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Abstract: This study is intended to improve the motor imagery classification performance of two-class
data points using newly developed covariance decentering eigenface analysis (CDC-EFA). When
extracting the classification for the given data points, it is necessary to precisely distinguish the classes
because the left and right features are difficult to differentiate. However, when centering is performed,
the unique average data of each feature are lost, making them difficult to distinguish. CDC-EFA
reverses the centering method to enhance data characteristics, making it possible to assign weights to
data with a high correlation with other data. In experiments with the BCI dataset, the proposed CDC-
EFA method was used after preprocessing by filtering and selecting the electroencephalogram data.
The decentering process was then performed on the covariance matrix calculated when acquiring the
unique face. Subsequently, we verified the classification improvement performance via simulations
using several BCI competition datasets. Several signal processing methods were applied to compare
the accuracy results of the motor imagery classification. The proposed CDC-EFA method yielded
an average accuracy result of 98.89%. Thus, it showed improved accuracy compared with the other
methods and stable performance with a low standard deviation.

Keywords: motor imagery; brain computer interface; covariance decentering eigenface analysis

1. Introduction

The brain is composed of quite a lot of neurons that control emotions, memories,
thoughts, and activities [1,2]. Brain activity is typically produced by the electrical activ-
ity of human neurons [3]. Thus, we can measure electrical signals, which we call elec-
troencephalograms (EEGs), or magnetic signals, which we call magnetoencephalograms
(MEGs) [4]. Functional magnetic resonance, acoustic, spectroscopy, computed tomography,
and positron emission tomography equipment measure brain signals using magnetic, op-
tical, and gamma rays, respectively [5–9]. A brain–computer interface (BCI) is a kind of
artificial system manipulating objects with signals generated [10]. Motor imagery is a type
of virtual interface that can analyze neuronal activity to control external devices without
using the hands or feet [11,12]. Current BCI systems can be utilized to control artificial
bodies, such as electrical hand prostheses or artificial legs [13]. Therefore, it is crucial to
analyze and classify brain signals with high accuracy.

A BCI system includes several parts, including signal acquirement, signal processing,
and application interfaces [14]. Preprocessing, feature extraction, and classification are
the three major steps in signal processing [15]. A directly received brain signal is called a
raw EEG. It is necessary to select the necessary brain signals and filter out unwanted noise
signals coming from the measurement instruments and electrodes during preprocessing
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because the raw EEG is very weak, and the sensitivity is also low [16]. In addition, the
EEG signal measurement is processed during a certain period with a determined measured
paradigm from multiple electrodes; therefore, it is impossible to use raw data without signal
processing [17]. Consequently, a feature extraction process extracts the appropriate features
and classification processes that classify the processed signals after preprocessing [18].
Therefore, the recognition of raw EEG signal processing in motor imagery in BCI systems
is a very important research topic.

In the classification process, linear discriminant analysis (LDA) or a support vector
machine (SVM) is generally used for the motor imagery of BCI systems [19,20]. LDA is
used to reduce a dimensional that maximizes the class variances followed by a Gaussian
distribution and is efficient for low computation capabilities [21]. SVM is a classification
technique based on fundamental statistical learning theory; therefore, it is relatively suitable
for complex classification problems, even in small datasets [22]. In the SVM method, the
hyperplane is not only the boundary that divides the datasets but also the farthest from
the nearest training samples to have as much space as possible between the datasets [23].
Because of this characteristic, SVM is sometimes called large-margin classification.

In the feature extraction processes, the fast Fourier transform (FFT), principal com-
ponent analysis (PCA) or common spatial pattern (CSP), independent component (ICA),
and eigenface analysis (EFA) methods have been widely used to provide training data
and extract features from test data [24]. FFT or wavelet transform is also used to extract
different features based on power spectral density [25,26]. A short-time Fourier transform is
a method that divides several frames from a time-varying signal into a window frame [27].
The Morlet wavelet transform is used to detect and analyze time-varying signals to ob-
tain power spectrum data [2]. The Hilbert–Huang transform (HHT), which is a type of
Fourier transform method, utilizes arbitrary and analytic signals obtained from data and
calculates the coefficient of the FFT [27]. Fundamental PCA research started as a geometric
optimization problem to find the most suitable straight line or plane for data scattering
in a complex multi-dimensional space and was utilized to find the principal component
that maximizes the variance of the variable [28]. CSP is an algorithm that extracts features
by creating a spatial filter that maximizes the dispersion difference between each signal
in the brain areas according to the body part [29]. The ICA method is used to separate
multiple various and complex signals into independent signals without any predetermined
conditions [30]. This method is useful for generating independent signals with less noise
but requires a large computation period. EFA is a feature extraction method that empha-
sizes data discrimination using the calculated eigenface coefficient and reducing complex
dimensions [31].

We propose a newly developed covariance decentering eigenface analysis (CDC-EFA)
method to improve the BCI system accuracy, specifically for two-class data points. Our
proposed method, which is newly developed extended version of the results [23] is used
after preprocessing through filtering of raw EEG data and data selection. Decentering is
also performed on the covariance matrix calculated when acquiring a unique face. Section 2
describes the motivation for this research of the CDC-EFA method. Section 3 presents the
simulated results obtained using the CDC-EFA method and currently developed methods.
Section 4 is the conclusions in this research.

2. Materials and Methods

We assumed that each EEG data channel is independent of the others because brain
activation patterns differ according to the motor imagery of the BCI system [32]. Based
on this assumption, in the case of left and right motor imagery classification, the brain
activation pattern differs according to each imagery direction; therefore, each channel can
be better distinguished, and the accuracy of motor imagery classification can be increased.

Figure 1 presents a flowchart describing the fundamental process of the CDC-EFA
algorithm. An explanation of each step is provided. Raw EEG data need to be preprocessed
to improve the signal identity. The preprocessed data points are used in the whitening
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technique to differentiate the channel data based on Gram–Schmidt orthogonalization
theory [31]. Therefore, the channel whitening method is helpful for channel independence.
The obtained EEG data points are changed into artificial image data because the EEG data
are processed with differentiated direction, so this process further helps data discrimination.
After the covariance decentering process is performed, an eigenface is constructed and
then, feature extraction is processed.
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Centering is a method for reducing the variable correlation. The centering for random
variable X is calculated using Equation (1):

Centering = X = X − mean(X) (1)

When extracting the classification features of motor imagery, it is necessary to precisely
distinguish the classes because the left and right features are difficult to differentiate.
However, when centering is performed, the unique average data of each feature are lost,
making them more difficult to differentiate.

The proposed decentering method reverses the centering method to enhance data
characteristics. The covariance matrix calculated in the process of extracting unique facial
features is a value that indicates the correlation between each data unit. The proposed
covariance decentering method considers the calculated covariance matrix as a new random
variable and decenters the covariance matrix by adding the average of each column to the
covariance matrix. Therefore, the decentering method for an arbitrary covariance matrix is
calculated using Equation (2).

C′ = C + mean(C) (2)

where C and C
′

are the input and output.
After adding the mean or expectation of the covariance matrix, we apply the decenter-

ing method to the data, making it possible to assign weights to data with high correlation
with other data. In addition, EFA calculates a basis vector using a covariance matrix calcu-
lated from image vectors and uses the basis vector to increase the eigenvalues; thus, the
data characteristics can be further emphasized. Although the original covariance matrix
is symmetric, the symmetry of the covariance matrix disappears during the decentering
process. Because the basis vectors are not orthogonal to each other for a non-symmetric ma-
trix, it is necessary to find orthogonal basis vectors to determine a direction that represents
the data distribution well. Therefore, in the proposed CDC-EFA method, the eigenface
is constructed after the Gram–Schmidt orthogonalization-supported whitening method
is performed on the eigenvector calculated from the decentered covariance matrix. Fea-
ture extraction is also performed after covariance decentralization. The application of
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the covariance decentering technique to the feature extraction process is calculated using
Equation (3).

C = cov(Φ), C′ = CDC(C), Ω = C′ × Г (3)

where the input is Φ and Г, and the output is Ω.
In the experiments, we evaluated the performance of CDC-EFA in the BCI system. The

feature distribution and accuracy changes were analyzed to determine performance. In
addition, the performances of the previously developed and proposed CDC-EFA methods
were compared using motor image classification. The experiments were conducted using
MATLAB (Ver. 2023b or later). To compare the effects of each accuracy performance
improvement, we used five methods. Table 1 lists each method, with Ver. 5 indicating the
results of the proposed CDC-EFA method.

Table 1. Method of classification.

Whitening Eigenface After Decentering

EFA X X
Ver. 1 X O
Ver. 2 ICA X
Ver. 3 O X
Ver. 4 ICA O
Ver. 5 O O

The 10–20 system for EEGs is a well-known technique to show the electrode locations
for BCI study [33,34]. Rather than using such symbols, we use the numbers on the electrode
positions to preprocess the data in the programming.

These five methods depend on the aforementioned classifications. The following
methods are divided according to whether whitening or ICA and decentering are applied.
Ver. 1 uses only the decentering method, Ver. 2 uses the ICA method, Ver. 3 uses the
whitening method, Ver. 4 uses the ICA and decentering methods, and Ver. 5 uses both the
whitening and decentering methods. Therefore, Ver. 1, Ver. 2, Ver. 3, Ver. 4, and Ver. 5
represent the decentering, ICA, whitening, ICA combined with decentering, and proposed
method (CDC-EFA), respectively.

For data extraction comparison, the EFA, ICA, and CDC-EFA methods used the pub-
licly available BCI Competition III dataset IIa (C3D3a_2C) and BCI Competition IV dataset
IIa (C4D2a_2C) data [35–39]. When selecting the time range to use for the EEG data, the
time taken for the subject to begin imagining after confirming the motor imaginary instruc-
tion displayed on the screen was considered. While subjects were in relaxed conditions,
the data for a total of 2 sec were used from 0.5 sec to 2.5 sec after the indication signal was
generated. In the preprocessing stage, the BCI Competition III dataset IIIa data and BCI
Competition IV dataset IIa data used in the experiment were filtered at about 7–30 Hz,
including mu and beta waveforms related to motor imagery, using a fifth-order Butterworth
filter. In addition, nine channels [F3a, Fz, F4a, C3, Cz, C4, P3a, Pz, and P4a] were used to
represent the left/right motion image while reducing the amount of computation. Figure 2
shows the electrode locations used in the simulation.

The preprocessing of the BCI data was also filtered at approximately 7–30 Hz using a
Butterworth filter, and 12 channels were used. The time was the same as in this experiment,
and data for two seconds from the time point 0.5 sec after the indication point were also
used. Figure 3 shows the positions of the electrodes used in the experiments.

The two classes in the feature extraction were classified; therefore, two characteristics
were considered for extracting data features. For an eigenface, two fundamental vectors
contain the largest eigenvalues of the fundamental vectors for space reduction and noise
elimination. The currently developed methods were used to estimate the motor imagery
performance results.



Appl. Sci. 2024, 14, 10062 5 of 12

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 13 
 

 
Figure 2. The electrode positions used in the simulation. 

The preprocessing of the BCI data was also filtered at approximately 7–30 Hz using 
a Butterworth filter, and 12 channels were used. The time was the same as in this 
experiment, and data for two seconds from the time point 0.5 sec after the indication point 
were also used. Figure 3 shows the positions of the electrodes used in the experiments. 

 
Figure 3. The electrode positions for BCI Competition IV dataset IIa. 

The two classes in the feature extraction were classified; therefore, two characteristics 
were considered for extracting data features. For an eigenface, two fundamental vectors 
contain the largest eigenvalues of the fundamental vectors for space reduction and noise 
elimination. The currently developed methods were used to estimate the motor imagery 
performance results. 

The LDA method was used for classification and accuracy comparison with the data. 
Table 2 lists the criteria for true and false answers for the left and right hands. The LDA 
method, the applied classification scheme that we have adapted, is not a deep learning 
method but a method of data regression. The LDA needs training data to obtain a fitting 
line or classification plan to classify the testing data. Based on the BCI competition 
specification [40], the BCI competition dataset is composed of two parts, training data and 
testing or evaluation data. Under these circumstances, we divided the BCI competition 
data into two parts, i.e., the training and testing datasets. “A, True” is the classification 
anticipated by the actual left hand for the actual left hand data. “B, False” is the 
classification anticipated by the incorrect left hand for the actual right hand. “C, False” is 
the classification anticipated by the incorrect right hand for the actual left hand. “D, True” 
is the classification anticipated by the actual right hand for the actual right hand data. The 
accuracy is the ratio of the total # of classifications to the # of true classifications, as shown 
in Equation (4): Aୟୡୡ = A, true + D, trueA, true + B, false + C, false + D, true (4)

Table 2. Classification comparison for class 1 left and class 2 right hands. 

 Label 

Figure 2. The electrode positions used in the simulation.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 13 
 

 
Figure 2. The electrode positions used in the simulation. 

The preprocessing of the BCI data was also filtered at approximately 7–30 Hz using 
a Butterworth filter, and 12 channels were used. The time was the same as in this 
experiment, and data for two seconds from the time point 0.5 sec after the indication point 
were also used. Figure 3 shows the positions of the electrodes used in the experiments. 

 
Figure 3. The electrode positions for BCI Competition IV dataset IIa. 

The two classes in the feature extraction were classified; therefore, two characteristics 
were considered for extracting data features. For an eigenface, two fundamental vectors 
contain the largest eigenvalues of the fundamental vectors for space reduction and noise 
elimination. The currently developed methods were used to estimate the motor imagery 
performance results. 

The LDA method was used for classification and accuracy comparison with the data. 
Table 2 lists the criteria for true and false answers for the left and right hands. The LDA 
method, the applied classification scheme that we have adapted, is not a deep learning 
method but a method of data regression. The LDA needs training data to obtain a fitting 
line or classification plan to classify the testing data. Based on the BCI competition 
specification [40], the BCI competition dataset is composed of two parts, training data and 
testing or evaluation data. Under these circumstances, we divided the BCI competition 
data into two parts, i.e., the training and testing datasets. “A, True” is the classification 
anticipated by the actual left hand for the actual left hand data. “B, False” is the 
classification anticipated by the incorrect left hand for the actual right hand. “C, False” is 
the classification anticipated by the incorrect right hand for the actual left hand. “D, True” 
is the classification anticipated by the actual right hand for the actual right hand data. The 
accuracy is the ratio of the total # of classifications to the # of true classifications, as shown 
in Equation (4): Aୟୡୡ = A, true + D, trueA, true + B, false + C, false + D, true (4)

Table 2. Classification comparison for class 1 left and class 2 right hands. 

 Label 

Figure 3. The electrode positions for BCI Competition IV dataset IIa.

The LDA method was used for classification and accuracy comparison with the
data. Table 2 lists the criteria for true and false answers for the left and right hands.
The LDA method, the applied classification scheme that we have adapted, is not a deep
learning method but a method of data regression. The LDA needs training data to obtain a
fitting line or classification plan to classify the testing data. Based on the BCI competition
specification [40], the BCI competition dataset is composed of two parts, training data and
testing or evaluation data. Under these circumstances, we divided the BCI competition
data into two parts, i.e., the training and testing datasets. “A, True” is the classification
anticipated by the actual left hand for the actual left hand data. “B, False” is the classification
anticipated by the incorrect left hand for the actual right hand. “C, False” is the classification
anticipated by the incorrect right hand for the actual left hand. “D, True” is the classification
anticipated by the actual right hand for the actual right hand data. The accuracy is the ratio
of the total # of classifications to the # of true classifications, as shown in Equation (4):

Aacc =
A, true + D, true

A, true + B, false + C, false + D, true
(4)

Table 2. Classification comparison for class 1 left and class 2 right hands.

Label

Class 1, Left Hand Class 2, Right Hand

Class 1, Left Hand A, True B, False
Class 2, Right Hand C, False D, True

3. Results and Discussion

Table 3 shows the two-class data classification results of the motor imagery of the
BCI Competition III dataset IIIa using the currently developed and proposed methods.
Whitening, ICA, and covariance decentering methods have been found to improve per-
formance. As indicated by the accuracy measurement results for Ver. 1 to Ver. 3, the
accuracy increased; however, they did not reach meaningful data levels when applying
these algorithms for practical patient applications.
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Table 3. EEG analysis results when using several methods.

Subjects

A1 A2 A3 Average

Accuracy
(%)

EFA 52.22 46.67 63.33 54.07
Ver. 1 55.56 81.67 68.33 68.52
Ver. 2 58.62 49.10 50.00 52.57
Ver. 3 57.78 55.00 61.67 58.15
Ver. 4 87.36 90.91 69.64 82.64
Ver. 5 100 98.33 98.33 98.89

Among the three methods, Ver. 1, which performed covariance decentering in the
unique face construction stage, recorded accuracies of 55.56%, 81.67%, and 68.33%, with an
average accuracy of 68.52% for the three subjects. Compared to the results obtained using
Ver. 2 and Ver. 3, the performance was further improved. In particular, the results using only
the whitening or ICA methods were 58.62%, 49.10%, and 50.00%, with mean accuracies of
52.57%, 57.78%, 55.00%, and 61.67%, respectively, with a mean accuracy of 58.15% recorded
for three subjects. Therefore, these results indicate a significant performance improvement
compared with the EFA method (54.07%).

Ver. 4 and Ver. 5 showed a significant performance improvement. Ver. 5, in which
the proposed method was used in the unique face construction stage, showed better
performance with an accuracy of 100%, 98.33%, and 98.33%, and an average accuracy
of 98.86% for the three subjects. This method showed significantly improved results
compared to the results with the ICA method and other methods, with uniformly high
accuracy for all three subjects. When feature selection was compared with whitening
alone, these results did not allow the automatic selection of excellent independent
components, owing to the permutation problem that occurred during ICA. As many
independent components as the number of input channels could not be found after
performing ICA.

The whitening technique was used to improve the variance performance in the ac-
curacy level based on Gram–Schmidt orthogonalization theory [31]. The quick-response
eigenface analysis method used a three-dimensional direction so the images were con-
verted to three-dimensional eigenface data [41]. These two techniques were also verified
using the BCI competition three and four datasets together.

Figure 4a shows the results of the covariance matrix when the whitening method is
not used. Figure 4b presents the results of the covariance matrix when the whitening
method is applied. The left and right sides in Figure 4 show the results of the covariance
matrix before and after the covariance decentering process, respectively. Figure 4c is
an enlarged view of the upper two Figure 4b. After applying the whitening method,
we can easily observe and compare the covariance matrix variance owing to covariance
decentering from the side. In Figure 4, the values or features are obtained after the CSP
filtering process. The features obtained from the CSP transformation are unitless. This
is because the CSP involves a linear transformation that projects the original sensor
signals into the directions associated with the maximum and minimum eigenvalues of
the covariance matrices. In Figure 4, the x and y axes are the number of trials in the
experiments and the z axis (height) is the value of covariance matrixes. The number of
trials is different from the BCI competition dataset. In fact, in the MATLAB program,
three-dimensional colored surfaces or plots intensify the height or the value from the
lowest brightness to the highest brightness by a colormap, where brighter colors signify
higher values, and darker colors denote lower values.
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brighter the color, the higher the value; the darker the color, the lower the value.

The decentering method can be used only for other data correlations so that trial
data can be more accurately weighted by the decentering method. In Figure 4c, the
covariance matrix of the trials with a high correlation with other data becomes larger, and
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the covariance trials with a low correlation become smaller when the decentering method
of the covariance matrix is utilized from the side view.

Figure 5 shows the results of each method for the motor imagery classification listed
in Table 3. This graph shows the average accuracy and the highest value among the
classification results of motor imagery for the three subjects. The red and blue dots denote
the highest and average accuracies, respectively, among the three subjects when using each
method. The area from the beginning to the end of the gray area shows the results obtained
using the EFA method. The area from the beginning of the green area to the area before
the beginning of the pink area is the result when using only the CDC method, and the
whitening method from the beginning of the pink area. The pink area shows the results
obtained when using the whitening or ICA methods.
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As shown in Figure 5, Ver. 1 to Ver. 3 using the EFA method, showed that the maximum
accuracy was low. The difference between the average and maximum accuracy indicates
that a stable performance was not achieved for all three subjects. As shown in the results
for Ver. 2 and Ver. 3. When the whitening and ICA methods were applied, they did not
independently improve the performance. However, when using the CDC methods together,
they results were interpreted as boosting the performance.

Table 4 shows the accuracy comparison for two-class data when using the CSP, EFA,
and proposed CDC-EFA methods for various BCI competition data. Table 4 shows the
means, medians, and standard deviations calculated from Table 5.

Table 4. Accuracy comparison results when using CSP, EFA, and CDC-EFA methods.

BCI Competition III

Dataset IIIa Dataset IVa

Sub A1 A2 A3 B1 B2 B3 B4 B5

CSP 95.56 61.67 93.33 66.07 96.43 47.45 71.88 49.6

EFA 53.33 48.33 63.33 98.21 78.57 86.94 62.5 75

CDC-EFA 100 98.33 98.33 90.18 96.43 94.05 92.86 100

BCI Competition IV

Dataset IIa

Sub C1 C2 C3 C4 C5 C6 C7 C8 C9

CSP 88.89 51.39 96.53 70.14 54.86 71.53 81.25 93.75 93.75

EFA 52.78 52.78 54.56 60.42 57.64 50.69 54.17 56.94 53.47

CDC-EFA 100 100 98.61 99.31 99.31 97.22 49.31 97.92 94.44
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Table 5. Statistical comparison results when using CSP, EFA, and CDC-EFA methods.

Overall

Mean Median Standard Deviation

CSP 75.53 71.88 18.17
EFA 62.33 56.94 14.08

CDC-EFA 94.49 98.33 11.99

As shown in Tables 4 and 5, the CDC-EFA method showed improved accuracy com-
pared with the CSP and EFA methods. We can observe that the CDC-EFA method not only
improves the average accuracy, but also obtains a stable high accuracy with a low standard
deviation.

Table 6 indicates the feature classification outcomes for the EEG data for the BCI
Competition IV dataset IIa. The CDC-EFA method was recorded with 100% accuracy for
the BCI Competition IV dataset IIa, except for the seventh subject (45.14%). Therefore, the
proposed CDC-EFA method showed superior and more stable performance compared to
the existing method.

Table 6. Accuracy results when using the CDC-EFA methods with nine subjects.

Accuracy

Subjects EFA CDC-EFA

1 48.61 100
2 54.86 100
3 57.64 100
4 60.42 100
5 55.56 100
6 56.25 100
7 57.64 45.14
8 57.64 100
9 54.17 100

4. Conclusions

Brain–computer interfaces (BCIs) have come a long way since the first EEG measure-
ments were made of the human brain. In the past, the main research purpose of BCI
systems was for medical purposes to replace injured body parts, such as arms and legs.
Technologies closely related to human life, such as the Internet of Things and wearable
devices, are emerging with BCI technology devices. Accordingly, research on signal pro-
cessing methods that distinguish various EEG signals more accurately and quickly, which
is the core of BCI technology, is being actively conducted.

Existing research is used to improve accuracy with EEG EFA methods, considering
EEG signals as images. In movement imagery problems, which are studies of EEG data
accuracy, the EFA considers signals as images, unlike the CSP method mainly used in
existing studies; therefore, it is possible to classify more than two classes. However, we can
show that different characteristics depend on the direction because EEG signal data points
are three-dimensional data. When analyzing each attempt at the implementation of BCI for
2-class data points, accuracies of 52.22%, 46.67%, and 63.33% were recorded for the three
subjects in the BCI Competition III dataset IIIa, showing a low and unstable pattern.

To solve this problem, in the feature extraction process, a whitening technique was
applied to the source signal, and the change in classification performance when the feature
was extracted was observed. We confirmed that the accurate and stable classification of EEG
data is possible using the CDC-EFA method. EEG data for the motor imagery classification
problem were obtained from three subjects in the BCI Competition III dataset IIIa, which
was utilized in previous studies. In addition, the performance of CDC-EFA was verified
using data from nine subjects from the BCI Competition IV dataset IIa. We can confirm that
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the CDC-EFA method not only improves the average accuracy but also obtains a stable
high accuracy with a low standard deviation. Therefore, the proposed CDC-EFA method
exhibits a superior and stable performance.

The limitation of the proposed method requires several steps (channel whitening and
data image conversion) before feature extraction. Therefore, low-speed computers might
be undesirable to obtain a prompt response. In the future, our proposed method will be
applied to three- and four-class datasets to be generalized before actual product fabrication.
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