kℓ
0 π(k, ℓ) by (14), we have span{ρ(k, ℓ) : (k, ℓ) ∈ Λ} =

span{π(k, ℓ) : (k, ℓ) ∈ Λ} for any Λ ⊂ ZN×ZN . On the other hand, the vectors satisfying
ρ(k, ℓ)b = b can be significantly different from those satisfying π(k, ℓ)b = b.

Proof. Since Λ = Λs is cyclic, we order its elements as (0, 0), (1, s), . . . , (N − 1, (N − 1)s),
and treat CΛ as CN , since CΛ ≃ CN . Then, the operators Ug : CN → CΛ and U∗

g : CΛ →
CN , given in Definition 6, can be represented as the N×N matrices

Ug =


(
ρ(0, 0)g

)∗
...(

ρ(N − 1, (N − 1)s)g
)∗
, U∗

g =
[
ρ(0, 0)g, . . . , ρ(N − 1, (N − 1)s)g

]
,
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respectively, where (·)∗ denotes the conjugate transpose. Setting g = (1, 0, . . . , 0) ∈ CN, we have

U∗
g = diag (ek2sπi/N)N−1

k=0 =


1 0 · · · 0
0 e12sπi/N · · · 0
...

...
. . .

...
0 0 · · · e(N−1)2sπi/N

, (15)

so that Sg = U∗
g Ug = IdN and g∗ := S−1

g g = g. As a result, the set {ρ(k, ℓ)g}(k,ℓ)∈Λ forms
an orthonormal basis for CN .

Note that for any continuous (ρ, Λ)-equivariant F : CN → CN , the map F♮ := UgFU∗
g :

CΛ → CΛ is continuous and left Λ-translation equivariant (see Proposition 4). If F is
linear, then F♮ is also linear and can be represented as a circulant matrix, equivalently,
F♮ = ∑N−1

k=0 ck Tk : CΛ → CΛ for some c0, . . . , cN−1 ∈ C, so that

F = U∗
g (Ug F U∗

g )Ug = U∗
g F♮ Ug =

N−1

∑
k=0

ck (U∗
g T Ug)

k.

Therefore, the commutant of (ρ, Λ) is given by

C(ρ, Λ) := {F ∈ L(CN) : Fρ(k, ℓ) = ρ(k, ℓ)F for all (k, ℓ) ∈ Λ}
= span{U∗

g TkUg : k = 0, . . . , N − 1}.

On the other hand, since ρ(k, ℓ) = ω−kℓ
0 π(k, ℓ) by (14), the commutant of (ρ, Λ) coincides

with that of (π, Λ), i.e.,

C(ρ, Λ) = C(π, Λ)
(4)
= span{π(k, ℓ) : (k, ℓ) ∈ Λ◦} = span{ρ(k, ℓ) : (k, ℓ) ∈ Λ◦}.

Since the adjoint group of Λ = Λs is itself, i.e., Λ◦ = Λ (see Section 2.1), we obtain

span{ρ(k, ℓ) : (k, ℓ) ∈ Λ} = C(ρ, Λ) = span{U∗
g TkUg : k = 0, . . . , N − 1}. (16)

Now, we consider the general case where F : CN → CN is possibly nonlinear. If F
is nonlinear, then F♮ = UgFU∗

g : CΛ → CΛ is a nonlinear left Λ-translation equivariant
map. Since Λ = Λs = {(0, 0), (1, s), . . . , (N − 1, (N − 1)s)} is an additive group and since
|Λ| = N and CΛ ≃ CN , the map F♮ can be viewed as a map from CN to CN . For simplicity,
we will abuse notation and write F♮ : CN → CN instead of F♮ : CΛ → CΛ; thus, the
first component of F♮(x) ∈ CΛ (≃ CN) will be simply denoted by (F♮x)(0) instead of
(F♮x)(0, 0). Then, the left Λ-translation equivariance of F♮ can be expressed as F♮T = TF♮.
By applying Lemma 1 to F♮ : CN → CN , we obtain a shallow convolutional neural network

Ψ : CN → CN , Ψ(x) =
J

∑
j=1

cj σ(Bjx + bj1N), x ∈ CN ,

where Bj ∈ span{Tk : k = 0, . . . , N − 1}, and bj ∈ C for j = 1, . . . , J, which approximates
F♮ uniformly on compact sets in CN ; that is,

F♮(x) = (Ug F U∗
g )(x) ≈ Ψ(x) =

J

∑
j=1

cj σ(Bjx + bj1N) x ∈ CN .

By the continuity of the operators U∗
g and Ug, we obtain

F(x) =
(
U∗

g (Ug F U∗
g )Ug

)
(x) ≈

J

∑
j=1

cj U∗
g σ(BjUgx + bj1N), x ∈ CN .
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Note that since σ(eπi/Nz) = eπi/Nσ(z) for all z ∈ C, the function σ : C → C commutes
with U∗

g given by (15), that is, U∗
g σ = σ U∗

g . Therefore, we have

F(x) ≈
J

∑
j=1

cj σ(U∗
g BjUgx + bj U∗

g1N) =
J

∑
j=1

cj σ(Ajx + bjv), x ∈ CN ,

where Aj := U∗
g BjUg ∈ span{ρ(k, ℓ) : (k, ℓ) ∈ Λ} by (16), and the vector v := U∗

g1N

∈ CN satisfies

ρ(k, ℓ)v = ρ(k, ℓ)U∗
g1N

(4)
= U∗

g Lλ1N = U∗
g1N = v, (k, ℓ) ∈ Λ. (17)

Finally, we note that for any (k, ℓ) ∈ Λ,

ρ(k, ℓ)

(
J

∑
j=1

cj σ(Ajx + bjv)

)
=

J

∑
j=1

cj ρ(k, ℓ) σ(Ajx + bjv)

=
J

∑
j=1

cj σ
(
ρ(k, ℓ)Ajx + bjρ(k, ℓ)v

)
=

J

∑
j=1

cj σ
(

Ajρ(k, ℓ) x + bjv
)
,

where we used that ρ(k, ℓ) is a linear (unitary) operator commuting with σ, and that
Aj ∈ C(ρ, Λ) by (16) and ρ(k, ℓ)v = v by (17). Therefore, every map of the form x 7→
∑J

j=1 cj σ(Ajx + bjv) is (ρ, Λ)-equivariant.

Remark 5. The proof relies on observing (16) and choosing g ∈ CN such that U∗
g σ = σ U∗

g . To
obtain U∗

g σ = σ U∗
g , we have chosen g ∈ CN so that U∗

g is a diagonal matrix with exponential
entries, and required an appropriate phase-homogeneity on σ so that σ commutes with those
exponentials. This technique does not work for Λ∞ because U∗

g cannot be expressed as a diagonal
matrix for any g ∈ CN in that case.

Example 1. Let N = 4 and s = 1, so that Λ = Λ1 = {(0, 0), (1, 1), (2, 2), (3, 3)} ⊂ Z4×Z4. In
this case, we have ω = e2πi/4 = i, ω0 = eπi/4 = 1√

2
(1 + i), and ρ(k, ℓ) = ω−kℓ

0 MℓTk. Then,

ρ(0, 0) = I4,

ρ(1, 1) = ω−1
0 MT = ω−1

0


1 0 0 0
0 i 0 0
0 0 −1 0
0 0 0 −i




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 = ω−1
0


0 0 0 1
i 0 0 0
0 −1 0 0
0 0 −i 0

,

ρ(2, 2) = ω−4
0 M2T2 = −


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 =


0 0 −1 0
0 0 0 1
−1 0 0 0
0 1 0 0

,

ρ(3, 3) = ω−9
0 M2T2 = ω−1

0


1 0 0 0
0 −i 0 0
0 0 −1 0
0 0 0 i




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 = ω−1
0


0 1 0 0
0 0 −i 0
0 0 0 −1
i 0 0 0

,

and ρ(k, k)ρ(k′, k′) = ρ(k + k′, k + k′) for all k, k′ = 0, 1, 2, 3. With g = (1, 0, 0, 0)T, we have
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U∗
g =

[
ρ(0, 0)g ρ(1, 1)g ρ(2, 2)g ρ(3, 3)g

]
=


1 0 0 0
0 ω0 0 0
0 0 −1 0
0 0 0 ω0

,

v := U∗
g14 =


1 0 0 0
0 ω0 0 0
0 0 −1 0
0 0 0 ω0




1
1
1
1

 =


1

ω0
−1
ω0

.

It is easy to check that v is invariant under ρ(0, 0), ρ(1, 1), ρ(2, 2), ρ(3, 3); that is, ρ(k, k) v = v for
all k = 0, 1, 2, 3. Theorem 5 shows that any Λ-equivariant map F : C4 → C4 can be approximated
(uniformly on compact sets) by functions of the form

x 7→
M

∑
m=1

cm σ(Amx + bmv),

where Am ∈ span{ρ(k, k) : k = 0, 1, 2, 3} and bm ∈ C for m = 1, . . . , M. It is worth noting
that while ρ is a unitary group representation of Λ = {(0, 0), (1, 1), (2, 2), (3, 3)} on C4, the map
π|Λ given by π(k, ℓ) = MℓTk for (k, ℓ) ∈ Λ is not a group representation of Λ on C4, since
π(1, 1)π(1, 1) = (−i)π(2, 2) by (8).

4. Discussion

In this paper, we used finite-dimensional time-frequency analysis to investigate the
properties of time-frequency shift equivariant maps that are generally nonlinear.

First, we established a one-to-one correspondence between Λ-equivariant maps and
certain phase-homogeneous functions, accompanied by a reconstruction formula expressing
Λ-equivariant maps in terms of these functions. This deepens our understanding of
the structure of Λ-equivariant maps by connecting them to their corresponding phase-
homogeneous functions.

Next, we considered the approximation of Λ-equivariant maps by neural networks.
When Λ is a cyclic subgroup of order N in ZN ×ZN , we proved that every Λ-equivariant
map can be approximated by a shallow neural network with affine linear maps formed
as linear combinations of time-frequency shifts by Λ. For the subgroup Λ = ⟨(1, 0)⟩ =
{(0, 0), (1, 0), . . . , (N − 1, 0)}, the Λ-equivariance corresponds to translation equivariance,
and our result shows that every translation equivariant map can be approximated by a
shallow convolutional neural network, which aligns well with the established effectiveness
of convolutional neural networks (CNNs) for applications involving translation equivari-
ance. In this context, our result extends the approximation of translation equivariant maps
to general Λ-equivariant maps, with potential applications in signal processing.

Finally, we note that the tools used to prove the approximation result (Theorem 2) are
applicable in a more general setting than the one described in Section 3.3. In particular,
Definitions 6 and 7, and Proposition 4 apply to general unitary representations of arbitrary
groups. Therefore, our approach can be adapted to derive similar results for general
group-equivariant maps, which we leave as a direction for future research.
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Appendix A. A Proof of the Fact that |Λ◦| = L2/|Λ| for Any Subgroup Λ of ZL×ZL.

For finite abelian groups, it is known (see Lemma 4.2 of [25]) that the adjoint Λ◦ of
a subgroup Λ ⊂ G×Ĝ is the symplectic analogue of the dual subgroup Λ⊥, in the sense
that Λ◦ = J Λ⊥, where

J =
(

0 I|G|
−I|G| 0

)
.

(In fact, a similar characterization is known for locally compact Abelian groups;
see, e.g., Lemma 3.5.9 and Lemma 7.7.3 of [36]. In particular, for separable subgroups
Λ = Λ1×Λ2 < G×Ĝ, we have Λ◦ = Λ⊥

2 ×Λ⊥
1 while Λ⊥ = Λ⊥

1 ×Λ⊥
2 .) This implies that Λ◦

has the same cardinality as Λ⊥.
Here, the dual (annihilator) H⊥ of a subgroup H of G is defined as

H⊥ = {m ∈ Ĝ : ⟨m, n⟩ = 1 for all n ∈ H},

where ⟨m, n⟩ = e2πi(m1n1/N1+...+mdnd/Nd) for m = (m1, . . . , md), n = (n1, . . . , nd), if
G = ZN1× · · · ×ZNd . It is easily seen that |H⊥| · |H| = |G|, for instance, by taking
x = 1G = (1, 1, . . . , 1) in Theorem 6.3 of [21],

|H⊥| · ∑
h∈H

x(h) = ∑
m∈H⊥

x̂(m), x ∈ CG .

Therefore, we have |Λ◦| = |Λ⊥| = |ZL×ZL|/|Λ| = L2/|Λ|.
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