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Abstract: With the recent development of smart farms, researchers are very interested in such fields.
In particular, the field of disease diagnosis is the most important factor. Disease diagnosis belongs
to the field of anomaly detection and aims to distinguish whether plants or fruits are normal or
abnormal. The problem can be solved by binary or multi-classification based on a Convolutional
Neural Network (CNN), but it can also be solved by image reconstruction. However, due to the
limitation of the performance of image generation, SOTA’s methods propose a score calculation
method using a latent vector error. In this paper, we propose a network that focuses on chili peppers
and proceeds with background removal through GrabCut. It shows a high performance through an
image-based score calculation method. Due to the difficulty of reconstructing the input image, the
difference between the input and output images is large. However, the serial autoencoder proposed
in this paper uses the difference between the two fake images, instead of the actual input, as a score.
We propose a method of generating meaningful images using the GAN structure and classifying three
results simultaneously by one discriminator. The proposed method showed a higher performance
than previous research, and image-based scores showed the best performance.

Keywords: GAN; autoencoder; image reconstruction; disease diagnosis; anomaly detection; GrabCut;
smart farm

1. Introduction

A smart farm refers to an intelligent farm that can automatically manage the growing
environment of crops and livestock by applying convergent technologies such as unmanned
automation, artificial intelligence, and big data to greenhouses and livestock. It is a technol-
ogy that can adapt to any situation based on assessing the environment or the biometric
information of the production facilities. It can maximize productivity through minimal
labor and energy. These smart farms contribute to production and distribution using
environmental, crop, and soil sensors. In the rural areas of countries experiencing aging
societies, there is a risk to the sustainability of related industries due to the aging of the
population engaged in the agricultural and livestock sectors, coupled with a decrease in
the inflow of young people. The overall production population is decreasing due to the
decline in the fertility rate, which has emerged as a social problem, and, in particular, the
elderly population of farmers continuously increasing yearly. Therefore, smart farms are
recognized as a key means to strengthen agricultural competitiveness and secure various
age groups of farmers through an inflow of youth. In particular, artificial intelligence solves
many agricultural challenges and uses technologies such as machine learning, computer
vision, and predictive analysis. The most productive aspect of smart farms is crops. To
manage crops in a smart farm environment, it is necessary to continuously create an envi-
ronment that is most appropriate for the crop, and the diseased crops should be excluded
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from production. In this paper, we want to pay attention to chili peppers among various
crops, and the purpose of this paper is to check the condition of the crops using computer
vision technology to classify whether they are normal or diseased.

There are two main methods of determining the state of crops using computer vision
technology. The most frequently used method is determining the input image after con-
verting the result for the last layer through several convolution layers to a value between 0
and 1 through an activation function. Furthermore, based on the autoencoder structure,
image reconstruction is performed with an image that follows a normal data distribution
using only normal data, and the state of the crop can be determined using errors in the
input/output results. However, the image reconstruction method is relatively low in ac-
curacy because it is difficult to reconstruct accurately. Attempts have been made to apply
autoencoders to Generative Adversarial Networks (GANs) [1] to overcome these shortcom-
ings, yet significant performance improvements have not been achieved [2,3]. However,
such efforts have laid the groundwork for further research to enhance performance through
architectural modifications or by proposing new processes [4–13]. Due to the limitation in
accuracy, although performance improvement has been achieved more than before, recent
researchers have made significant performance improvements using latent vectors between
the encoder and decoder. In this paper, we present a novel framework that overcomes the
limitations of performance improvement in the image domain rather than the latent vector
and has a higher accuracy. We define the proposed method, “Chili Pepper Disease Diag-
nosis via Image Reconstruction Using Background Removal and Generative Adversarial
Serial Autoencoder”, as CRASA.

The contribution of this paper is as follows.

• We present a new GAN-based framework for detecting crop anomalies using the errors
between image domains in image reconstructions.

• By connecting two autoencoders in series, a new method of diagnosing normal and
diseased crops using two reconstructed images is presented, and the performance is
higher than that of previous research.

• To reduce the result of misclassification, the background of the chili pepper image may
be removed through a GrabCut algorithm in the image processing field.

In Section 2, previous studies related to anomaly detection based on image reconstruc-
tion and the diagnosis of plant diseases are introduced, and the differences between these
approaches and the proposed method are analyzed. Section 3 provides a detailed explana-
tion of the proposed method, including its structure and specific diagnostic approach. In
Section 4, the performance of the proposed method is analyzed and validated through a
comparison with previous research. Finally, Section 5 presents the conclusion and suggests
future research directions, discussing insights into the proposed method and potential
areas for further investigation.

2. Related Works

After a GAN [1] was first presented, many researchers began to develop and apply
it. This structure, in which the generator and the discriminator are opposed to each other
to improve the performance, was mainly used in the image generation field. Although
anomaly detection was still common for classifications via the image processing field or
Convolutional Neural Networks (CNNs), researchers began to apply GANs to anomaly
detection, deviating from existing ideas.

2.1. Anomaly Detection via Image Reconstruction

AnoGAN [2] was the first unsupervised learning method to detect outliers using only
normal image data. With a GAN-based structure, this study added residual loss to allow
generators to train manifolds of normal data and to reduce the difference between inputs
and outputs. Discrimination loss includes a feature-matching process that identifies the
probability distribution of the input data, identifies real and fake data, and proceeds with
learning to follow the normal data distribution. It was noted as the first idea based on



Sensors 2024, 24, 6892 3 of 16

GANs for anomaly detection, and many GAN-based anomaly detection research studies
have been actively conducted. By improving this AnoGAN [2], the two-step method
of f-AnoGAN [2], in which encoder training is added after GAN learning, emerged. f-
AnoGAN [3] conducts encoder training for the latent space mapping of data to obtain
the result of the feature extraction and generates the result of making it the input of the
generator again to improve speed and performance. To overcome the shortcomings of the
autoencoder, which makes it difficult to find satisfactory results due to the reconstruction
of abnormal areas, the problem is solved by searching for and generating the most relevant
items based on the memory of normal data using memAE [3]. SALAD [5] proposed a
novel anomaly detection framework with image reconstruction that considers both image
and latent spaces. Only useful information can be reconstructed from normal data by
adding a loss function using SSIM and a loss function that constrains the center. SSM [6]
is a framework that adds random masking and restoration to the autoencoder structure,
which proposes a method to improve the image reconstruction results. This research
enhances the learning of inpainting and can locate abnormal areas through masks of
various sizes. J. Si et al. [7] proposed a method of determining defects through an image
reconstruction method of a thermal image of a solar cell. This research was evaluated
using only some pixels of the subtraction image that best represented the characteristics
and showed a higher performance than the patch method. J. Liu et al. [8] presented
a GAN-based network for fiber defect detection. The proposed network is trained in
multiple stages and has been confirmed to have a high defect detection performance under
various conditions. V-DAFT [9] applies the Fourier transform with a normal reconstructed
template to the resulting image to solve the problem that the image reconstruction results
of the denoising autoencoder structure differ significantly from the input. The applied
results predominantly retain features with substantial differences, enhancing the anomaly
detection performance. DAGAN [10] proposed research in anomaly detection that solves
the problem of an imbalance between samples. DAGAN [10] introduced an autoencoder
structure to the generator and the discriminator, improving the stability of learning and the
performance of image reconstruction.

In the field of anomaly detection, notable reconstruction-based studies include DFR [11],
DRAEM [12], and DDAD [13]. DFR [11] focuses on detecting anomalies in very small re-
gions, proposing a method that combines multiple feature maps capable of representing
various spatial information for reconstruction. This approach allows for effective anomaly
detection by reconstructing multiple feature maps rather than the image itself. DRAEM [12]
deviates from reconstructing normal images and instead generates anomalous images,
which are then reconstructed into normal images. This process helps to address data
imbalance issues in anomaly detection, enabling a higher performance. DDAD [13] is a
study that combines diffusion modeling with anomaly detection, allowing it to operate
in a conditional format. This model generates images based on diffusion processes and
extracts features, achieving a high performance in detecting anomalies even in minute areas.
However, since DFR [11], DRAEM [12], and DDAD [13] have been evaluated specifically
in the manufacturing sector, their application across various fields with a high accuracy
is challenging. Yet, if trained appropriately for specific data domains, they can yield
excellent results.

2.2. Diseased Plant Diagnosis

Research in disease diagnosis can be conducted using GAN-based methods, but
due to challenges in achieving a high performance, most studies predominantly employ
CNN-based classifiers or object detection frameworks. DoubleGAN [14] proposed a GAN
structure to detect diseases in plants. This research consists of two steps. Step 1 uses both
normal and diseased plants, and, based on WGAN [15], data augmentation is carried out
using a pretrained model. Subsequently, in Step 2, the number of diseased leaves data
is expanded by increasing the image size by 16 times using SRGAN [16]. It uses several
extended GANs to improve the performance. Punam Bedi et al. [17] proposed a hybrid
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model for detecting plant diseases by combining a Convolutional AutoEncoder (CAE) and
a CNN. This creates a network that can reconstruct images through the CAE structure
and simultaneously focuses on the compressed domain representation, the output of the
encoder. This domain is a latent vector used by the CNN to classify normal or diseased
plants. This study achieved a high performance with the training of only 9914 parameters.
Sharath D. M. et al. [18] proposed a framework for detecting plant diseases using data
preprocessing and a CNN for the image processing. They used the GrabCut segmentation
method proposed by Yubing Li et al. [19] for background removal, which improves upon
the GrabCut [20] technique.

Furthermore, morphology errors are used to eliminate noise. These preprocessed
data are provided to the user through a mobile application with nine labels through a
CNN classifier. A. Abbas et al. [21] introduced how to generate synthesized images using
a C-GAN [22] to detect diseases in tomatoes and to differentiate 10 diseases through
transfer learning in DenseNet121 [23]. This method showed a very high classification
accuracy and the effect of data augmentation on classification performance improvements.
R. Katafuchi et al. [24] proposed a method for detecting plant diseases based on the ability
to restore colors. We used Pix2pix [25] to print the results of the original restoration and
present a new anomaly score based on CIEDE2000 [26] to improve the performance. T.
Tosawadi et al. [27] proposed a method of detecting disease in rice plants. This research can
improve the performance of disease recognition in small areas by selecting and classifying
multiple sections from diseased areas.

3. Proposed Method

The proposed method primarily aims to determine the presence or absence of disease
by overcoming the limitations of previous reconstruction techniques to enhance perfor-
mance. This is achieved by overcoming the constraints of GAN-based reconstruction
capabilities through the serial arranging generators.

It is evaluated by comparing the results of generators and converting these compar-
isons into scores for assessment. For disease diagnosis, we propose a scoring method
using the errors between images. The preprocessing step incorporates the application of
GrabCut [20] to enhance the clarity and effectiveness of disease diagnosis in chili peppers.
This technique excels at isolating the subject from the background in images taken in real
farm environments, significantly reducing the potential for misclassification errors.

3.1. Preprocessing

The background of an input image is removed to reconstruct only useful information
by leaving only chili peppers in the image. The technology used is GrabCut [20]. Grab-
Cut [20] is an algorithm based on the division of regions through the minimal cut algorithm
used in the graph algorithm. Segmentation is possible by assuming the pixel of the image
as the vertex of the graph and dividing it into foreground and background groups to find
the optimal cut. The GrabCut process is shown in Figure 1.
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Figure 1. GrabCut process. Figure 1. GrabCut process.

In a precise context, GrabCut [20] is an algorithm designed for foreground object
extraction, offering the capability for user interaction to refine the output. Nevertheless,
given the need for automated disease diagnosis in this study, the technique is adapted to
automatically isolate areas containing chili peppers without user intervention. Despite this
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automation, GrabCut does not guarantee flawless results; hence, supplementary efforts
involving histogram-based analysis are implemented to enhance the accuracy of foreground
segmentation. When the foreground is not distinctly represented in the initial image,
histogram equalization is applied across the entire image to modify the pixel distribution,
thereby improving the visibility of foreground elements.

The input of the deep learning network is the image of the chili pepper region from
which the background has been removed. Preprocessing is required to distribute the chili
pepper regions in the best state. After removing noise and filling holes in the image through
mathematical morphology, the minimum bounding box rotated by the angle to include the
minor background area is found. An input image with a size of 128 × 128 is generated
through a perspective transformation in this rectangle area, and the process is shown in
Figure 2.
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3.2. Detailed Process of the Proposed Method

The methodology introduced in this paper uses Ganomaly [28] as a baseline. It
achieves enhanced outcomes by addressing the limitations encountered in prior research
on anomaly detection via image reconstruction, specifically using an autoencoder archi-
tecture. This approach involves compressing an input image into a latent vector and
reconstructing it. The underlying hypothesis is that, while the network is trained to com-
press and reconstruct normal images efficiently, a significant disparity will be observed in
the reconstruction of anomalous images. Nevertheless, due to the inherent constraints of
the network, despite preserving essential features and low-level content, minimizing the
discrepancy between the input and reconstructed images remains challenging. To mitigate
this shortcoming, this paper presents a novel architecture that sequentially integrates two
autoencoders (Figure 3), demonstrating a strategic improvement over traditional single
autoencoder models.

The training process for the network outlined in this paper is exclusively conducted
using images of healthy chili peppers. In contrast, healthy and diseased chili pepper images
are employed during testing. The generator within the network is tasked with creating two
synthetic images that mimic the appearance of the actual input images closely enough to
deceive the discriminator. The discriminator, in turn, can differentiate between the input
image and the two images produced by the generator. As a result, the image reconstruction
approach outlined herein demonstrates a superior performance relative to previous studies
that relied on anomaly detection through latent vector-based scoring methodologies. This
method signifies that, to surpass the performance limitations of reconstruction, it enables
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achieving a higher performance through comparisons between images generated by the
generator, rather than the traditional approach of comparing with the original images.
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The training dataset Dtrn consists of only N normal chili pepper images in large quanti-
ties. The test dataset Dtst consists of M1 normal chili peppers and M2 diseased chili peppers.
The labels on the normal datasets are all labeled zero because only normal images exist (i.e.,
Dtrn = {(x1, y1), . . . , (xN , yN)}), where y ∈ {0}). The test datasets are labeled zero for nor-
mal (xNi) and one for diseased (xDi) chili pepper images
(i.e., Dtst =

{(
xN1 , yN1

)
, . . . ,

(
xNM1

, yNM1

)
,
(
xD1 , yD1

)
, . . . ,

(
xDM2

, yDM2

)}
), where

y ∈ {0, 1}). Here, x represents the data sample, and y denotes the ground truth label.
For the training, we modified this to follow a standard normal distribution to approximate
all the data, such as X ∼ N(0, 1), and we made the test data follow a normal distribution
based on the mean and variance of the training datasets, such as Dtst ∼ N

(
Xtst − X, σX

)
.

Since the generator ( G1, G2) is composed of an autoencoder structure, it can be sepa-
rated into an encoder and a decoder. The encoder (E1, E2, E3) compresses the input image
to generate a P-dimensional latent vector that can be well represented, and the decoder
(D1, D2) uses this latent vector ( z, z′, z′′ ) as an input to restore it to the result closest
to the input image of the encoder. z, z′, and z′′ mean the latent vector that the encoder
best expresses x, x′, and x′′ , and the difference between the latent vectors should also be
reduced because the input image is compressed. Accordingly, it has the same correlation as
z = E1(x), z′ = E2(x′) = E2(G1(x)), and z′′ = E3(x′′ ) = E3(G2(x′)).

The first generator is defined as G1, and the second generator is defined as G2. G1
aims to produce real input images similar to the limits that the network can generate, and
G2 trains to produce the same results as G1. Accordingly, it has the same correlation, such
as x′ = G1(x) = D1(E1(x)) and x′′ = G2(x′) = G2(G1(x)) = D2(E2(G1(x)) . It is possible
to minimize the errors between images by connecting the two series generators, G1 and
G2, of this structure. The first reconstructed image G1(x) has a huge difference from the
input image and a small difference in error with the abnormal image. However, this result
is eventually generated by the output of the network and produces an image as close as
possible, although not identical, to the input image x. Therefore, generating one more
time based on the output image of the first network G1 can show a tiny error and a more
definite difference. The discriminator DI determines the real input image and the two
results generated by the generator G1 and G2. From the standpoint of the discriminator
DI , the real image should be determined as a fake image and the image generated by
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the generator G1 and G2. However, the generator must produce more realistic results to
distinguish the discriminator from the other way around to deceive it.

The generator (G1, G2) and discriminator (DI ) models are designed based on the
encoder–decoder architecture proposed in Ganomaly [28], serving as a baseline for the
network structure. Table 1 illustrates the proposed model architecture in this study. The
model features a deep structure with repeated iterations of identical modules. Notably,
the three encoders and one discriminator share the same architectural design. The input
and output layer sizes are set to (128, 128, 3). They are configured similar to (128, 128, 3),
maintaining the same dimensions as the input through the encoder–decoder architecture.
All convolutional operations employ 4 × 4 kernels, utilizing the ‘same’ padding across all
layers, except for the latent vector. The latent vector dimension is (1, 1, 100), for which
the ‘valid’ padding is employed to adjust the size. In the encoder and discriminator, all
activation functions are implemented using Leaky-ReLU. In contrast, Tanh is used only in
the decoder in the final layer, while ReLU is employed in the remaining layers.

Table 1. Model architecture and detailed information.

Module Kernel Size Stride Padding Normalization Activation Function Feature Map

E1, E2, E3, DI

4 × 4 2 same BN Leaky-ReLU (64, 64, 64)
4 × 4 2 same BN Leaky-ReLU (32, 32, 128)
4 × 4 2 same BN Leaky-ReLU (16, 16, 256)
4 × 4 2 same BN Leaky-ReLU (8, 8, 512)
4 × 4 2 same BN Leaky-ReLU (4, 4, 1024)
4 × 4 1 valid BN Leaky-ReLU (1, 1, 100)

D1, D2

4 × 4 1 valid BN ReLU (4, 4, 512)
4 × 4 2 same BN ReLU (8, 8, 256)
4 × 4 2 same BN ReLU (16, 16, 128)
4 × 4 2 same BN ReLU (32, 32, 64)
4 × 4 2 same BN ReLU (64, 64 32)
4 × 4 2 same BN Tanh (128, 128, 3)

After sufficient training has progressed, determining whether the input image is
normal or diseased is required. In the same way as the training framework, after outputting
all results, the abnormal score is calculated using only two images generated by the
generator, shown in Figure 4.
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The score calculator computes the L2 loss for each RGB image, where G1(x) and G2(x′)
are three-dimensional color images produced by the generator. When the error e for each
image is calculated, it is converted into a final score through a normalization process, as
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shown in Equation (1). This score means that the closer to zero, the smaller the error and the
normal pepper image. Depending on the distribution of the entire experimental data, the
point at which the True Positive Rate (TPR) and False Positive Rate (FPR) are maximized is
designated as a threshold value τ in the test stage to finally determine whether the chili
pepper image is normal or diseased, as shown in Equation (2).

S
(
G1(x), G2

(
x′
))

=
e − min(e)

max(e)− min(e)
(1)

{
i f S(G1(x), G2(x′)) < τ : x = “Normal”

else : x = “Diseased”
(2)

The loss function proposed in this paper is composed mainly of three losses. Ad-
versarial loss Ladv is a loss to the overall training of the framework based on the GAN
structure. The generator and the discriminator are at odds with each other and serve to lead
to better results. The discriminator has the performance of simultaneously classifying two
real and one fake image, with the fake output close to zero and the real output close to one.
Binary cross-entropy, commonly used for binary classifications, is applied to each result
and is represented by Equation (3). Only the discriminator applies a loss function such as
Equation (4), where Equation (3) is used, and the generator defines the loss function, so
that the difference in each result is minimized based on the L2 loss. It is represented by
Equation (5).

LBCE(a, b) = − 1
N

N−1

∑
i=0

[
b(i)loga(i) +

(
1 − b(i)

)
log

(
1 − a(i)

)]
(3)

Ladv(DI ) = LBCE(DI (x), 1) + LBCE(DI (G1(x)), 0) + LBCE
(

DI
(
G2

(
x′
))

, 0
)

(4)

Ladv(G) =
1
2
Ex∼pdata(X)[∥DI (x)− DI (G1(x))∥ 2 +

∥∥DI (x)− DI (G 2
(
x′
)
)
∥∥

2

]
(5)

Reconstruction loss Lrec defines a loss function to minimize the difference between
the results created by the generator and the original image (Equation (6)). The difference
between all the output images is constructed based on the L1 loss. The minimizing part
with x induces the results of G1(x) and G2(x′) to be similar to x.

Typically, the differences between G1(x) and x and between G2(x′) and x are generally
significant due to the comparison with the original image. However, the comparison
between G1(x) and G2(x′) is crucial as it serves as the basis for judgment in the proposed
method, highlighting the differences among the generated images through this comparison.
The minimization part between G1(x) and G2(x′) listed at the end is the most relevant part
to the score in the test. The difference in the reconstruction loss characterizes it; thus, it is
configured with the lowest ratio.

Lrec =
1
3
Ex∼pdata(X)[∥x − G1(x)∥ 1 +

∥∥x − G2
(

x′
)∥∥

1 +
∥∥G1(x)− G2

(
x′
)∥∥

1

]
(6)

Latent loss Llat is defined similarly to reconstruction loss. Reconstruction loss mini-
mizes the results between image domains, while latent loss minimizes the results between
the latent vectors in the feature space. Because the latent vector is the output of the encoder
(E1, E2, E3) for each input image and these vectors (z, z′, z′′ ) are the result of the compression
of the input image, the decoder has the most crucial feature when restoring them. Therefore,
it helps each generator produce the same result by minimizing the results of the latent
vector. Each part is set based on the L2 loss and appears as Equation (7).

Llat =
1
3
Ez∼pdata(Z)

[∥∥z − z′
∥∥

2 + ∥z − z′′ ∥2 +
∥∥z′ − z′′

∥∥
2

]
(7)
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Total loss, including adversarial loss, reconstruction loss, and latent loss, is expressed
as Equation (8). To achieve the best performance, each loss function is multiplied by
an appropriate hyperparameter. The values for each hyperparameter are mentioned in
Section 4.

Ltotal = λadvLadv + λrecLrec + λlatLlat (8)

4. Experiments
4.1. Datasets

Among the data provided by AI-Hub [29], a dataset called “Outdoor Crop Disease
Diagnostic Image” is used. This dataset is the diseased image data of 10 major open-field
crops and provides the JSON with the coordinates for the location of the fruit or leaf (as the
metadata). The dataset consists of images taken directly from chili peppers, and we resize
them to sizes (128, 128, and 3) for use. Only the data corresponding to chili peppers for
the experiment are used among the various classes. However, many data on chili leaves,
not only chili fruits, are distributed in the constructed image data. If the datasets are built
using only the data on chili pepper berries, only 1351 normal chili pepper images and
975 diseased chili pepper images remain. The network proposed in this paper is insufficient
because training should only be conducted with normal chili pepper images. Therefore,
we construct a train/test dataset in this paper by augmenting the remaining data. Data
augmentation uses only rotation (degrees of 90, 180, and 270) and inversion to expand
the number per data by six–seven times for normal chili peppers. The finally constructed
training data are 7338 normal chili pepper images. The test data consist of 2000 samples,
1025 normal chili pepper images, and 975 diseased ones.

4.2. Detailed Training

The experimental environment in this paper uses the RTX 3090 GPU (Nvidia: Santa
Clara, CA, USA) in the operating system environment of Ubuntu 18.04 LTS. It uses the
TensorFlow framework and conducts experiments based on version 2.6. The batch size is
128 in all experiments, and the epoch is fixed at 2000. The hyperparameters mentioned in
Ltotal and Lrec are set to 50 and 1, except Lrec, to proceed with the training. In addition,
the length of the latent vector expressed by compressing the image is set to 100, and the
initial learning rate is fixed at 0.0002. The generator and discriminator used in this paper
proceed with the same structure as Ganomaly [28] and show a higher performance based
on this structure.

4.3. Performance Evaluation and Comparisons

We introduce the test results using the method proposed in this paper. First, Figure 5
shows the graph of the score for each data point. The graph has a range of [0,1] and consists
of 200 bins.

The blue bar represents the score distribution of the normal pepper image, and the
orange bar represents the score distribution of the diseased chili pepper image. Overall,
each distribution shows a normal distribution with a convex middle region, and the
maximum value of the normal chili pepper image does not exceed 0.2 and shows a result
close to 0. The expected outcome in analyzing images depicting diseased peppers is
that the results should closely approach a value of 1. However, the observed results are
uniformly distributed across the interval [0,1], leading to overlapping distributions. Binary
classification uses the optimal threshold τ to distinguish between normal and diseased.
As mentioned in Equation (8), if it is less than τ, it is considered normal; otherwise, it is
considered diseased. The optimal threshold τ is calculated to 0.1402.
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Figure 6 shows the results of the proposed method: column 1 shows the original image
and columns 2 and 3 show the results output by the generator. In addition, lines 1 to 4 show
the results of the normal chili pepper image, and lines 5 to 8 show the results of the diseased
chili pepper image. The difference between the original image and the generated image is
blurred or different in color, showing results that cannot be reconstructed in detail. It can
be seen that the difference between G1(x) and G2(x′) is not significant as a visual result.

Overall, the reconstruction results by training the approximate shape and color distri-
bution are shown, and, in particular, the area where light is reflected tends to be enlarged
and interpreted. The images in columns 4 to 6 represent the combined difference in images
using the results in columns 1 to 3 (column 4: |x − G1(x)|; column 5: |x − G2(x′)|; and
column 6: α|G1(x)− G2(x′)|). |x − G1(x)| represents an original image and a differential
image of G1(x), and |x − G2(x′)| represents an original image and a differential image of
G2(x′). Looking at the results, there is no difference, and it can be seen that it is difficult to
distinguish between lines 1 to 4 (normal) and 5 to 8 (diseased). Therefore, low performance
results will be produced if this is used to calculate the score. The results in column 6 are
the results α|G1(x)− G2(x′)| for the differential images of G1(x) and G2(x′) used in this
paper. Since the difference is very small, the result obtained by multiplying the weight
by α is visually shown, and α is set to 20. The results in column 6 show that the overall
difference in α|G1(x)− G2(x′)| of the normal chili pepper image is very small, and the blue
pixels are slightly distributed. However, the α|G1(x)− G2(x′)| of the diseased chili pepper
image shows a noticeable result of the difference. It can be seen that not only are blue pixels
distributed but the green pixels appear to be intense in the diseased area. Therefore, it
may be seen that the results of the normal and diseased images can be divided into better
performances using the differential images of the generators.

Table 2 shows the method proposed in this paper and the performance compari-
son with baseline studies. Bold text indicates the highest value in each table. The CAE
has the same dimension as the dataset as the input by adding the convolutional layers
to the autoencoder. It has a network structure based on a U-Net structure with a skip
connection structure.
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Table 2. Comparisons with baseline works.

Method Precision Recall F1 Score

CAE
Normal 0.727 0.464 0.567

Diseased 0.592 0.816 0.686

Ganomaly [28] (based on features) Normal 0.875 0.895 0.885
Diseased 0.887 0.866 0.876

Ganomaly [28] (based on images) Normal 0.836 0.562 0.672
Diseased 0.658 0.884 0.754

Proposed method Normal 0.859 0.966 0.909
Diseased 0.959 0.833 0.891

For the experiments, we define a loss function to ensure that the input and output
results are identical. Unlike Ganomaly [28] and the proposed method, the reconstruction
image of the CAE takes a different form from the original structure. It has the lowest
performance because there are many misclassified results. The F1 score shows a low
performance of 56.7% (normal) and 68.6% (diseased). Ganomaly [28] is a baseline model
for the method proposed in this paper. This research achieved a high performance by
calculating the difference between the latent vectors based on features as a score. It shows
a significant performance improvement of about 30% compared to the CAE. However, if
Ganomaly [28] is calculated as an image-based score, it shows a low F1 score of 21.3% based
on normal and 12.2% based on diseased images. Although this differs from the performance
of the CAE, it shows that it is difficult to classify based on images in the reconstruction
method. However, the method proposed in this paper solved the difficult task. The
proposed method shows a higher F1 score than the CAE image reconstruction method,
which shows a tremendous performance improvement of 23.7% on normal and 13.7%
on diseased images. This is because the score is calculated to optimize the classification
based on the threshold. Although it is higher than the performance between features,
it is particularly noteworthy that it is solved by an error method between images. The
proposed method shows a quantitative evaluation of 90.9% on normal and 89.1% on
diseased images with the F1 score. The proposed method shows a high performance of
over 95% in precision, especially in recall, for normal and diseased images. It accurately
classifies the actual normal chili pepper image, and it can be interpreted that there is very
little misclassified content for the results detected as diseased. In terms of normal image
precision and diseased image recall, there is a slight performance decline, but, from the
perspective of the overall F1 score, it can be seen as a better performance.

The final score is calculated using the results of G1 and G2. The diseased image is
diagnosed using them. The form of a series in which two autoencoder structures are
continuously combined results in the corresponding score calculation method showing a
great performance improvement. This section also introduces each generator’s combined
diagnostic results and the results between the latent vectors. The latent vector is a part that
is not noted in this paper, but the analysis is conducted to compare it with previous research.
The score calculation method combines three latent vectors and three images, which are
analyzed for a total of six types, and the evaluation method is compared using the AUC, AP,
and Macro F1. The AUC sets the TPR and FPR to the x- and y-axes, respectively, drawing a
Receiver Operating Characteristic (ROC) curve and then obtains the area below it. This
area is a numerical value for performance evaluation. The closer it is to 1, the better the
model. Unlike the ROC curve drawn with TPR and FPR, AP refers to the area under the
graph drawn with recall and precision as the x- and y-axes. AP is mainly used in computer
vision: the higher the value, the better. Macro F1 refers to the average of the F1 scores
calculated by different positives among several classes. This means the closer it is to 1, the
higher the performance.

Figure 7 shows the ROC curve for the six score calculation methods. The blue and
cyan graphs show the results for S(x, G1(x)) and S(x, G2(x′)). The two results show a very
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slight difference on the graph. The AUC is 0.761 and 0.763, which is significantly lower
than other score calculation methods. The magenta, red, and green show a graph of the
scoring method using a latent vector and show results that are significantly higher than
scoring based on the image. Magenta is the graph of S(z, z′), red is the graph of S(z, z′′ ),
and green is the graph of S(z′, z′′ ), of which S(z, z′′ ) shows the best performance. The
methods S(G1(x), G2(x′)) proposed in this paper are the highest performance methods
with the highest AUC 94.3% compared to the other methods.
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Table 3 shows additional comparison information between the AP and Macro F1,
including the abovementioned AUC. S(x, G1(x)) and S(x, G2(x′)) show the lowest perfor-
mance in the AP and Macro F1. In calculating the score based on the latent vector, S(z, z′′ )
performed the most with an AP of 0.915 and a Macro F1 of 0.861. However, the method
proposed in this paper shows the highest performance compared to all of these. The AP is
0.959, and the Macro F1 is 0.900, which is an increase of 0.044 and 0.039 compared to S(z, z′′ ),
which showed the best performance in the latent vector. Therefore, S(G1(x), G2(x′)) is
compared with other score calculation methods and analyzed through several methods,
indicating that it is the best method for all areas.

Table 3. Comparison of the results of the score calculation methods.

Method S
(
z,z’) S

(
z,z”) S

(
z’,z”) S(x,G1(x)) S

(
x,G2(x’)

)
S
(
G1(x),G2(x’)

)
AUC 0.877 0.908 0.900 0.761 0.763 0.943
AP 0.879 0.915 0.910 0.699 0.701 0.959

Macro F1 0.826 0.861 0.859 0.712 0.713 0.900

Table 4 presents the quantitative analysis of performance variations based on the
presence or absence of different loss functions in the proposed method. Since the model
is GAN-based, adversarial loss is a fundamental component. Analyzing the results, it
becomes clear that reconstruction loss is necessary to ensure pixel-level reconstruction
performance. The model that includes only reconstruction loss (AUC: 0.886, AP: 0.891, and
Macro F1: 0.817) demonstrates a high performance, indicating that reconstruction-focused
learning has been effectively achieved.
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Table 4. Accuracy comparison based on the use of loss functions.

Ladv O O O O

Lrec X O X O

Llat X X O O

AUC 0.286 0.886 0.102 0.943
AP 0.357 0.891 0.310 0.959

Macro F1 0.512 0.817 0.512 0.900

On the other hand, when only latent loss is added without reconstruction loss (AUC:
0.102, AP: 0.310, and Macro F1: 0.512), the model records the lowest performance. This
suggests that when latent loss is used alone, the model does not achieve sufficient recon-
struction capability within the learned latent space. Moreover, in the proposed method,
combining latent loss with reconstruction loss (AUC: 0.943, AP: 0.959, and Macro F1: 0.900)
results in a significant performance improvement. This indicates that latent loss contributes
to a more structured learning of the latent space, and, when combined with reconstruction
loss, it enhances reconstruction performance. In contrast, using only adversarial loss (AUC:
0.286, AP: 0.357, and Macro F1: 0.512) leads to a relatively poor quality of the generated
outputs. This shows that focusing solely on the basic GAN training paradigm is insufficient
for achieving robust reconstruction, highlighting the limitations in obtaining fine-grained
reconstruction performance. While adversarial loss provides the basic framework for
generation, it is quantitatively proven that combining it with reconstruction loss and latent
loss is essential for achieving an optimal performance.

Therefore, this analysis clearly illustrates the individual roles of each loss function,
emphasizing that a balanced use of adversarial loss, reconstruction loss, and latent loss in
the proposed method is the key to maximizing performance.

The proposed method is based on the fundamentals of anomaly detection and aims to
compare its performance with the latest reconstruction-based research, including State-of-
the-Art (SOTA) studies. Table 5 evaluates the results using three key performance metrics:
AUC, AP, and Macro F1. The O and X for each method indicate whether GrabCut is used
or not.

Table 5. Comparative analysis of reconstruction-based anomaly detection methods.

Method V-DAFT [9] DFR [11] DRAEM [12] DDAD [13] Ours

GrabCut X O X O X O X O X O

AUC 0.305 0.581 0.897 0.853 0.911 0.820 0.906 0.951 0.304 0.943
AP 0.224 0.538 0.855 0.847 0.883 0.861 0.772 0.933 0.231 0.959

Macro F1 0.242 0.586 0.848 0.771 0.875 0.784 0.843 0.895 0.417 0.900

The analysis reveals that, while the GrabCut [20] technique generally aims to enhance
the performance by removing backgrounds, it leads to performance degradation in the
cases of DFR [11] and DRAEM [12]. In contrast, V-DAFT [9] and DDAD [13] demonstrate
an improved performance with the application of GrabCut [20]. This suggests that research
focusing on features is less affected by background noise, whereas studies that do not
emphasize this aspect are more susceptible to such noise. The proposed method achieves
the highest performance in the AP (95.9%) and Macro F1 (90.0%) metrics. However, in
the aspect of AUC (Ours: 94.3%), DDAD [13] shows a marginally higher performance
by 0.8%. This implies that, while the threshold setting process for classifying normal
and defective patterns in DDAD [13] is somewhat less efficient, the individual sample
scores are higher than the proposed method. DRAEM [12] exhibits its best performance
without using GrabCut [20], suggesting an advantage in generating anomalous images for
segmentation in detecting diseases in peppers. In the case of V-DAFT [9], the influence
of the background in the denoising autoencoder process is significant, resulting in a very



Sensors 2024, 24, 6892 15 of 16

low AUC of 30.5% when GrabCut [20] is not used. However, using GrabCut [20], which
removes the background, increases the AUC to 58.1%.

Although GrabCut [20] has a substantial impact on the proposed method, the serially
used generative autoencoder allows for the more accurate calculation of different images.
This enables the method to achieve the highest performance compared to other SOTA
studies without focusing intensively on features. This indicates that if the proposed method
solves the issue of background noise, it has the potential to achieve an excellent performance
even when applied to other fields.

5. Conclusions

We show a GAN-based training structure in which two generators are connected
in series, and the discriminator distinguishes between two fake and one real image. In
addition, based on the chili pepper image, the background was removed using GrabCut,
and a system for disease diagnosis was shown in the image reconstruction method. The pro-
posed method calculated and evaluated the score using the error between the reconstructed
images rather than the latent vector. It shows a very high-performance improvement from
the perspective of the image, unlike previous research. This approach has the advantage
of allowing the detection of diseases without requiring expert knowledge, making it easy
to identify the presence or absence of diseases. However, since the dataset used has a
limited color or type of pepper, it is necessary to expand and conduct research. In addition,
automatically extracting the bounding box coordinates required by GrabCut will attract
attention in the smart farm field if it is linked to automatically detecting the location of pep-
pers in connection with object detection in the future. Furthermore, the proposed method
achieved the best performance in two out of the three metrics, indicating that utilizing the
diffusion model for generation may provide a better reconstruction performance compared
to the GAN. Therefore, by modifying the generation method in the proposed approach to
use the diffusion model, an even higher performance could be expected.
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