
Academic Editors: Raffaele Bruno and

Petros S. Bithas

Received: 20 March 2025

Revised: 1 May 2025

Accepted: 2 May 2025

Published: 3 May 2025

Citation: Lee, H.J.; Kook, S.; Kim, K.;

Ryu, J.; Lee, H.; Lee, Y.; Won, D.

Lightweight and Efficient

Authentication and Key Distribution

Scheme for Cloud-Assisted IoT for

Telemedicine. Sensors 2025, 25, 2894.

https://doi.org/10.3390/s25092894

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

sensors

Article

Lightweight and Efficient Authentication and Key Distribution
Scheme for Cloud-Assisted IoT for Telemedicine
Hyang Jin Lee 1, Sangjin Kook 1, Keunok Kim 1 , Jihyeon Ryu 2,* , Hakjun Lee 3 , Youngsook Lee 4

and Dongho Won 1

1 Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon-si 16419,
Republic of Korea; hyangjin.lee@gmail.com (H.J.L.); sangjinkook@gmail.com (S.K.);
kimkeunok@gmail.com (K.K.); dhwon@security.re.kr (D.W.)

2 School of Computer and Information Engineering, Kwangwoon University, Seoul-si 01897, Republic of Korea
3 School of Electronic Engineering, Kumoh National Institute of Technology, Gumi-si 39177, Republic of Korea;

hjlee@kumoh.ac.kr
4 Department of Computer, Howon University, 64 Impi-myeon, Howondae 3-gil, Gunsan-si 54058,

Republic of Korea; ysooklee@howon.ac.kr
* Correspondence: jhryu@kw.ac.kr

Abstract: Medical Internet of Things (IoT) systems are crucial in monitoring the health
status of patients. Recently, telemedicine services that manage patients remotely by re-
ceiving real-time health information from IoT devices attached to or carried by them have
experienced significant growth. A primary concern in medical IoT services is ensuring
the security of transmitted information and protecting patient privacy. To address these
challenges, various authentication schemes have been proposed. We analyze the authenti-
cation scheme by Wang et al. and identified several limitations. Specifically, an attacker
can exploit information stored in an IoT device to generate an illegitimate session key.
Additionally, despite using a cloud center, the scheme lacks efficiency. To overcome these
limitations, we propose an authentication and key distribution scheme that incorporates a
physically unclonable function (PUF) and public-key computation. To enhance efficiency,
computationally intensive public-key operations are performed exclusively in the cloud
center. Furthermore, our scheme addresses privacy concerns by employing a temporary ID
for IoT devices used to identify patients. We validate the security of our approach using
the formal security analysis tool ProVerif.

Keywords: cloud-assisted IoT; lightweight and efficient authentication; IoT for telemedicine

1. Introduction
Medical Internet of Things (IoT) services facilitate communication between doctors

and patients for monitoring and treating health conditions [1,2]. The COVID-19 pandemic
has further accelerated the global demand for telemedicine, expanding medical IoT services
beyond hospitals [3–5]. While the demand for such services varies by country, they have
become particularly important in nations with large elderly populations [6,7], enabling
patients to remotely monitor their health and connect with distant hospitals. According to
a 2025 report, the global telemedicine market is projected to reach USD 107.52 billion in
2024, USD 121.10 billion in 2025, and USD 432.1 billion by 2032 [8].

Typically, telemedicine services begin with the pre-registration of the patient, attending
physician, IoT medical device, and gateway in the hospital’s cloud center [9]. The patient’s
health data are then regularly transmitted to the hospital’s cloud center via a gateway (GW)

Sensors 2025, 25, 2894 https://doi.org/10.3390/s25092894

https://doi.org/10.3390/s25092894
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2403-3862
https://orcid.org/0000-0001-8124-3853
https://orcid.org/0000-0002-5777-4256
https://doi.org/10.3390/s25092894
https://www.mdpi.com/article/10.3390/s25092894?type=check_update&version=2

Sensors 2025, 25, 2894 2 of 25

installed at home or in a nearby common location [10]. The physician reviews these data
and provides appropriate responses.

In telemedicine services, IoT devices attached to or carried by patients have sig-
nificantly fewer resources than medical devices within hospitals [11]. Additionally, to
collect, process, and manage large volumes of patient data from diverse locations, a high-
performance cloud center is essential. Thus, telemedicine imposes additional requirements
beyond those of hospital-based medical IoT environments. However, owing to the sensitiv-
ity of transmitted data, ensuring mutual authentication among participants and protecting
privacy and anonymity are critical. In recent years, various studies have explored these
challenges in medical IoT environments.

More recently, authentication schemes have also been proposed that use cloud servers
with unlimited computing resources to process information sent from a large number of IoT
devices. These authentication schemes can be used in telemedicine, where a large amount
of patient information needs to be processed. In 2023, C. Wang et al. [12] proposed a user
authentication scheme for cloud-assisted IoT. However, this paper describes the limitation
that this authentication scheme can lead to illegitimate session key exchange if an attacker
obtains information stored in the user’s smart device or IoT device, which can lead to
sensor node impersonation attack. In this paper, we propose a lightweight and efficient
authentication scheme that overcomes the limitations of C. Wang et al. [12] and apply it
to telemedicine services that used medical IoT devices with limited computing resources,
and enhance privacy and anonymity. The key contributions of the proposed scheme are
summarized as follows.

• We analyze C. Wang et al.’s work in [12] and find that their proposed authentication
scheme is vulnerable to a stolen mobile device attack, which can lead an attacker to
generate an illegitimate session key. We also show that the proposed scheme fails to
achieve the goal of using cloud centers to increase efficiency by allowing IoT devices
to perform public-key cryptographic computation.

• We propose an authentication scheme using cloud centers with unlimited computing
resources, similar to the one proposed by C. Wang et al. in [12]. However, unlike C.
Wang et al. [12], our scheme improves the efficiency of the authentication scheme
by performing public-key cryptographic computation (ECC) only for users (smart
devices) and cloud centers that have a certain level of computing resources.

• The proposed scheme minimizes the computation at IoT devices by using a physically
unclonable function (PUF). In the scheme, the PUF’s challenge–response pair is trans-
mitted through a private channel during the IoT device registration phase, and only
the PUF’s challenge is transmitted through a public channel during the authentication
and key distribution phases, making it resistant to PUF modeling attacks.

• The proposed scheme is resistant to user impersonation attacks, stolen-device at-
tacks, PUF modeling attacks, etc., and provides anonymity and untraceability, mutual
authentication, and forward and backward secrecy.

• The proposed scheme is verified using ProVerif, an official security analysis tool.
In terms of performance, the proposed scheme achieves 35,436.18% computational
savings compared to other recent studies, particularly on low-capacity sensor nodes.

The remainder of this paper is organized as follows: Section 2 discusses related works.
Section 3 presents the system model for telemedicine and the attack model. Sections 4 and 5
introduce Wang’s scheme and its identified vulnerabilities, respectively. Section 6 details
the proposed authentication and key distribution scheme. Sections 7 and 8 provide formal
and informal security analyses, along with security and efficiency evaluations. Finally,
Section 9 concludes the paper.

Sensors 2025, 25, 2894 3 of 25

2. Related Work
With the advancement of IoT technology, numerous recent studies have proposed user

authentication methods to ensure secure connections between IoT devices and users.
In 2018, Wazid et al. introduced the user-authenticated key management protocol

(UAKMP), a secure and lightweight three-factor remote user authentication scheme for
hierarchical IoT networks comprising various nodes, such as gateway nodes, cluster head
nodes, and sensing nodes [13]. UAKMP provides password update functionality, ensures
anonymity, and supports offline sensing node registration. However, according to Wang
et al. [12], it does not satisfy clock synchronization and fails to guarantee forward secrecy.

Several authentication schemes have also been proposed for industrial IoT (IIoT)
environments [14,15]. In 2020, Srinivas et al. introduced a user authentication scheme
enabling remote users to analyze data in IIoT environments [15]. Their scheme employs
biometric information, smart cards, and passwords for authentication, supporting password
updates and smart card revocation in cases of loss or theft. However, according to Wang
et al. [12], it does not ensure user anonymity. Similarly, in 2020, Yang et al. proposed a
dynamic authentication credential framework for IIoT environments [14]. Their scheme
achieved faster computation by avoiding public-key cryptography; however, according to
Wang et al. [12], it does not guarantee forward secrecy.

Furthermore, in 2020, Wazid et al. proposed a user authentication scheme for smart-
home environments [16]. Their scheme achieved high computational efficiency by utilizing
only symmetric encryption and decryption. However, according to Wang et al. [12], it fails
to ensure forward secrecy.

Recently, authentication schemes targeting a broader range of service environments
have been proposed. In 2022, Dai et al. [17] proposed an authentication scheme for multi-
gateway sensor networks. The scheme in [17] reduces communication requirements be-
tween gateways by registering two frequently visited gateway nodes and improves authen-
tication efficiency using ECC. In the same year, Hu et al. [18] proposed a cloud-assisted
authentication scheme based on Chebyshev polynomial encryption for IIoT environments.
The scheme in [18] leverages cloud-computing technology with unlimited computing re-
sources to reduce IoT device computation time. Additionally, in [19,20], cloud-computing
technology has been utilized for authentication and key sharing in vehicle networks.

In 2023, Wang et al. [12] proposed a user authentication scheme for IoT using cloud
centers. However, ref. [12] is vulnerable to stolen mobile devices and user-impersonation
attacks, which may result in illegal session key exchanges. Our proposed scheme addresses
the limitations of [12] and proposes a lightweight and efficient authentication and key
distribution protocol.

3. Preliminaries
In this section, we introduce the system and attack models of the proposed scheme,

along with the definitions and properties of the techniques used.

3.1. System Model

The proposed scheme targets a telemedicine system model, as shown in Figure 1, and
consists of four entities: the user, cloud center, gateway, and IoT device. In this model, a
doctor and their mobile device within a hospital are defined as the user, while a medical
device that collects patient health information is classified as an IoT device. The gateway
transmits data from the IoT device to the cloud center, which serves as a trusted hub for
collecting, monitoring, managing, and processing patient information before transmitting
it to the user. Each participant is described in detail below.

Sensors 2025, 25, 2894 4 of 25Figure 1. System model for Telemedicine

Patient
User

Mobile device Cloud Center

Patient

Gateway

IoT device

Patient

Gateway

Patient

…

…

…

Electrocardiogram

IoT device

IoT device

IoT device

Digital stethoscope

Glucose meter

Diagnostics Devices

Internet

Bluetooth, NFC, WIFI …

Bluetooth, NFC, WIFI …

In the hospital

Gateway

(𝑈𝑖)

(𝐺𝑊𝑁𝑘)

(𝑆𝑁𝑗)

Figure 1. System model for telemedicine.

1. User (Ui): The user Ui is a legitimate entity with access to the IoT device. In this
scheme, Ui is a doctor who remotely monitors a patient’s health through an IoT device
attached to the patient. As the system is designed for telemedicine, Ui accesses the
IoT device through the Cloud Center. Communication with the Cloud Center occurs
via a smart device such as a smartphone or tablet.

2. IoT Device (SNj): The IoT device SNj collects medical and health information from
the patient and transmits it to Ui through the gateway GWNk and the Cloud Center.
SNj is typically a low-power medical device placed in or on the patient’s body, such
as a glucose meter or digital stethoscope. Therefore, it is assumed that SNj cannot
perform complex, resource-intensive operations. To enhance security, the proposed
method uses physically unclonable function (PUF) technology in SNj.

3. Gateway (GWNk): The gateway GWNk is a trusted entity responsible for transmitting
information collected from SNj to the Cloud Center. While GWNk has greater comput-
ing power than SNj, it faces limitations in handling large volumes of data transmitted
by numerous IoT devices in a telemedicine environment. GWNk mainly communi-
cates with SNj using Bluetooth, NFC, or Wi-Fi and connects to the Cloud Center via
the Internet.

4. Cloud Center (Cloud Center): The Cloud Center is a trusted entity responsible for
processing, managing, storing, and distributing patient information collected from
multiple gateways to users. It plays a critical role in telemedicine services, requiring
substantial computing resources to handle vast amounts of data from remotely located
IoT devices. In the proposed scheme, the cloud center facilitates authentication and
key distribution by securely sharing secret parameters during the registration process
of Ui, GWNk, and SNj. It is assumed that the Cloud Center is securely managed and
protected from attackers. In the cloud-assisted IoT for telemedicine services proposed
in this paper, the cloud center does not play the role of a simple gateway that supports
mutual authentication between users and IoT devices but is proposed as a centralized
scheme to perform monitoring and analysis of patient information collected from
IoT devices using the computing resources of the cloud center. In particular, in
telemedicine services, patients (IoT devices) are often assigned to a doctor in advance,
and the doctor has to manage a large number of patients, so a centralized scheme is a
more realistic service model than a decentralized or peer-to-peer scheme.

Sensors 2025, 25, 2894 5 of 25

3.2. Attacker Model

We assume that the cryptographic primitives used in the proposed scheme are secure
and the attacker has the following capabilities:

1. According to the Dolev–Yao model [21–25], the attacker can eavesdrop and intercept
the messages transmitted over the public communication channel. Also, the attacker
can delete, modify, and reply to any message transmitted over the public channel.

2. The attacker can physically capture the user’s smart device, gateway, or IoT device
and obtain all stored information, including certain security parameters.

3. The attacker cannot access information stored in the Cloud Center.
4. The Cloud Center and Gateway each securely hold their long-term secrets, and an

attacker cannot obtain them.

3.3. Elliptic Curve Cryptography

ECC is a public-key cryptosystem that utilizes the mathematical properties of elliptic
curves to achieve secure encryption [26–28]. It provides strong security with a smaller key
size compared to traditional public-key cryptosystems such as RSA, offering improved
performance. The proposed scheme is based on the elliptic curve discrete logarithm
problem (ECDLP), which states that given a point P and a base point G (∈ Zp) on an elliptic
curve Zp, it is computationally difficult to determine an integer d such that P = d · G.

3.4. Fuzzy Extractor

A fuzzy extractor is a cryptographic technique designed to generate a stable and secure
cryptographic key from biometric data or other noisy inputs [28,29]. As biometric mea-
surements [30], such as fingerprints, may exhibit slight variations between scans, a fuzzy
extractor ensures that the same cryptographic key is consistently derived despite these
minor differences. It consists of two main procedures: a probabilistic generation procedure
(Gen) and a deterministic reproduction procedure (Rep), characterized as follows:

• Gen takes a biometric input BIO and generates a random string δ along with an
auxiliary string τ, Gen(BIO) = (δ, τ).

• Rep takes as input BIO, a similar BIO∗, and the auxiliary string τ generated by Gen,
and reconstructs the random string δ, Rep(BIO∗, τ) = δ.

3.5. Physically Unclonable Function, PUF

A PUF is a hardware-based security primitive that leverages inherent physical vari-
ations in semiconductor manufacturing to generate a unique, unclonable cryptographic
key [31,32]. These unpredictable manufacturing variations produce distinct responses for
each chip, making replication or cloning infeasible. A PUF operates based on the chal-
lenge–response pair (CRP) model, where an input challenge generates a unique response
based on the physical characteristics of the hardware. When the same challenge is applied
to the same chip, it consistently produces the same response, whereas different chips
generate entirely different responses.

In this study, we adopt PUFs to achieve both lightweight operation and strong security
for sensor nodes. PUFs generate random values based on intrinsic physical characteris-
tics without requiring additional storage or heavy computation, unlike hardware security
modules such as TPMs or symmetric key cryptographic approaches. Moreover, com-
pared to HMAC-based schemes or traditional symmetric-key methods, PUFs offer stronger
resistance against hardware cloning attacks. Due to these properties, PUFs are particu-
larly suitable for resource-constrained medical IoT environments where computational
capability and power consumption are critical concerns. PUFs are assumed to satisfy the
following conditions:

Sensors 2025, 25, 2894 6 of 25

1. PUFs are physically unclonable: PUFs are inherently resistant to cloning and modifi-
cation. They are also highly resistant to environmental factors and aging. An identical
device cannot be reproduced by cloning a PUF, and any attempt to change a device
containing a PUF will modify its functionality or render it unusable.

2. PUFs exhibit one-way function properties: Given a response Rn from a specific PUF,
it is computationally infeasible to derive the corresponding challenge Cn.

3. Different PUFs generate different responses: For the same challenge Cn, two different
PUFs (PUF1 and PUF2) will produce distinct responses Rn1 and Rn2.

4. A PUF produces a consistent response for the same challenge: A given PUF always
outputs the same response Rn when presented with the same challenge Cn.

5. Low probability of response collision among multiple PUFs: The likelihood of two
different PUFs generating identical responses is extremely low. This property enables
PUFs to serve as unique identifiers for distinguishing a large number of IoT devices.

The proposed scheme applies PUFs to the IoT device SNj. Using PUF properties,
SNj uses PUF during the registration phase with the Cloud Center and GWNk, as well as
during the authentication and session key distribution phase with GWNk.

4. Review of Wang et al.’s Scheme
In this section, the scheme introduced by Wang et al. [12] is described. The scheme

consists of four participants: the user, cloud center, gateway, and IoT device (sensor node).
The user and IoT device perform mutual authentication to share a session key using the
cloud center. The scheme is divided into four phases: gateway and IoT device registration,
user registration, login, and authentication. The details are as follows:

4.1. Gateway and IoT Device Registration Phase

This phase comprises the registration of the gateway and IoT device with the cloud
center. The details are as follows:

4.1.1. Gateway Registration

To register with the cloud center CloCen, the gateway GWNk follows these steps:

1. GWNk sends a registration request to CloCen with GIDk.
2. CloCen computes XGk = h(x ∥ GIDk) using its secret key x and sends the message

GIDk, XGk to GWNk.
3. GWNk stores XGk .

4.1.2. IoT Device Registration

To register with GWNk, the IoT device Sj follows these steps:

1. GWNk sends a registration request to CloCen with SIDj.
2. GWNk validates SIDj. If it is valid, GWNk computes XSj = h(SIDj ∥ xGk), using

GWNk ’s secret key xGk . GWNk then sends SIDj, XSj to Sj.

3. Sj keeps XSj as its private key.

4.2. User Registration Phase

1. Ui inputs their identity IDi, password PWi, and biometric information Bioi into
their smart mobile device. The device selects a random number a

′
, and computes

Gen(Bioi) = (δi, τi), RPWi = h(PWi ∥ δi ∥ a
′
). The registration request {IDi, RPWi}

is then sent to CloCen.

Sensors 2025, 25, 2894 7 of 25

2. CloCen selects a timestamp Trgi and a random number ai, then computes ki = h(IDi ∥
y ∥ Trgi), B

′
i = h(RPWi ∥ IDi) ⊕ ki. The CloCen stores {IDi, Trgi , ai, Honeylist =

NULL} in its database and sends {B′i , B
′
i ⊕ ai, Y, P} to Ui.

3. Upon receiving {B′i , B
′
i ⊕ ai, Y, P}, the smart device selects a new random number a

and calculates the following values. Finally, the smart device stores ki, RPWnew
i , Ai,

Bi, ai as {Ai, Bi, a, Ai ⊕ ai, τi, Y, P, n0}.

• ki = B
′
i ⊕ h(RPWi ∥ IDi)

• RPWnew
i = h(PWi ∥ δi ∥ a)

• Ai = h(IDi ∥ RPWnew
i ∥ ki)modn0

• Bi = h(RPWnew
i ∥ IDi)⊕ ki

• ai = B
′
i ⊕ (B

′
i ⊕ ai)

4.3. Login Phase

If Ui wants to access an IoT device, it initiates a login request to GWNk as follows:

1. Ui enters ID∗i , PW∗i , Bio∗i into the smart device, which then computes δ∗i = Rep(Bio∗i , τi),
RPW∗i = h(PW∗i ∥ δ∗i ∥ a), k∗i = Bi ⊕ RPW∗i , A∗i = h(ID∗i ∥ RPW∗i ∥ k∗i)modn0. The
device then compares A∗i with Ai to verify the authenticity of Ui. If A∗i is not equal to
Ai, the login request is rejected.

2. If A∗i is equal to Ai, the smart device selects a random number ri and computes a∗i ,
M1, M2, M3, M4, and M5. The device then sends M2, M3, M4, M5 to CloCen.

• a∗i = (Ai ⊕ ai)⊕ Ai

• M1 = ri ·Y, M2 = ri · P
• M3 = h(M2 ∥ M1)⊕ (ID∗i ∥ a∗i)
• M4 = h(M1 ∥ M2 ∥ M3)⊕ SIDj

• M5 = h(k∗i ∥ ID∗i ∥ M1 ∥ M2 ∥ SIDj)

4.4. Authentication Phase

1. To verify the Ui, CloCen computes M1
′
= y ·M2, ID

′
i ∥ a

′
i = M3⊕ h(M2 ∥ M1

′
). It

then retrieves {Trgi, ai} using ID
′
i . If ai is equal to a

′
i, CloCen computes k

′
i = h(ID

′
i ∥

y ∥ Trgi), SID
′
j = M4⊕ h(M1 ∥ M2 ∥ M3), M5

′
= h(k

′
i ∥ ID

′
i ∥ M1

′ ∥ M2 ∥ SID
′
j). It

then verifies Ui via M5
′
. If M5

′
is equal to M5, CloCen accepts the authenticity of Ui.

2. CloCen inserts ki into Honeylist if there are fewer than 10 items. If the Honey− list
exceeds 10, Ui’s account is suspended until re-registration. CloCen then determines
the gateway GWNk to which Sj belongs, selects a random number r, and computes
X
′
Gk

, M6, M7, and M8 as shown below and sends M2, M6, M7, M8 to the gateway
node GWNk.

• X
′
Gk

= h(x ∥ GIDk)

• M6 = h(X
′
Gk
∥ M2)⊕ r

• M7 = h(M6 ∥ r ∥ X
′
Gk
)⊕ SID

′
j

• M8 = h(M2 ∥ M6 ∥ M7 ∥ r ∥ SID
′
j ∥ X

′
Gk
)

3. GWNk computes r
′
= M6⊕ h(XGk ∥ M2), SID

′′
j = M7⊕ h(M6 ∥ r

′ ∥ XGk), M8
′
=

h(M2 ∥ M6 ∥ M7 ∥ r
′ ∥ SID

′′
j ∥ XGk), and then verifies whether M8

′
? = M8.

If M8
′

is equal to M8, GWNk computes X
′
Sj

, M9, M10 as shown below, and sends
M2, M9, M10.

• X
′
Sj
= h(xGk ∥ SID

′′
j)

• M9 = h(X
′
Sj
∥ M2⊕ rg (where rg is a random number chosen by GWNk)

• M10 = h(M2 ∥ M9 ∥ rg ∥ SID
′′
j ∥ X

′
Sj
)

Sensors 2025, 25, 2894 8 of 25

4. The IoT device Sj computes r
′
g = M9⊕ h(XSj ∥ M2), M10

′
= h(M2 ∥ M9 ∥ r

′
g ∥

SIDj ∥ XSj), and compares the values of M10
′

and M10. If M10
′

is equal to M10, Sj

chooses a random number rj, calculates M = rj · M2, M11 = rj · P, SK = h(M2 ∥
M11 ∥ M), M12 = h(M2 ∥ M11 ∥ r

′
g ∥ XSj ∥ SIDj), and responds {M11, M12} to

the gateway GWNk.
5. GWNk computes M12

′
= h(M2 ∥ M11 ∥ rg ∥ X

′
Sj
∥ SID

′′
j) and compares M12

′

with M12 to verify the identity of Sj. If M12
′

is equal to M12, GWNk calculates
M13 = h(M11 ∥ M2 ∥ SID

′′
j ∥ r

′ ∥ XGk) and sends {M11, M13} to CloCen.

6. CloCen computes M13
′
= h(M11 ∥ M2 ∥ SID

′′
j ∥ r ∥ X

′
Gk
) to test the identity of

GWNk. If M13
′

is equal to M13, CloCen computes M14 = h(M1
′ ∥ M2 ∥ ID

′
i ∥

SID
′′
j ∥ k

′
i ∥ M11), and then returns {M11, M14} to Ui.

7. Having obtained CloCen’s reply {M11, M14}, the smart mobile device computes
M14∗ = h(M1 ∥ M2 ∥ IDi ∥ SIDj ∥ k ∥ M11). If M14∗ is equal to M14, Ui

accepts SK = h(M2 ∥ M11 ∥ ri · M11) as his session key shared with Sj, and the
authentication process finishes successfully.

5. Limitations of Wang et al.’s Scheme
We identified several critical limitations in Wang et al. [12]’s scheme. A detailed

analysis of these vulnerabilities is provided below.

5.1. Stolen Mobile Device Attack

In Wang et al. [12]’s scheme, only legitimate users are allowed to log in using PWi and
Bioi during the user login phase. However, after user Ui logs in, the messages M1, M2, M3,
M4, and M5, which authenticate the user to CloCen, contain only information stored in
the smart device. Although Wang et al. [12]’s scheme includes IDi as a credential known
only to the user, in general, user IDs in various Internet protocols are publicly accessible
for identification, or they can often be computed in polynomial time by an attacker. This
implies that if an attacker gains access to the user’s smart device and retrieves its stored
information, they can successfully authenticate with CloCen without requiring the login
phase. The following is a detailed attack scenario.

• {In step 2 of Section 4.3 Login Phase, the attacker computes ai using the information
Ai and Ai ⊕ ai stored in the stolen mobile device, and generates a random number ra.
In addition, the attacker can find the IDi of the legitimate user in polynomial time.

• The attacker then generates the following message using the previously calculated ai,
IDi, and ra to impersonate the legitimate user, and sends it to CloCen:

– M1a = ra ·Y (where Y is ECC public key of CloCen)
– M2a = ra · P (where P is ECC base point of CloCen)
– M3a = h(M2a ∥ M1a)⊕ (IDi ∥ ai)

– M4a = h(M1a ∥ M2a ∥ M3a)⊕ SIDj

– M5a = h(ki ∥ IDi ∥ M1a ∥ M2a ∥ SIDj)

• In step 2 of Section 4.4 Authentication Phase, CloCen verifies M1a = y ·M2a using
its private key y. If M1a is equal to y · M2a, then it finds IDi through IDi ∥ ai =

M3a ⊕ h(M2a ∥ M1a).
• The attacker can be authenticated as a legitimate user because all subsequent steps use

the information stored inside CloCen regarding IDi to perform subsequent authenti-
cation procedures.

Sensors 2025, 25, 2894 9 of 25

5.2. Illegitimate Session Key Exchange

If the attacker knows SIDj and obtains XSj from a captured IoT device, they can
manipulate the session key exchange, as shown below.

• In step 4 of Section 4.4 Authentication Phase, the attacker chooses a random number
rja and calculates Ma, M11a using the transmitted message M2 as follows.

– Ma = rja ·M2
– M11a = rja · P (where P is the ECC base point of CloCen)

• The attacker uses the previously computed Ma, M11a, and the transmitted message
M2 to generate an illegitimate session key SKa. The attacker also generates additional
information M12a so that the gateway and user can generate the same session key,
and sends M11a, M12a to GWNk.

– SKa = h(M2 ∥ M11a ∥ Ma)

– M12a = h(M2 ∥ M11a ∥ r
′
g ∥ XSj ∥ SIDj) (where r

′
g is a random number

generated by the gateway in step 3 of Section 4.4 Authentication Phase, and XSj

is h(SIDj ∥ xGk). And xGk is the long-term secret of GWNk.)

• In step 5 of Section 4.4 Authentication Phase, GWNk checks if M12a is equal to h(M2 ∥
M11a ∥ rg ∥ XSj ∥ SIDj) using M11a and M12a sent by the attacker and the information
M2, rg, XSj , and SIDj that it knows, where XSj is h(SIDj ∥ xGk). If it is equal, GWNk

computes M13a = h(M11a ∥ M2 ∥ SIDj ∥ r ∥ XGk) and sends {M11a, M13a}
to CloCen.

• In step 6 of Section 4.4 Authentication Phase, CloCen checks whether M13a is equal
to h(M11a ∥ M2 ∥ SIDj ∥ r ∥ XGk) using M11a and M13a sent from GWNk and the
information M2, SIDj, r, and XGk that it knows, where XGk is h(x ∥ GIDk), and x is
the secret long-term key of CloCen. If it is equal, CloCen computes M14a = h(M1 ∥
M2 ∥ IDi ∥ SIDj ∥ ki ∥ M11a) and sends {M11a, M14a}

• In step 7 of Section 4.4 Authentication Phase, Ui uses M11a and M14a sent by CloCen
and the information M1, M2, IDi, SIDj, ki, and M11a, knowing to check whether
M14a matches h(M1 ∥ M2 ∥ IDi ∥ SIDj ∥ ki ∥ M11a). If it matches, the user generates
a session key SKa as follows.

– SKa = h(M2 ∥ M11a ∥ ri ·M11a) (where, ri ·M11a = rja ·M2 = Ma)

Through this process, the illegally generated session key SKa is exchanged between Ui

and SIDj by the attacker.

5.3. Inefficiency

A key contribution of Wang et al.’s scheme is the use of cloud-computing technology to
overcome the computational and storage limitations of gateways and IoT devices. Reducing
the computational load on the gateway or IoT devices significantly impacts the overall
efficiency of the authentication scheme. However, in Wang et al.’s scheme, both the
gateway and IoT devices perform computationally intensive ECC operations. Therefore, it
is unclear whether the scheme effectively reduces the computational load on these resource-
constrained devices compared to other authentication schemes that rely on symmetric key
algorithms, despite the incorporation of cloud-computing technology.

6. Proposed Scheme
In this section, we propose a secure and efficient authentication and key distribution

scheme to establish a secure telemedicine environment by addressing the vulnerabilities
in Wang et al.’s scheme [12] described in Section 5 and integrating a cloud-assisted IoT
framework into the medical domain.

Sensors 2025, 25, 2894 10 of 25

The proposed scheme is applied to the system model shown in Figure 2. In this model,
a doctor in a hospital serves as the user (Ui), while a medical IoT device (sensor node, SNj)
attached to or carried by the patient monitors the patient’s condition outside the hospital.
The patient’s health data are transmitted from the IoT device to the cloud center through
a gateway (GWNk), enabling the user to access the transmitted information, assess the
patient’s condition, and provide appropriate prescriptions remotely.

Patient
User

Mobile device
Gateway

Cloud Center IoT device

In the hospital

User registration Gateway Registration IoT Device Registration

IoT Device Registration

Authentication and Key Distribution

Figure 2. Proposed authentication scheme

(𝑈𝑖)

(𝐺𝑊𝑁𝑘) (𝑆𝑁𝑗)

Figure 2. Proposed authentication scheme.

To use the telemedicine service, the patient must first register the user Ui, who is
the doctor in charge, along with the medical IoT device SNj, and the gateway GWNk

with the Cloud Center. Therefore, in our proposed scheme, it is assumed that the cloud
center is aware of the user UIDi and gateway GIDk based on the IoT device SIDj before
the registration phase. In addition, in the proposed scheme, the user Ui establishes a
session key with the Cloud Center, while GIDk and SIDj share their respective session keys
with the Cloud Center through mutual authentication. Consequently, direct authentication
between UIDi, GIDk, and SIDj is not required. The notation used in the proposed scheme
is provided in Table 1.

Table 1. Notation.

Notation Description

Ui, SNj, GWNk i-th user, j-th IoT device (sensor), k-th medical gateway
UIDi, PWi i-th user’s identity and password
SIDj, GIDk j-th IoT device’s identity, k-th medical gateway’s identity
T.SIDj Temporary identity of j-th IoT device (sensor)
SC Long-term secret information of cloud center
SCk Long-term secret information of k-th medical gateway
P, d, G ECC-based public key, private key, base point of cloud center
(Cnc, Rnc) Challenge–response pair of PUF for cloud center
(Cng, Rng) Challenge–response pair of PUF for gateway
SK Session key
R1, R2, . . . Random number
T1, T2, . . . Time stamp

6.1. User Registration Phase

In this phase, Ui enters a user ID UIDi, password PWi, and biometric information
BIOi on the mobile device to initiate a legitimate login and register validation information
with the Cloud Center for authentication. The details are illustrated in Figure 3.

1. Ui inputs UIDi, PWi, and BIOi into the mobile device, computes Gen(BIOi) = (δi, τi),
and generates CheckUi = h(UIDi ∥ PWi ∥) ⊕ h(δi) as additional validation infor-
mation to prove legitimacy. Ui then sends {UIDi, δi} to the Cloud Center through a
secure private channel.

2. The Cloud Center generates a random number R1 and computes A = h(UIDi ∥ δi).
It then sends {UIDi, A, P, G} to Ui, where G is the base point of the shared ECC

Sensors 2025, 25, 2894 11 of 25

algorithm, and P is the public key of the Cloud Center. After registering Ui, the
Cloud Center stores {UIDi, h(UIDi/parallelδi), A} in its database.

3. Ui computes R1 = A ⊕ h(UIDi ∥ δi) and generates a random number R2. It
then computes B = h(UIDi ∥ δi) ⊕ R2, C = hH(UIDi ∥ R2) and stores
{CheckUi, R1, B, C, τi, P, G} in the mobile device’s memory.

Figure 3. User registration

Generates random number, R1

Inputs 𝑈𝐼𝐷𝑖, 𝑃𝑊𝑖, 𝐵𝐼𝑂𝑖

Computes Gen(𝐵𝐼𝑂𝑖) = (σ𝑖 , τ𝑖)
Computes 𝐶ℎ𝑒𝑐𝑘𝑈𝑖 = ℎ(𝑈𝐼𝐷𝑖 ∥ 𝑃𝑊𝑖) ⊕ h(σ𝑖)

{𝑈𝐼𝐷𝑖 , σ𝑖}

{𝑈𝐼𝐷𝑖 , 𝐴, 𝑃, 𝐺}

Stores {𝑈𝐼𝐷𝑖 , ℎ(𝑈𝐼𝐷𝑖 ∥ σ𝑖), A} in database
Computes R1 = 𝐴 ⊕ ℎ(𝑈𝐼𝐷𝑖 ∥ σ𝑖)

Computes A = ℎ(𝑈𝐼𝐷𝑖 ∥ σ𝑖) ⊕ 𝑅1

Generates random number R2

Computes 𝐵 = ℎ(𝑈𝐼𝐷𝑖 ∥ σ𝑖) ⊕ 𝑅2

Stores {𝐶ℎ𝑒𝑐𝑘𝑈𝑖, R1, B, C, τ𝑖 , P, G} in memory

Private channel

Public channel

 𝑈𝑖 𝐶𝑙𝑜𝑢𝑑 𝐶𝑒𝑛𝑡𝑒𝑟

Computes 𝐶 = ℎ(𝑈𝐼𝐷𝑖 ∥ 𝑅2)

Figure 3. User registration phase.

6.2. Gateway Registration Phase

In this phase, GWNk and the Cloud Center complete the registration process using
their respective long-term secrets, SC and SGk , which are securely held by GWNk and
Cloud Center, respectively. It is assumed that the Cloud Center is already aware of GIDk

and SIDj, through prior offline registration. The details are illustrated in Figure 4.
Figure 4. Gateway registration

Stores {𝑋. 𝐺𝑘}

Computes 𝑋. 𝐺𝑘 = ℎ 𝑆𝐶 ∥ 𝐺𝐼𝐷𝑘

{𝐺𝐼𝐷𝑘 , 𝑋. 𝐺𝑘}

Stores {𝐺𝐼𝐷𝑘, , 𝑋. 𝐺𝑘, h(𝐶ℎ𝑒𝑐𝑘𝐺𝑘 ∥ 𝑋. 𝐺𝑘)}

Cloud Center 𝐺𝑊𝑁𝑘

{𝐺𝐼𝐷𝑘}

{𝐶ℎ𝑒𝑐𝑘𝐺𝑘}

Computes 𝐶ℎ𝑒𝑐𝑘𝐺𝑘 = ℎ(𝑆𝐺𝑘 ∥ 𝑋. 𝐺𝑘)

Figure 5. IoT device(sensor) registration

Generate Challenge 𝐶𝑛𝐶 , 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑇. 𝑆𝐼𝐷𝑗

Cloud Center 𝐺𝑊𝑁𝑖 𝑆𝑁𝑗

{𝑆𝐼𝐷𝑗}

{𝐶𝑛𝐶 , 𝑇. 𝑆𝐼𝐷𝑗}
Computes 𝑅𝑛𝐶 ← 𝑃𝑈𝐹(𝐶𝑛𝐶)

{𝑅𝑛𝐶}

Stores {𝑆𝐼𝐷𝑗 , 𝑇. 𝑆𝐼𝐷𝑗} in memory
Stores {𝑆𝐼𝐷𝑗 , 𝐺𝐼𝐷𝑘 , 𝑈𝐼𝐷𝑖 , (𝐶𝑛𝐶, SC⊕ 𝑅𝑛𝐶), 𝑇. 𝑆𝐼𝐷𝑗}

in database

{𝑆𝐼𝐷𝑗}Generate Challenge 𝐶𝑛𝐺

{𝐶𝑛𝐺} Computes 𝑅𝑛𝐺 ← 𝑃𝑈𝐹(𝐶𝑛𝐺)

{𝑆𝐼𝐷𝑗 , 𝑇. 𝑆𝐼𝐷𝑗, 𝑅𝑛𝐺}
Stores {𝑆𝐼𝐷𝑗 , 𝑇. 𝑆𝐼𝐷𝑗, (𝐶𝑛𝐶, 𝑆𝐺𝑘⊕ 𝑅𝑛𝐺)}

Figure 4. Gateway registration phase.

1. GWNk sends a registration request message containing GIDk to Cloud Center.
2. Cloud Center computes XGk = h(SC ∥ GIDk) and sends {GIDk, XGk} to GWNk.
3. GWNk computes CheckGk = h(SGk ∥ XGk) and sends it to the cloud center. It then

stores /XGk / in memory.
4. GWNk stores {GIDk, XGk , h(CheckGk ∥ XGk)} in its database.

6.3. IoT Device Registration Phase

In this phase, SNj registers with Cloud Center and GWNk, respectively. The details are
illustrated in Figure 5.

Sensors 2025, 25, 2894 12 of 25

Figure 4. Gateway registration

Stores {𝑋. 𝐺𝑘}

Computes 𝑋. 𝐺𝑘 = ℎ 𝑆𝐶 ∥ 𝐺𝐼𝐷𝑘

{𝐺𝐼𝐷𝑘 , 𝑋. 𝐺𝑘}

Stores {𝐺𝐼𝐷𝑘, , 𝑋. 𝐺𝑘, h(𝐶ℎ𝑒𝑐𝑘𝐺𝑘 ∥ 𝑋. 𝐺𝑘)}

Cloud Center 𝐺𝑊𝑁𝑘

{𝐺𝐼𝐷𝑘}

{𝐶ℎ𝑒𝑐𝑘𝐺𝑘}

Computes 𝐶ℎ𝑒𝑐𝑘𝐺𝑘 = ℎ(𝑆𝐺𝑘 ∥ 𝑋. 𝐺𝑘)

Figure 5. IoT device(sensor) registration

Generate Challenge 𝐶𝑛𝐶 , 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑇. 𝑆𝐼𝐷𝑗

Cloud Center 𝐺𝑊𝑁𝑖 𝑆𝑁𝑗

{𝑆𝐼𝐷𝑗}

{𝐶𝑛𝐶 , 𝑇. 𝑆𝐼𝐷𝑗}
Computes 𝑅𝑛𝐶 ← 𝑃𝑈𝐹(𝐶𝑛𝐶)

{𝑅𝑛𝐶}

Stores {𝑆𝐼𝐷𝑗 , 𝑇. 𝑆𝐼𝐷𝑗} in memory
Stores {𝑆𝐼𝐷𝑗 , 𝐺𝐼𝐷𝑘 , 𝑈𝐼𝐷𝑖 , (𝐶𝑛𝐶, SC⊕ 𝑅𝑛𝐶), 𝑇. 𝑆𝐼𝐷𝑗}

in database

{𝑆𝐼𝐷𝑗}Generate Challenge 𝐶𝑛𝐺

{𝐶𝑛𝐺} Computes 𝑅𝑛𝐺 ← 𝑃𝑈𝐹(𝐶𝑛𝐺)

{𝑆𝐼𝐷𝑗 , 𝑇. 𝑆𝐼𝐷𝑗, 𝑅𝑛𝐺}
Stores {𝑆𝐼𝐷𝑗 , 𝑇. 𝑆𝐼𝐷𝑗, (𝐶𝑛𝐶, 𝑆𝐺𝑘⊕ 𝑅𝑛𝐺)}

Figure 5. IoT device (sensor) registration phase.

6.3.1. IoT Device Registration to Cloud Center

1. SNj sends a registration request message containing SIDj to Cloud Center.
2. Cloud Center identifies SNj using SIDj and generates a challenge CnC along with a

random number T.SIDj, where T.SIDj is a randomly generated temporary ID for
SIDj. The Cloud Center then sends {CnC, T.SIDj} to SNj.

3. SNj generates a response RnC for CnC and sends it to the Cloud Center. After sending
the response, SNj stores {SIDj, T.SIDj}.

6.3.2. IoT Device Registration to Gateway

1. SNj sends a registration request message containing SIDj to GWNk.
2. GWNk generates a challenge CnG and sends it to SNj.
3. SNj computes the response RnG ← PUF(CnG) and sends {SIDj, T.SIDj, RnG}

to GWNk.
4. GNWk stores {SIDj, T.SIDj, (CnG, SGk ⊕ RnG)} in its database.

6.4. Authentication and Key Distribution Phase

In the proposed scheme, authentication and key distribution among the four partici-
pants are managed centrally by the Cloud Center. User Ui does not communicate directly
with GWNk or SNj; instead, all authentication and key exchange processes are facilitated
through the cloud center. The details are illustrated in Figures 6 and 7.

1. User Ui begins the authentication process by entering UID∗i , PW∗i , and BIO∗i on the
mobile device, which then computes δ∗i = Rep(BIO∗i , τi). The device verifies whether
h(UID∗i ∥ PW∗i)⊕ h(δ∗i) is equal to CheckUi stored on it. If the check passes, the device
computes R2∗ = B⊕ h(UID∗i ∥ δ∗i) and further verifies whether h(UID∗i ∥ R2∗) is
equal to C. If successful, Ui is logged into the mobile device. The device then
generates a random number R3 and timestamp T1, computing M1, M2, M3, M4, and
M5 as follows:

• M1 = R3 · P, M2 = R3 · G, M3 = h(M1 ∥ M2)⊕ R1⊕ h(UID∗i ∥ δ∗i)

• M4 = h(M1 ∥ M2 ∥ M3)⊕ SIDj

• M5 = h(h(UIDi ∥ δi)⊕ R1 ∥ IM1 ∥ M2 ∥ SIDj))

Finally, Ui sends {UIDi, M2, M3, M4, M5, T1} to Cloud Center.
2. Upon receiving the message, the Cloud Center first verifies the validity of the times-

tamp T1. If it is invalid, the protocol terminates; otherwise, the Cloud Center re-
trieves UIDi and its associated information from its database. It then computes
M1∗ = d · M2, R1∗ = M3 ⊕ h(M1∗ ∥ M2) ⊕ h(UIDi ∥ δi), checking whether
A⊕ h(UIDi ∥ δi) matches R1∗. If this condition is met, the Cloud Center computes
SID∗j = M4⊕ h(M1∗ ∥ M2 ∥ M3) and verifies whether it matches SIDj. To authenti-
cate Ui, it further checks whether h(h(UIDi ∥ δi)⊕ R1∗ ∥ M1∗ ∥ M2 ∥ SIDj) matches
M5. If successful, the user authentication is complete. Then Cloud Center sends the

Sensors 2025, 25, 2894 13 of 25

messages {T.SIDj, M6, M7, M8, T2, CnC} to GWNk. The Cloud Center then identifies
the target gateway GIDk, generates a random session key SK, and a timestamp T2,
and computes the following: M6, M7, and M8.

• M6 = SK⊕ h(XGk)⊕ h(CheckGk ∥ XGk)

• M7 = h(SK ∥ M6 ∥ XGk)⊕ T.SIDj

• M8 = h(SK ∥ M6 ∥ XGk ∥ T.SIDj ∥ T2)

Finally, the Cloud Center sends {T.SIDj, M6, M7, M8, T2, CnC} to GWNk.
3. Upon receiving the message from the Cloud Center, GWNk first verifies the validity

of timestamp T2. If invalid, the protocol terminates; otherwise, GWNk computes
SK∗ = M6⊕ h(XGk)⊕ h(CheckGk ∥ XGk), T.SID∗j = M7⊕ h(SK∗ ∥ M6 ∥ XGk) and
verifies whether h(SK∗ ∥ M6 ∥ XGk ∥ T.SID∗j ∥ T2) matches M8. If successful, GWNk

generates timestamp T3, and computes Rng, M9, and M10 as follows:

• Rng = (SGk ⊕ Rng)⊕ SGk

• M9 = SK⊕ h(RnG)

• M10 = h(SK ∥ T.SIDj ∥ Rng ∥ T3)

GWNk then sends {GIDk, M9, M10, T3, CnC, CnG} to SNj.
4. Upon receiving the message, SNj verifies the validity of timestamp T3. If invalid,

the protocol terminates; otherwise, SNj computes RnG ← PUF(CnG), SK∗ = M9⊕
h(RnG) and verifies whether h(SK∗ ∥ T.SIDj ∥ RnG ∥ T3) matches M10. If successful,
SNj generates timestamp T4 and computes RnC, M11, and M12 as follows:

• RnC ← PUF(CnC)

• M11 = h(SK∗ ∥ h(Rng) ∥ T4)
• M12 = h(SK∗ ∥ h(RnC))

SNj then sends the message {T.SIDj, M11, M12, T4} to GWNk.
5. GWNk verifies the validity of timestamp T4 and verifies whether h(SK ∥ h(RnG) ∥ T4)

matches M11. If valid, GWNk generates timestamp T5 and computes M13 = h(SK ∥
M12)⊕ h(T5 ∥ XGk), then sends {T.SIDj, M12, M13, T5} to the Cloud Center.

6. Upon receiving the message, the Cloud Center verifies the validity of timestamp
T5. If valid, it retrieves SIDj, GIDk, and UIDi from the database regarding T.SIDj

and computes M12∗ = h(SK ∥ h(RnC)), M13∗ = h(SK ∥ M12∗)⊕ h(T5 ∥ XGk). The
Cloud Center then verifies whether M12 and M13 match M12∗ and M13∗, respectively.
If successful, it generates timestamp T6 and computes M14, M15, and M16 as follows:

• M14 = SK⊕ h(M1 ∥ R1 ∥ T6)⊕ h(UIDi ∥ δi)

• M15 = SK · d
• M16 = h(SK ∥ M1 ∥ M15 ∥ T6)

The Cloud Center sends the message {M14, M15, M16, T6} to Ui.
7. Ui verifies the validity of timestamp T6. If valid, Ui computes SK∗ and confirms the

integrity of the shared SK∗ by performing the following steps:

• Computing SK∗ = M14⊕ h(M1 ∥ R1 ∥ T6)⊕ h(UID∗i ∥ δ∗i).
• Verifying SK∗ · P matches M15 · G.
• Calculating h(SK∗ ∥ M1 ∥ M15 ∥ T6) and checking whether it is equal to M16.

If all conditions hold, the session key is securely shared among the participants.
8. Finally, at the end of the session, the Cloud Center, GWNk, and SNj update T.SIDj

as follows:

• T.SIDnew
j = T.SIDj ⊕M12

• T.SIDj = T.SIDnew
j

Sensors 2025, 25, 2894 14 of 25

Figure 6. Authentication and key distribution phase(step 1~3)

 𝑈𝑖 𝐶𝑙𝑜𝑢𝑑 𝐶𝑒𝑛𝑡𝑒𝑟 𝑆𝑁𝑗

Inputs 𝑈𝐼𝐷𝑖
∗, 𝑃𝑊𝑖

∗, 𝐵𝐼𝑂𝑖
∗

{ 𝑈𝐼𝐷𝑖 , M2, M3, M4, M5, T1 }

Generates random number 𝑅3, timestamp T1

𝐺𝑊𝑁𝑘

Computes Rep(𝐵𝐼𝑂𝑖
∗, 𝜏𝑖) = 𝜎𝑖

∗

Checks 𝐶ℎ𝑒𝑐𝑘𝑈𝑖 =? ℎ(𝑈𝐼𝐷𝑖
∗ ∥ 𝑃𝑊𝑖

∗) ⊕ h(𝜎𝑖
∗)

Computes 𝑅2∗ = 𝐵 ⊕ ℎ(𝑈𝐼𝐷𝑖
∗ ∥ 𝜎𝑖

∗)

Checks C =? ℎ(𝑈𝐼𝐷𝑖
∗ ∥ 𝑅2∗)

Computes M1 = R3〮P, M2 = R3〮G, M3=h(M1∥M2) ⊕R1 ⊕ ℎ(𝑈𝐼𝐷𝑖
∗ ∥ 𝜎𝑖

∗)

Validity check T1

M4=h(M1∥M2∥M3)⊕ 𝑆𝐼𝐷𝑗,

M5=h(ℎ(𝑈𝐼𝐷𝑖
∗ ∥ 𝜎𝑖

∗) ⊕R1 ∥ M1 ∥ M2 ∥ 𝑆𝐼𝐷𝑗)

Computes 𝑀1∗= d〮M2, 𝑅1∗= M3 ⊕ h(𝑀1∗ ∥M2) ⊕ ℎ(𝑈𝐼𝐷𝑖 ∥ σ𝑖)

Checks 𝑅1∗ =? A⊕ ℎ(𝑈𝐼𝐷𝑖 ∥ σ𝑖)

Checks 𝑆𝐼𝐷𝑗
∗ =? 𝑆𝐼𝐷𝑗

Computes 𝑆𝐼𝐷𝑗
∗= M4⊕ h(𝑀1∗ ∥M2 ∥M3)

Checks M5 =? h(ℎ(𝑈𝐼𝐷𝑖 ∥ 𝜎𝑖) ⊕ 𝑅1∗ ∥ 𝑀1∗ ∥ M2 ∥ 𝑆𝐼𝐷𝑗)

Generates random session key SK, timestamp T2

Computes M6=SK⊕h(𝑋. 𝐺𝑘)⊕h(𝐶ℎ𝑒𝑐𝑘𝐺𝑘 ∥ 𝑋. 𝐺𝑘)

M7=h(SK∥ M6 ∥ 𝑋. 𝐺𝑘)⊕ 𝑇. 𝑆𝐼𝐷𝑗,

M8=h(SK∥ M6 ∥ 𝑋. 𝐺𝑘 ∥ 𝑇. 𝑆𝐼𝐷𝑗 ∥ T2)

{ 𝑇. 𝑆𝐼𝐷𝑗, M6, M7, M8, 𝐶𝑛𝐶 , T2, } Validity check T2

Computes 𝑆𝐾∗= M6⊕ h(𝑋. 𝐺𝑘)⊕h(𝐶ℎ𝑒𝑐𝑘𝐺𝑘 ∥ 𝑋. 𝐺𝑘)

𝑇. 𝑆𝐼𝐷𝑗
∗= M7⊕h(𝑆𝐾∗ ∥ M6 ∥ 𝑋. 𝐺𝑘)

Check M8 =? h(𝑆𝐾∗ ∥ M6 ∥ 𝑋. 𝐺𝑘 ∥ 𝑇. 𝑆𝐼𝐷𝑗
∗ ∥ T2)

Generates timestamp T3

Computes 𝑅𝑛𝐺 = (𝑆𝐺𝑘 ⊕ 𝑅𝑛𝐺) ⊕ 𝑆𝐺𝑘

M9=𝑆𝐾∗ ⊕h(𝑅𝑛𝐺), M10=h(𝑆𝐾∗ ∥ 𝑇. 𝑆𝐼𝐷𝑗 ∥ 𝑅𝑛𝐺 ∥T3)

{ 𝐺𝐼𝐷𝑗, M9, M10, 𝐶𝑛𝐶 , 𝐶𝑛𝑔, T3} Validity check T2

Figure 6. Authentication and key distribution phase (Steps 1–3).
Figure 5. Authentication and key distribution phase (step 4~7)

 𝑈𝑖 𝐶𝑙𝑜𝑢𝑑 𝐶𝑒𝑛𝑡𝑒𝑟 𝑆𝑁𝑗𝐺𝑊𝑁𝑘

Validity check T5

Computes 𝑀12∗=h(𝑆𝐾 ∥h(𝑅𝑛𝐶)), 𝑀13∗ = h(𝑆𝐾 ∥ 𝑀12∗) ⊕h(T5∥ 𝑋. 𝐺𝑘)

Check 𝑀12∗=? M12 , 𝑀13∗=? M13

Validity check T4

Check M11 =? h(𝑆𝐾∗ ∥h(𝑅𝑛𝐺) ∥T4)

Computes 𝑅𝑛𝐶 ← 𝑃𝑈𝐹(𝐶𝑛𝐶)

M11=h(𝑆𝐾∗ ∥h(𝑅𝑛𝐺) ∥T4),

Generates timestamp T4

M12=h(𝑆𝐾∗ ∥h(𝑅𝑛𝐶)

{ 𝑇. 𝑆𝐼𝐷𝑗, M11, M12, T4}

Generates timestamp T5

Computes M13=h(𝑆𝐾∗ ∥ M12) ⊕h(T5∥ 𝑋. 𝐺𝑘),

{ 𝑇. 𝑆𝐼𝐷𝑗, M12, M13, T5}

Generates timestamp T6

Computes M14=𝑆𝐾 ⊕h(M1∥ 𝑅1 ∥ 𝑇6) ⊕ ℎ(𝑈𝐼𝐷𝑖 ∥ σ𝑖)

{ M14, M15, M16, T6}

M15 = SK〮d, M16=h(SK ∥M1 ∥M15 ∥T6)

Validity check T6

Computes 𝑆𝐾∗=𝑀14 ⊕h(M1∥ 𝑅1 ∥ 𝑇6) ⊕ ℎ(𝑈𝐼𝐷𝑖
∗ ∥ 𝜎𝑖

∗)

Check 𝑆𝐾∗〮P =? M15〮G

Computes 𝑀16∗= h(𝑆𝐾∗ ∥M1 ∥M15 ∥T6),

Check 𝑀16∗=? M16
𝐶𝑙𝑜𝑢𝑑 𝐶𝑒𝑛𝑡𝑒𝑟, 𝐺𝑊𝑁𝑘 , 𝑆𝑁𝑗 updates 𝑇. 𝑆𝐼𝐷𝑗

𝑛 = 𝑇. 𝑆𝐼𝐷𝑗 ⊕M12, and sets 𝑇. 𝑆𝐼𝐷𝑗 = 𝑇. 𝑆𝐼𝐷𝑗
𝑛 at the end of the session

{ 𝐺𝐼𝐷𝑗, M9, M10, 𝐶𝑛𝐶 , 𝐶𝑛𝑔, T3} Validity check T3

Computes 𝑅𝑛𝐺 ← 𝑃𝑈𝐹(𝐶𝑛𝐺)

Computes 𝑆𝐾∗=M9 ⊕ h(𝑅𝑛𝐺)

Check M10 =? h(𝑆𝐾∗ ∥ 𝑇. 𝑆𝐼𝐷𝑗 ∥ 𝑅𝑛𝐺 ∥T3)

Figure 7. Authentication and key distribution phase (Steps 4–7).

6.5. Password Update Phase

At the end of the session, Ui inputs UID∗i , PW∗i , and BIO∗i into the smart device
to initiate the password update process. The device computes CheckU∗i = h(UID∗i ∥
PW∗i)/plush(δ∗i) and verifies whether CheckU∗i matches the stored CheckUi. If the values
match, Ui inputs PWnew

i as the new password and computes CheckUnew
i = h(UIDi ∥

Sensors 2025, 25, 2894 15 of 25

PWn
i)/oplush(δi). Finally, the password update is completed when Ui updates CheckUi to

CheckUnew
i and stores it in the device’s memory.

7. Security Analysis of Proposed Scheme
In this section, we present both formal and informal security analyses. The details are

as follows:

7.1. Formal Security Analysis

In this paper, the ProVerif tool is used to formally analyze the security of the proposed
authentication protocol [33–37]. ProVerif, developed by Blanchet et al. [38], is widely used
for verifying security properties such as confidentiality and authentication in cryptographic
protocols. The proposed protocol is modeled in Applied Pi-Calculus, and its resistance to
attacks is evaluated under the Dolev–Yao model [21].

The details of each code are presented in Tables 2–8. Table 2 describes the variables,
events, channels, and function declarations in the ProVerif code. Table 3 presents the user
registration and authentication phases. Table 4 illustrates the operation process of the
cloud center, while Table 5 outlines the gateway’s operation process. Table 6 describes
the operation process of the sensor node. Table 7 lists the queries used to verify the
overall operation, and Table 8 presents the results obtained when the queries from Table 7
were executed.

Table 2. Definitions of channels, variables, and other related parameters.

(*—-channels—-* 1)
free privateChannel: channel [private].
free publicChannel: channel.
(*—-constants—-*)
free UserSigma: bitstring [private].
free UserPassword: bitstring [private].
free UserID: bitstring [private].
free GatewayKey: bitstring [private].
free GatewayID: bitstring.
free ServerID: bitstring.
(*—-shared key—-*)
free SharedKey: bitstring [private].
(*—-functions—-*)
fun xor(bitstring, bitstring): bitstring.
fun concat(bitstring, bitstring): bitstring.
fun h(bitstring): bitstring.
fun scalar_mult(bitstring, bitstring): bitstring.
(*—-events—-*)
event startUser(bitstring).
event endUser(bitstring).
event startCloudCenter().
event endCloudCenter().
event startGateway(bitstring).
event endGateway(bitstring).
event startSensorNode(bitstring).
event endSensorNode(bitstring).

1 In ProVerif, the (*. . . *) notation indicates a comment.

Sensors 2025, 25, 2894 16 of 25

Table 3. User process.

(*—-User Process—-*)
let UserProcess = let checkUserID = xor(h(concat(UserID, UserPassword)), h(UserSigma)) in
out(privateChannel, (UserID, UserSigma));
in(privateChannel, (receivedUserID: bitstring, receivedA: bitstring, receivedP: bitstring, receivedG:
bitstring));
if receivedUserID = UserID then
let computedR1 = xor(receivedA, h(concat(UserID, UserSigma))) in
new R2: bitstring;
let computedB = xor(h(concat(UserID, UserSigma)), R2) in
let computedC = h(concat(UserID, R2)) in
event startUser(UserID);
new inputUserID:bitstring;
new inputUserPassword:bitstring;
new inputUserSigma:bitstring;
if checkUserID = xor(h(concat(inputUserID, inputUserPassword)), h(inputUserSigma)) then
let computedR2 = xor(computedB, h(xor(inputUserID,inputUserSigma))) in
if computedC = h(concat(inputUserSigma, computedR2)) then
new R3:bitstring;
new T1:bitstring;
new SensorID:bitstring;
let computedM1 = scalar_mult(R3, receivedP) in
let computedM2 = scalar_mult(R3, receivedG) in
let computedM3 = xor(xor(h(concat(computedM1,computedM2)), computedR1),
h(concat(inputUserID,inputUserSigma))) in
let computedM4 =xor(h(xor(xor(computedM1,computedM2), computedM3)), SensorID) in
let computedM5 =h(concat(concat(concat(computedR1,computedM1),computedM2),SensorID)) in
out(publicChannel, (inputUserID,computedM2, computedM3, computedM4, computedM5, T1));
in(publicChannel, (receivedM14: bitstring, receivedM15: bitstring, receivedM16: bitstring,
receivedT6: bitstring));
let SharedKey = xor(xor(receivedM14,h(concat(concat(computedM1,computedR1),receivedT6))),
h(concat(inputUserID,inputUserSigma))) in
if scalar_mult(SharedKey,receivedP) = scalar_mult(computedM5,receivedG) then
let computedM16 = h(concat(concat(concat(SharedKey,computedM1),receivedM15),receivedT6)) in
if computedM16 = receivedM16 then
event endUser(UserID).

This study conducted an automated formal verification using the ProVerif tool to
evaluate the security and safety of the designed protocol.

The ProVerif queries were configured as follows:

• query inj-event(endUser(idi)) ==> inj-event(startUser(idi)) verifies that the user’s
authentication completion event occurs only if the authentication initiation event has
occurred (mutual authentication for users).

• query inj-event(endCloudCenter()) ==> inj-event(startCloudCenter()) verifies the cor-
rect execution of the cloud center’s authentication process.

• query inj-event(endGateway(gwi)) ==> inj-event(startGateway(gwi)) checks the cor-
rectness of the gateway’s authentication.

• query inj-event(endSensorNode(snj)) ==> inj-event(startSensorNode(snj)) checks the
correctness of the sensor node’s authentication.

• query attacker(SharedKey) verifies the confidentiality of the session key, ensuring it is
not accessible to the attacker.

Sensors 2025, 25, 2894 17 of 25

Table 4. CloudCenter process.

(*—-CloudCenter Process—-*)
let CloudCenterProcess = in(privateChannel, (receivedUserID:bitstring, receivedSigma:bitstring));
new R1:bitstring;
new P:bitstring;
new G:bitstring;
let computedA = xor(h(concat(receivedUserID,receivedSigma)),R1) in
out(privateChannel, (receivedUserID, computedA, P, G));
in(privateChannel, (receivedGatewayID:bitstring));
new SC:bitstring;
let computedXG=h(concat(SC,receivedGatewayID)) in
out(privateChannel, (receivedGatewayID, computedXG));
in(privateChannel, (receivedCheckG:bitstring));
in(privateChannel, (receivedSensorID:bitstring));
new Challenge:bitstring;
new TempSensorID:bitstring;
out(privateChannel, (Challenge,TempSensorID));
in(privateChannel,(receivedRNC:bitstring));
event startCloudCenter();
in(publicChannel, (receivedUserID:bitstring, receivedM2:bitstring, receivedM3:bitstring,
receivedM4:bitstring, receivedM5:bitstring, receivedT1:bitstring));
new d:bitstring;
let computedM1=scalar_mult(d, receivedM2) in
let computedR1=xor(xor(receivedM3,h(concat(computedM1,receivedM2))),h(concat(receivedUserID,receivedSigma
))) in
if computedR1= xor(computedA, h(concat(receivedUserID, receivedSigma))) then
let computedSensorID = xor(receivedM4, h(concat(concat(computedM1,receivedM2),receivedM3))) in
if computedSensorID=receivedSensorID then
if receivedM5=h(concat(concat(concat(xor(h(concat(receivedUserID,receivedSigma)),
computedR1),computedM1),receivedM2),receivedSensorID)) then
new SK:bitstring;
new T2:bitstring;
let computedM6 = xor(xor(SK,h(computedXG)),h(concat(receivedCheckG,computedXG))) in
let computedM7 = xor(h(concat(concat(SK,computedM6),computedXG)),TempSensorID) in
let computedM8 =h(concat(concat(concat(concat(SK,computedM6),computedXG),TempSensorID),T2)) in
out(publicChannel,(TempSensorID,computedM6, computedM7, computedM8, Challenge, T2));
in(publicChannel, (receivedTempSensorID:bitstring, receivedM12:bitstring, receivedM13:bitstring,
receivedT5:bitstring));
let computedM12= h(concat(SK,h(receivedRNC))) in
let computedM13= xor(h(concat(SK,computedM12)),h(concat(receivedT5,computedXG))) in
if computedM12=receivedM12 then
if computedM13=receivedM13 then
new T6:bitstring;
let computedM14 =
xor(xor(SK,h(concat(concat(computedM1,computedR1),T6))),h(concat(receivedUserID,receivedSigma))) in
let computedM15 =scalar_mult(SK, d) in
let computedM16 = h(concat(concat(concat(SK,computedM1),computedM15),T6)) in
out(publicChannel, (computedM14, computedM15,computedM16, T6));
event endCloudCenter().

Sensors 2025, 25, 2894 18 of 25

Table 5. Gateway process.

(*—-Gateway Process—-*) let GatewayProcess = new GatewayID:bitstring;
out(publicChannel, (GatewayID));
in(publicChannel,(receivedGatewayID:bitstring, receivedXG:bitstring));
new SG:bitstring;
let computedCheckG =h(concat(SG,receivedXG)) in
out(publicChannel, (computedCheckG));
in(publicChannel, (receivedSensorID:bitstring));
new CNg:bitstring;
out(publicChannel, (CNg));
in(publicChannel, (receivedSensorID:bitstring, receivedTempSensorID:bitstring, receivedRN:bitstring));
event startGateway(GatewayID);
in(publicChannel, (receivedTemporSensorID:bitstring, receivedM6:bitstring, receivedM7:bitstring,
receivedM8:bitstring, receivedCNc:bitstring, receivedT2:bitstring));
let computedSK = xor(xor(receivedM6,h(receivedXG)),h(concat(computedCheckG,receivedXG))) in
let TempSensorID = xor(receivedM7, h(concat(concat(computedSK,receivedM6),receivedXG))) in
if receivedM8 =
h(concat(concat(concat(concat(computedSK,receivedM6),receivedXG),receivedTemporSensorID),receivedT2)) then
new T3:bitstring;
let computedRNg= xor(xor(SG,receivedRN),SG) in
let computedM9 = xor(computedSK, h(receivedRN)) in
let computedM10 = h(concat(concat(concat(computedSK,receivedTemporSensorID),receivedRN),T3))in
out(publicChannel, (GatewayID,computedM9, computedM10, receivedCNc, CNg, T3));
in(publicChannel, (receivedTempSensorID:bitstring, receivedM11:bitstring, receivedM12:bitstring,
receivedT4:bitstring));
if receivedM11 =h(concat(concat(computedSK,h(receivedRN)),receivedT4)) then
new T5:bitstring;
let computedM13=xor(h(concat(computedSK,receivedM12)), h(concat(T5,receivedXG))) in
out(publicChannel, (receivedTempSensorID,receivedM12, computedM13, T5));
event endGateway(GatewayID).

Table 6. SensorNode process.

(*—-SensorNode Process—-*)
let SensorNodeProcess = new SensorID:bitstring;
out(publicChannel, (SensorID));
in(publicChannel, (receivedCn:bitstring, receivedTempSensorID:bitstring));
new RNc:bitstring;
out(publicChannel, (RNc));
out(publicChannel, (SensorID));
in(publicChannel, (CNg:bitstring));
new RNg:bitstring;
out(publicChannel, (SensorID,receivedTempSensorID, RNg));
event startSensorNode(SensorID);
in(publicChannel, (receivedGatewayID:bitstring, receivedM9:bitstring, receivedM10:bitstring,
receivedCNc:bitstring, receivedCNg:bitstring, receivedT3:bitstring));
new RNg:bitstring;
let computedSK = xor(receivedM9,h(RNg)) in
if receivedM10 = h(concat(concat(concat(computedSK,receivedTempSensorID),RNg),receivedT3)) then
new T4:bitstring;
new RNc:bitstring;
let computedM11 = h(concat(concat(computedSK,h(RNg)),T4)) in
let computedM12 = h(concat(computedSK,h(RNc)))in
out(publicChannel, (receivedTempSensorID, computedM11,computedM12, T4));
event endSensorNode(SensorID).

Sensors 2025, 25, 2894 19 of 25

Table 7. Queries and main process.

(*—-queries—-*)

query idi:bitstring; inj-event(endUser(idi)) ==> inj-event(startUser(idi)).

query inj-event(endCloudCenter()) ==> inj-event(startCloudCenter()).

query gwi:bitstring; inj-event(endGateway(gwi)) ==> inj-event(startGateway(gwi)).

query snj:bitstring; inj-event(endSensorNode(snj)) ==> inj-event(startSensorNode(snj)).

query attacker(SharedKey).

(*—-process—-*)

process ((!UserProcess)|(!CloudCenterProcess)|(!GatewayProcess)|(!SensorNodeProcess))

Table 8. Result.

Verification summary:

Query inj-event(endUser(idi)) ==> inj-event(startUser(idi)) is true.

Query inj-event(endCloudCenter) ==> inj-event(startCloudCenter) is true.

Query inj-event(endGateway(gwi)) ==> inj-event(startGateway(gwi)) is true.

Query inj-event(endSensorNode(snj)) ==> inj-event(startSensorNode(snj)) is true.

Query not attacker(SharedKey[]) is true.

The verification results show that all authentication and confidentiality queries re-
turned true. This indicates that the proposed protocol successfully guarantees mutual
authentication among the user, cloud center, gateway, and sensor node, and that the session
key remains confidential against potential attackers. The analysis results obtained from
ProVerif show that all specified security queries were proven to be true, confirming that the
protocol successfully meets its intended security requirements. Specifically, the verification
demonstrated that a user’s termination event always occurs after the corresponding initi-
ation event, clearly ensuring user authentication. Additionally, the termination event at
the cloud center was verified to occur strictly following its initiation event, thereby vali-
dating the reliability of the system’s communication flow. Furthermore, the gateway and
sensor nodes were also confirmed to maintain correct sequential consistency between their
respective initiation and termination events, securing the integrity of message exchanges.
Moreover, the analysis mathematically verified that an attacker could not access or com-
promise the primary shared keys, highlighting the strong confidentiality provided by the
protocol. Based on these comprehensive results, it can be concluded that the proposed pro-
tocol effectively fulfills critical security requirements such as authentication, confidentiality,
and integrity.

7.2. Informal Security Analysis

The proposed scheme satisfies nine critical security requirements, including protection
against user-impersonation attacks, stolen-device attacks, session key disclosure attacks,
anonymity and untraceability, mutual authentication, replay attacks, forward secrecy
attacks, man-in-the-middle attacks, and PUF modeling attacks [39–42]. A comparison of
the latest studies and their corresponding security properties is summarized in Table 9. The
detailed security properties of the proposed scheme are as follows:

Sensors 2025, 25, 2894 20 of 25

Table 9. Comparison of security features.

Security
Features

Wang
et al. [12]

Wazid
et al. [13]

Yang
et al. [14]

Srinivas
et al. [15]

Wazid
et al. [16]

Dai
et al. [17]

Hu
et al. [18]

Jiang
et al. [19] Ours

A1 O O O O O O O O O
A2 O O O O O O O O O
A3 X O O O O O O O O
A4 O O O O O O O O O
A5 O O O O O O O O O
A5 O O O O O O O O O
S1 O O O X O O O O O
S2 O O O O O O O O O
S3 O X X O X O O O O

7.2.1. A1: Resistance to User-Impersonation Attack

The proposed scheme effectively resists user-impersonation attacks because even if
an attacker intercepts the authentication messages sent to the cloud center, they cannot
generate h(UIDi ∥ δi), which is a critical parameter for authentication. As the cloud center
must calculate R1∗ = M3⊕ h(M1∗ ∥ M2))⊕ h(UIDi ∥ δi) to verify the user, the inability
of the attacker to reconstruct h(UIDi ∥ δi) prevents further progress in the authentication
process. The scheme is also resistant to stolen-device attacks.

7.2.2. A2: Resistance to Stolen-Device Attack

Even if an attacker physically steals a user’s smart device and obtains stored informa-
tion {checkUi, R1, B, C, τi, P, G}, they cannot generate the valid biometric information δi

required for login or authentication. Furthermore, for IoT devices, even if an attacker gains
access to {SIDj, T.SIDj} and intercepts messages transmitted over public channels, they
cannot generate the response RnG used for authentication, owing to the nature of the PUF.
The scheme is also resistant to stolen-device attacks.

7.2.3. A3: Resistance to Session Key Disclosure Attack

Messages M6 and M9, which contain session key SK information, are transmitted
over a public channel. However, an attacker cannot compute SK from these messages
because they cannot access H(XGk) and RnG, both of which are essential for deriving SK.
The scheme ensures security against session key exposure attacks.

7.2.4. A4: Resistance to Replay Attack

During the authentication and key distribution phase, each transmitted message
includes a timestamp, and the recipient first verifies its validity. If the timestamp is invalid,
the session is immediately terminated. Therefore, the proposed scheme is resistant to
replay attacks.

7.2.5. A5: Resistance to Man-in-the-Middle Attack

In the proposed scheme, secret information that can only be generated by each partici-
pant is used for mutual authentication between Ui, Cloud Center, GWNk, and SNj during
the authentication and key distribution phases. For instance, even if an attacker intercepts
all messages transmitted over the public channel, they may attempt to change M2 and
M3 in a message from Ui to Cloud Center to impersonate the legitimate Ui. However, the
attacker cannot generate h(UIDi ∥ δi), which is uniquely generated by Ui. Therefore, the
request message sent by the attacker cannot successfully authenticate as the legitimate
user. In this manner, the proposed scheme is resistant to man-in-the-middle attacks, as the
authentication value is generated using secret information known only to the legitimate
participants, making it impossible for an attacker to alter or forge this value.

Sensors 2025, 25, 2894 21 of 25

7.2.6. A6: Resistance to PUF Modeling Attack

Finally, the scheme is resistant to PUF modeling attacks, which involve collecting a
large number of PUF challenge–response pairs and using machine learning techniques to
predict legitimate responses. In the proposed scheme, two PUF challenge–response pairs,
(CnC, RnC) and (CnG, RnG), are transmitted over a private channel during the IoT device
registration phase. However, during the authentication and key-sharing phases, only the
PUF challenges CnC and CnR are transmitted over a public channel, while the responses
remain private. This prevents attackers from collecting sufficient challenge–response pairs
to train a predictive model, making PUF modeling attacks infeasible.

7.2.7. S1: Provide Anonymity and Untraceability

Regarding anonymity and untraceability, the proposed telemedicine system model
does not require user anonymity because the doctor communicates with the cloud center
rather than directly with the IoT device. However, anonymity and untraceability are neces-
sary for the patient’s IoT device. The scheme achieves this by using T.SIDj, a temporary
ID for SIDj, which is randomly generated for each session and updated at the end of the
session to provide anonymity and untraceability.

7.2.8. S2: Provide Mutual Authentication

During the authentication and key distribution phases, Ui, Cloud Center, GWNk,
and SNj undergo mutual authentication. The Cloud Center authenticates Ui by verifying
that R1∗ and M5 match A ⊕ h(UIDi ∥ δi) and h(h(UIDi ∥ δi) ⊕ R1∗ ∥ M1∗ ∥ M2 ∥
SIDj), respectively. GWNk authenticates the Cloud Center by verifying M8, while SNj

authenticates GWNk by verifying M10. If any of these values are invalid, the session is
aborted, ensuring that the proposed scheme provides mutual authentication.

7.2.9. S3: Provide Forward and Backward Secrecy

The proposed scheme guarantees forward and backward secrecy by ensuring that the
session key SK is randomly generated for each session. Although it is used to compute M12,
it cannot be inferred owing to the one-way nature of the hash function. Therefore, even
if the session key for a particular session is compromised, an attacker cannot determine
the session keys for previous or future sessions. Therefore, the proposed scheme provides
forward secrecy and backward secrecy.

8. Performance Analysis of Proposed Scheme
In this section, we compare the performance of the proposed scheme with recent

studies [12–19], focusing on minimizing the computational overhead of IoT devices while
evaluating our scheme against existing works.

For comparison, we utilized computational overhead measurements obtained from a
prior study conducted in a CPU-based environment using an Intel Core i7-8700 (3.20 GHz)
processor, Windows 10 (64-bit) OS, and 48 GB of memory, employing the Python cryptogra-
phy library 3.13.2 [33]. The results are presented in Table 10.

In the study by Wang et al. [12], the user performs 8 hash function computations,
1 fuzzy extractor operation, and 3 elliptic curve multiplications, which can be expressed
as 8h + 1 f + 3m. Based on the experimental environment, this corresponds to 2129.52 µs.
At the cloud center, 10 hash function computations and 1 elliptic curve multiplication are
performed, expressed as 10h + 1m = 533.9 µs. The gateway node performs 9 hash function
computations, represented as 9h = 1.71 µs. Additionally, the sensor node executes 4 hash
function computations and 2 elliptic curve multiplications, which can be expressed as
4h + 2m = 1064.76 µs.

Sensors 2025, 25, 2894 22 of 25

Table 10. Computation times for each operation (µs).

Symbol Meaning Time (µs)

h Computation time for hash functions 0.19
f Extraction time of biometric information in fuzzy extractors 532
m Multiplication operation time in ECC 532
s Computation time for symmetric key encryption or decryption 0.27
c Chebyshev polynomial computation time 3.8

Wazid et al. [13] introduced an approach where the user carries out 13h + 2s + 1 f ,
which corresponds to 535.01 µs. Their scheme does not involve a cloud center, so the
gateway node handles 5h + 4s, taking 2.03 µs. On the sensor side, 4h + 2s is performed,
resulting in 1.3 µs.

Yang et al. [14]’s method focuses on lightweight computation, requiring the user to
compute 8h, leading to 1.52 µs. The gateway node processes 14h, with an execution time of
2.66 µs, while the sensor node performs 7h, taking 1.33 µs.

Srinivas et al. [15] proposed an approach where the user performs 2c + 15h + 1 f ,
consuming 542.45 µs. Their method involves computations at the gateway node, where
10h is executed, taking 1.9 µs. The sensor node carries out 2c + 6h, leading to a processing
time of 8.74 µs.

Wazid et al.’s scheme in [16] follows a slightly different structure. The user executes
9h + 1s + 1 f , with a computation time of 533.98 µs. The gateway node computes 11h + 2s,
requiring 2.63 µs, while the sensor node carries out 7h + 1s, taking 1.6 µs.

Dai et al. [17] introduced a model where the user must perform 1 f + 9h + 3m, consum-
ing 2129.71 µs. The gateway node handles 11h + 1m, with an execution time of 534.09 µs,
and the sensor node processes 5h + 2m, leading to 1064.95 µs.

Hu et al. [18]’s scheme assigns 15h + 1 f + 2c computations to the user, requiring
542.45 µs. Their method does not include cloud center processing, so the gateway node
executes 7h + 1s, with a computation time of 1.6 µs. Meanwhile, the sensor node performs
4h + 2c + 1s, resulting in 8.63 µs.

Jiang et al. [19] designed a method where the user processes 1 f + 11h+ 5m+ 1s, which
takes 3194.36 µs. The cloud center, in their model, executes 5m + 1s + 12h, consuming
2662.55 µs, while the sensor node handles 4h, leading to 0.76 µs.

In our proposed scheme, as demonstrated in Table 11, we optimize the computational
cost across all entities. The user performs 9h + 1 f + 4m, leading to 2661.71 µs. Our
approach eliminates unnecessary computations at the cloud center, processing 2m + 17h,
taking 1067.23 µs. The gateway node handles 9h, requiring 1.71 µs, while the sensor node
executes 3h, resulting in a final processing time of 0.57 µs. Our proposed scheme increases
the computational load at the cloud center and user mobile devices, thereby reducing the
computational burden on the sensor node. While the average computational cost at the
sensor node in other schemes is 202.5563 µs, our scheme reduces this to 0.57 µs, making
it approximately 35,436.18% more efficient. The overall efficiency of the authentication
scheme is most affected by the load and cost of the sensor nodes. Relatively speaking,
cloud centers and user mobile devices have relatively high computing resources compared
to sensor nodes and gateways, so the increase in computation does not have a significant
impact on the overall efficiency of the authentication scheme. Moreover, as demonstrated
in Table 9, our proposed scheme ensures stronger security performance compared to
other studies.

Sensors 2025, 25, 2894 23 of 25

Table 11. Comparisons of computational costs (µs).

Scheme User Cloud Center Gateway Node Sensor Node

Wang et al. [12] 8h + 1 f + 3m 10h + 1m 9h 4h + 2m

Wazid et al. [13] 13h + 2s + 1 f - 5h + 4s 4h + 2s

Yang et al. [14] 8h - 14h 7h

Srinivas et al. [15] 2c + 15h + 1 f - 10h 2c + 6h

Wazid et al. [16] 9h + 1s + 1 f - 11h + 2s 7h + 1s

Dai et al. [17] 1 f + 9h + 3m - 11h + 1m 5h + 2m

Hu et al. [18] 15h + 1 f + 2c - 7h + 1s 4h + 2c + 1s

Jiang et al. [19] 1 f + 11h + 5m + 1s 5m + 1s + 12h - 4h

Ours 9h + 1 f + 4m 2m + 17h 9h 3h

9. Conclusions
In this study, we analyzed Wang et al.’s authentication scheme and identified several

limitations, including the vulnerability in illegal session key exchanges due to stored
information in IoT devices and publicly transmitted data, as well as inefficiencies despite
utilizing cloud centers. To overcome these issues, we incorporated PUF technology into
IoT devices to prevent unauthorized session key exchanges and improve efficiency by
ensuring that public-key computations are performed exclusively in the cloud center.
In addition to safeguarding patient privacy and maintaining untraceability, IoT devices
utilize only a temporary T.SIDj during authentication and key distribution. In this study,
computationally intensive operations are offloaded to the cloud to significantly reduce
the computational and energy burden on sensor nodes. This approach enables stable
service provision even in resource-constrained medical IoT devices. By performing all
authentication and key exchange processes through the cloud center, the proposed scheme
achieves lightweight operation at both sensor nodes and gateways. The system is designed
under the assumption that the cloud center possesses sufficient computational power and
communication resources. In practical deployments, ensuring appropriate cloud resource
provisioning and adopting efficient resource management strategies will help maintain
system efficiency and stability. Through this approach, the proposed authentication and
key distribution scheme is expected to maintain efficiency and robustness across diverse
environments. Although the proposed authentication and key distribution scheme is
designed for medical IoT environments, its structure is not application-specific, allowing
for flexible adaptation to other IoT domains. For instance, the lightweight sensor node
design and cloud-based authentication framework can be readily applied to smart homes,
industrial IoT, and smart city environments. Therefore, the proposed scheme can maintain
high efficiency and stability not only in healthcare but also in a variety of large-scale IoT
deployments. Finally, we compared the security and efficiency of our scheme with recent
authentication schemes [12–19] and validated its security using ProVerif, a formal security
analysis tool.

Author Contributions: Conceptualization: H.J.L., S.K., and K.K.; methodology: H.J.L. and J.R.; soft-
ware: S.K. and K.K.; validation: H.J.L., H.L., and J.R.; formal Analysis: K.K. and J.R.; writing—original
draft preparation: H.J.L., S.K., and K.K.; writing—review and editing: J.R. and Y.L.; visualization:
H.J.L.; supervision: J.R. and D.W.; project administration: J.R. and D.W.; funding acquisition: D.W.
All authors have read and approved the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Sensors 2025, 25, 2894 24 of 25

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Ali, Z.; Mahmood, S.; Mansoor, K.; Daud, A.; Alharbey, R.; Bukhari, A. A lightweight and secure authentication scheme for

remote monitoring of patients in IoMT. IEEE Access 2024, 12, 73004–73020. [CrossRef]
2. Manickam, N.; Ponnusamy, V. A Review of Secure Healthcare Data Analytics using Federated Machine Learning and Blockchain

Technology. IEIE Trans. Smart Process. Comput. 2024, 13, 254–262. [CrossRef]
3. Batool, R.; Raza, G.M.; Khalid, U.; Kim, B.S. Automated Detection of COVID-19 in Chest Radiographs: Leveraging Machine

Learning Approaches. IEIE Trans. Smart Process. Comput. 2024, 13, 572–578.
4. Lee, H.J.; Kook, S.; Kim, K.; Ryu, J.; Lee, Y.; Won, D. LAMT: Lightweight and Anonymous Authentication Scheme for Medical

Internet of Things Services. Sensors 2025, 25, 821. [CrossRef]
5. Prajapat, S.; Kumar, P.; Kumar, D.; Das, A.K.; Hossain, M.S.; Rodrigues, J.J. Quantum secure authentication scheme for internet of

medical things using blockchain. IEEE Internet Things J. 2024, 11, 38496–38507. [CrossRef]
6. Mookherji, S.; Vanga, O.; Prasath, R.; Das, A.K. A secure authentication protocol for remote patient monitoring in an internet-of-

medical-things environment. Secur. Priv. 2024, 7, e428. [CrossRef]
7. Sachnev, V.; Suresh, M.B. An Automatic Diagnostic Tool for Autism Spectrum Disorder using Structural Magnetic Resonance

Imaging and a Tailored Binary Coded Genetic Algorithm. IEIE Trans. Smart Process. Comput. 2024, 13, 236–242. [CrossRef]
8. Fortune Business Insights. Available online: https://www.fortunebusinessinsights.com/press-release/telemedicine-market-9214

(accessed on 20 March 2025).
9. Ekambaram, D.; Ponnusamy, V. AI-assisted physical therapy for post-injury rehabilitation: Current state of the art. IEIE Trans.

Smart Process. Comput. 2023, 12, 234–242. [CrossRef]
10. Rani, D.; Tripathi, S. Design of blockchain-based authentication and key agreement protocol for health data sharing in cooperative

hospital network. J. Supercomput. 2024, 80, 2681–2717. [CrossRef]
11. Yadav, N.S.; Goar, V.K. IoT in Healthcare and Telemedicine: Revolutionizing Patient Care and Medical Practices. In Scalable

Modeling and Efficient Management of IoT Applications; IGI Global: Hershey, PA, USA, 2025; pp. 19–58.
12. Wang, C.; Wang, D.; Duan, Y.; Tao, X. Secure and lightweight user authentication scheme for cloud-assisted Internet of Things.

IEEE Trans. Inf. Forensics Secur. 2023, 18, 2961–2976. [CrossRef]
13. Wazid, M.; Das, A.K.; Odelu, V.; Kumar, N.; Conti, M.; Jo, M. Design of secure user authenticated key management protocol for

generic IoT networks. IEEE Internet Things J. 2018, 5, 269–282. [CrossRef]
14. Yang, Z.; He, J.; Tian, Y.; Zhou, J. Faster authenticated key agreement with perfect forward secrecy for industrial internet-of-things.

IEEE Trans. Ind. Inform. 2020, 16, 6584–6596. [CrossRef]
15. Srinivas, J.; Das, A.K.; Wazid, M.; Kumar, N. Anonymous lightweight chaotic map-based authenticated key agreement protocol

for industrial Internet of Things. IEEE Trans. Dependable Secur. Comput. 2020, 17, 1133–1146. [CrossRef]
16. Wazid, M.; Das, A.K.; Odelu, V.; Kumar, N.; Susilo, W. Secure remote user authenticated key establishment protocol for smart

home environment. IEEE Trans. Dependable Secur. Comput. 2020, 17, 391–406. [CrossRef]
17. Dai, C.; Xu, Z. A secure three-factor authentication scheme for multi-gateway wireless sensor networks based on elliptic curve

cryptography. Ad Hoc Netw. 2022, 127, 102768. [CrossRef]
18. Hu, H.; Liao, L.; Zhao, J. Secure authentication and key agreement protocol for cloud-assisted industrial internet of things.

Electronics 2022, 11, 1652. [CrossRef]
19. Jiang, Q.; Zhang, N.; Ni, J.; Ma, J.; Ma, X.; Choo, K.K.R. Unified biometric privacy preserving three-factor authentication and key

agreement for cloud-assisted autonomous vehicles. IEEE Trans. Veh. Technol. 2020, 69, 9390–9401. [CrossRef]
20. Zhao, J.; Li, Q.; Gong, Y.; Zhang, K. Computation Offloading and Resource Allocation For Cloud Assisted Mobile Edge Computing

in Vehicular Networks. IEEE Trans. Veh. Technol. 2019, 68, 7944–7956. [CrossRef]
21. Dolev, D.; Yao, A. On the security of public key protocols. IEEE Trans. Inf. Theory 1983, 29, 198–208. [CrossRef]
22. Degefa, F.; Ryu, J.; Kim, H.; Won, D. MES-FPMIPv6: MIH-Enabled and enhanced secure Fast Proxy Mobile IPv6 handover

protocol for 5G networks. PLoS ONE 2022, 17, e0262696. [CrossRef]
23. Jung, J.; Lee, D.; Lee, H.; Won, D. Security enhanced anonymous user authenticated key agreement scheme using smart card.

J. Electron. Sci. Technol. 2018, 16, 45–49.
24. Mahmood, K.; Obaidat, M.S.; Shamshad, S.; Alenazi, M.J.; Kumar, G.; Anisi, M.H.; Conti, M. Cost-effective authenticated solution

(CAS) for 6G-enabled artificial intelligence of medical things (AIoMT). IEEE Internet Things J. 2024, 11, 23977–23984. [CrossRef]
25. Chen, C.M.; Xiong, Z.; Wu, T.Y.; Kumari, S.; Alenazi, M.J. Protecting Virtual Economies: A Blockchain-based Anti-Phishing

Authentication Protocol for Metaverse Applications. IEEE Internet Things J. 2025, early access.

http://doi.org/10.1109/ACCESS.2024.3400400
http://dx.doi.org/10.5573/IEIESPC.2024.13.3.254
http://dx.doi.org/10.3390/s25030821
http://dx.doi.org/10.1109/JIOT.2024.3448212
http://dx.doi.org/10.1002/spy2.428
http://dx.doi.org/10.5573/IEIESPC.2024.13.3.236
https://www.fortunebusinessinsights.com/press-release/telemedicine-market-9214
http://dx.doi.org/10.5573/IEIESPC.2023.12.3.234
http://dx.doi.org/10.1007/s11227-023-05577-6
http://dx.doi.org/10.1109/TIFS.2023.3272772
http://dx.doi.org/10.1109/JIOT.2017.2780232
http://dx.doi.org/10.1109/TII.2019.2963328
http://dx.doi.org/10.1109/TDSC.2018.2857811
http://dx.doi.org/10.1109/TDSC.2017.2764083
http://dx.doi.org/10.1016/j.adhoc.2021.102768
http://dx.doi.org/10.3390/electronics11101652
http://dx.doi.org/10.1109/TVT.2020.2971254
http://dx.doi.org/10.1109/TVT.2019.2917890
http://dx.doi.org/10.1109/TIT.1983.1056650
http://dx.doi.org/10.1371/journal.pone.0262696
http://dx.doi.org/10.1109/JIOT.2024.3387852

Sensors 2025, 25, 2894 25 of 25

26. Kapoor, V.; Abraham, V.S.; Singh, R. Elliptic curve cryptography. Ubiquity 2008, 9, 1–8. [CrossRef]
27. Maarouf, A.; Sakr, R.; Elmougy, S. An offline direct authentication scheme for the internet of medical things based on elliptic

curve cryptography. IEEE Access 2024, 12, 134902–134925. [CrossRef]
28. Lee, H.; Kang, D.; Lee, Y.; Won, D. Secure Three-Factor Anonymous User Authentication Scheme for Cloud Computing

Environment. Wirel. Commun. Mob. Comput. 2021, 2021, 2098530. [CrossRef]
29. Fuller, B.; Reyzin, L.; Smith, A. When are fuzzy extractors possible? IEEE Trans. Inf. Theory 2020, 66, 5282–5298. [CrossRef]
30. An, J.; Choi, S.H. End-to-end Facial Recognition Deep Learning Model Specialized for Facial Angle using Gray Image. IEIE Trans.

Smart Process. Comput. 2024, 13, 534–539. [CrossRef]
31. Gao, Y.; Al-Sarawi, S.F.; Abbott, D. Physical unclonable functions. Nat. Electron. 2020, 3, 81–91. [CrossRef]
32. Aldosary, A.; Tanveer, M. PAAF-SHS: PUF and authenticated encryption based authentication framework for the IoT-enabled

smart healthcare system. Internet Things 2024, 26, 101159. [CrossRef]
33. Woo, N.; Kang, T.; Ryu, J. CESA: Chebyshev-Polynomials-Based Efficient and Secure Access Authentication Scheme for Both User

Equipment and Massive Machine-Type-Communication Devices Over 5G Networks. IEEE Internet Things J. 2025, early access.
34. Kim, K.; Ryu, J.; Lee, H.; Lee, Y.; Won, D. Distributed and federated authentication schemes based on updatable smart contracts.

Electronics 2023, 12, 1217. [CrossRef]
35. Lee, H.; Ryu, J.; Won, D. Secure and anonymous authentication scheme for mobile edge computing environments. IEEE Internet

Things J. 2023, 11, 5798–5815. [CrossRef]
36. Ryu, J.; Lee, H.; Lee, Y.; Won, D. SMASG: Secure mobile authentication scheme for global mobility network. IEEE Access 2022, 10,

26907–26919. [CrossRef]
37. Kang, T.; Woo, N.; Ryu, J. Enhanced lightweight medical sensor networks authentication scheme based on blockchain. IEEE

Access 2024, 12, 35612–35629. [CrossRef]
38. Blanchet, B.; Smyth, B.; Cheval, V.; Sylvestre, M. ProVerif 2.00: Automatic Cryptographic Protocol Verifier. User Man. Tutor. 2018,

16, 5–16.
39. Kim, J.; Moon, J.; Jung, J.; Won, D. Security analysis and improvements of session key establishment for clustered sensor networks.

J. Sens. 2016, 2016, 4393721. [CrossRef]
40. Ryu, J.; Kang, D.; Won, D. Improved secure and efficient Chebyshev chaotic map-based user authentication scheme. IEEE Access

2022, 10, 15891–15910. [CrossRef]
41. Kook, S.; Kim, K.; Ryu, J.; Lee, Y.; Won, D. Lightweight Hash-Based Authentication Protocol for Smart Grids. Sensors 2024,

24, 3085. [CrossRef]
42. Miao, J.; Wang, Z.; Wu, Z.; Ning, X.; Tiwari, P. A blockchain-enabled privacy-preserving authentication management protocol for

Internet of Medical Things. Expert Syst. Appl. 2024, 237, 121329. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/1386853.1378356
http://dx.doi.org/10.1109/ACCESS.2024.3458424
http://dx.doi.org/10.1155/2021/2098530
http://dx.doi.org/10.1109/TIT.2020.2984751
http://dx.doi.org/10.5573/IEIESPC.2024.13.5.534
http://dx.doi.org/10.1038/s41928-020-0372-5
http://dx.doi.org/10.1016/j.iot.2024.101159
http://dx.doi.org/10.3390/electronics12051217
http://dx.doi.org/10.1109/JIOT.2023.3308568
http://dx.doi.org/10.1109/ACCESS.2022.3157871
http://dx.doi.org/10.1109/ACCESS.2024.3373879
http://dx.doi.org/10.1155/2016/4393721
http://dx.doi.org/10.1109/ACCESS.2022.3149315
http://dx.doi.org/10.3390/s24103085
http://dx.doi.org/10.1016/j.eswa.2023.121329

	Introduction
	Related Work
	Preliminaries
	System Model
	Attacker Model
	Elliptic Curve Cryptography
	Fuzzy Extractor
	Physically Unclonable Function, PUF

	Review of Wang et al.'s Scheme
	Gateway and IoT Device Registration Phase
	Gateway Registration
	IoT Device Registration

	User Registration Phase
	Login Phase
	Authentication Phase

	Limitations of Wang et al.'s Scheme
	Stolen Mobile Device Attack
	Illegitimate Session Key Exchange
	Inefficiency

	Proposed Scheme
	User Registration Phase
	Gateway Registration Phase
	IoT Device Registration Phase
	IoT Device Registration to Cloud Center
	IoT Device Registration to Gateway

	Authentication and Key Distribution Phase
	Password Update Phase

	Security Analysis of Proposed Scheme
	Formal Security Analysis
	Informal Security Analysis
	A1: Resistance to User-Impersonation Attack
	A2: Resistance to Stolen-Device Attack
	A3: Resistance to Session Key Disclosure Attack
	A4: Resistance to Replay Attack
	A5: Resistance to Man-in-the-Middle Attack
	A6: Resistance to PUF Modeling Attack
	S1: Provide Anonymity and Untraceability
	S2: Provide Mutual Authentication
	S3: Provide Forward and Backward Secrecy

	Performance Analysis of Proposed Scheme
	Conclusions
	References

