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Abstract: Climate change and rapid urbanization have increased the risk of urban flood-
ing, making timely and accurate flood prediction crucial for disaster response. However,
conventional physics-based models are limited in real-time applications due to their high
computational costs. Recent advances in deep learning have enabled the development of
efficient surrogate models that capture complex nonlinear relationships in hydrological
processes. This study presents a deep learning-based surrogate model designed to effi-
ciently reproduce the spatiotemporal evolution of urban pluvial flooding using data from
physics-based models. For the Oncheon-cheon catchment in Busan, the spatiotemporal
evolution of inundation at a 10 m spatial resolution was simulated using the physics-based
model for various synthetic inundation scenarios to train the deep learning model based on
a Convolutional Neural Network (CNN). The training dataset was constructed using syn-
thetic rainfall scenarios based on probabilistic rainfall data, while the model was validated
using both a synthetic flood event and a historical flood event from July 2020 with observed
ground-based rainfall measurements. The model’s performance was evaluated using quan-
titative metrics, including the Hit Rate (HR), False Alarm Ratio (FAR), and Critical Success
Index (CSI), by comparing results against both synthetic and real (historical) flood events.
Validation results demonstrated high reproducibility, with a CSI of 0.79 and 0.73 for the
synthetic and real experiments, respectively. In terms of computational efficiency, the
deep learning model achieved a speedup 16.4 times the parallel version and 82.2 times
the sequential version of the physics-based model, demonstrating its applicability for near
real-time flood prediction. The findings of this study contribute to the advancement of
urban flood prediction and early warning systems by offering a cost-effective, computa-
tionally efficient alternative to conventional physics-based flood modeling, enabling faster
and more adaptive flood risk management.

Keywords: artificial intelligence; deep learning; physics-guided; urban pluvial flooding

1. Introduction
Extreme weather events associated with climate change have become increasingly fre-

quent worldwide, causing significant increases in flood-related damage due to intensified
precipitation events [1]. Over the past several decades, global urban exposure to flood-
ing has grown markedly, reflecting the rapid expansion of urban areas into flood-prone
zones [2]. This increased vulnerability is especially concerning, as simultaneous urbaniza-
tion and climate change act as compounding drivers that alter hydrological regimes and
amplify surface runoff volumes [3]. Despite these escalating risks, pluvial flooding in urban
environments has received comparatively less scholarly attention than other flood types,
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even though its importance is increasing under changing climatic conditions [4]. Urban
flooding is particularly challenging, as it results from the interaction of multiple factors,
including rainfall intensity, topography, tidal influences, urban drainage infrastructure, and
changes in land use driven by ongoing urban expansion [5]. These combined factors not
only increase flood risk but also complicate the accurate prediction and timely forecasting
required for effective flood mitigation and emergency response. However, achieving both
high accuracy and computational efficiency in urban flood forecasting remains difficult
due to the inherent complexity and dynamic nature of urban hydrological processes [6,7].

Physics-based hydrodynamic models, which simulate flood dynamics by solving math-
ematical equations based on fundamental physical laws governing hydrologic processes,
are the traditional tools for urban flood forecasting [8–11]. Widely used models in this cate-
gory include the Storm Water Management Model (SWMM), Hydrologic Engineering Cen-
ter’s River Analysis System (HEC-RAS), LISFLOOD, and the Modular Integrated Knowl-
edge Engine (MIKE), among many others [8,12–15]. The integration of hydrodynamic
models, such as coupling one-dimensional (1D) and two-dimensional (2D) approaches or
combining hydrologic and hydraulic models like HEC-HMS with HEC-RAS, has enhanced
predictive accuracy for urban flooding by providing more detailed simulations of flood
propagation [16–22]. Despite their accuracy, these physics-based approaches—particularly
those solving the Shallow Water Equations (SWEs)—require significant computational
resources and extensive calibration, which can limit their scalability and real-time applica-
bility. Advances in parallel computing and the use of graphics processing units (GPUs) have
partially alleviated these limitations by improving computational efficiency. For example,
Noh et al. [23] developed a hybrid code for efficient urban flood modeling, and
Morales-Hernández et al. [24] proposed a GPU-accelerated 2D hydrodynamic model.
Similarly, Luan et al. [25] implemented a GPU-accelerated coupled 1D-2D flood model for
high-resolution simulations of urban hydrology. Simplified approaches, such as Cellular
Automata (CA), have also been proposed to reduce computational costs by routing surface
runoff using simplified rules based on water depth and terrain roughness rather than
directly solving complex physical equations [26–29]. Beyond optimizing computational
performance in physics-based modeling, data-driven approaches have emerged as viable
alternatives. Some studies have explored the use of citizen-contributed data for flood
monitoring, extracting water level information from social media and crowdsourced obser-
vations [30–33]. While such real-time, observation-based methods offer valuable insights
for enhancing flood situational awareness, their forecasting capability remains limited due
to data sparsity and inconsistency.

Recent advances in deep learning have introduced new possibilities in hydrological
modeling, with deep learning-based methods emerging as effective alternatives for pre-
dicting flood inundation extent and depth [34–37]. Unlike physics-based models, deep
learning models identify complex nonlinear relationships directly from data without ex-
plicitly modeling physical interactions between hydrological variables, offering significant
computational advantages once trained [38]. Various deep learning architectures have
been applied to urban flood prediction, including Artificial Neural Networks (ANNs),
CNNs, Long Short-Term Memory (LSTM) networks, and Generative Adversarial Networks
(GANs) [39–44]. These data-driven methods have become particularly valuable for real-
time flood forecasting, leveraging historical event data to support timely risk assessment
and response [45].

Several studies have explored the use of deep learning-based flood models.
Löwe et al. [46] introduced U-FLOOD, a U-Net-based model for predicting inundation
maps using terrain data. Hofmann and Schüttrumpf [47] developed FloodGAN, a model
that transforms rainfall data into spatial flood extent predictions. Additionally, hybrid
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approaches incorporating encoder–decoder networks, Graph Neural Networks (GNNs),
and GANs have demonstrated effectiveness in capturing complex spatiotemporal flood
patterns [48].

Despite these advances, fully data-driven deep learning models face key limitations,
including their high dependence on large volumes of training data and their tendency to
overlook detailed spatiotemporal flood dynamics. As a result, their interpretability and
adaptability to diverse urban conditions remain limited [47,49]. To address these chal-
lenges, researchers have increasingly focused on integrating deep learning with physical
modeling principles, a concept often referred to as physics-informed machine learning [50].
By incorporating physically based constraints and hydrodynamic knowledge into deep
learning models, hybrid approaches have demonstrated potential for improving predictive
accuracy, enhancing model robustness, and increasing transferability across different flood
scenarios [1,5,51,52].

Hybrid physics-guided approaches mitigate the shortcomings of purely data-driven
deep learning models, which often lack sufficient real-world flood data, particularly for
rare extreme events. By leveraging physics-based hydrodynamic models as training data,
these hybrid methods enable deep learning models to learn realistic flood dynamics while
maintaining computational efficiency. This integration enhances prediction reliability
and physical consistency, making deep learning models more applicable to urban flood
modeling, where stormwater drainage interactions, surface flow complexities, and built-
environment factors significantly influence flood dynamics.

This study proposes a physics-guided CNN model designed to simulate the spatiotem-
poral dynamics of pluvial flooding in urban areas. The inundation database used for
training and validating the model is generated using physics-based hydrodynamic simula-
tions, encompassing diverse synthetic flooding scenarios. The predictive performance of
the proposed CNN model is evaluated using both synthetic and historical rainfall events for
the Oncheon-cheon catchment in Busan. We quantitatively assess key parameters such as
spatiotemporal flood progression, inundation depth distribution, and flow characteristics
by comparing CNN outputs with benchmark hydrodynamic simulations. Furthermore,
we evaluate the computational efficiency of the proposed CNN model, demonstrating
substantial reductions in computational time compared with traditional physics-based
hydrodynamic models, thus highlighting its potential applicability in real-time urban flood
forecasting and emergency response operations.

2. Materials and Methods
2.1. Framework of Deep Learning-Based Urban Flood Predictions

The proposed framework for urban flood prediction, depicted in Figure 1, consists of
two primary phases: preprocessing and deep learning model development. In the data
preprocessing phase, synthetic rainfall scenarios are initially generated to represent diverse
rainfall intensities and durations, covering a wide range of potential flooding conditions.
These synthetic rainfall inputs are simulated using a physics-based hydrodynamic model,
producing a comprehensive database of corresponding flood scenarios. This inundation
database is then divided into training and test datasets, with the training dataset composed
exclusively of synthetic rainfall events and their flood outcomes. The test dataset, on the
other hand, comprises historical rainfall events with their observed flooding conditions,
enabling the assessment of model performance under realistic conditions. In the deep
learning modeling phase, a CNN is developed and trained using the synthetic dataset to
learn and predict flood characteristics. Once trained, the CNN model rapidly predicts
flood inundation characteristics, including inundation extent, depth distribution, and
temporal flood progression, based on rainfall inputs. Finally, the performance of the CNN is
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quantitatively evaluated using the test dataset of historical rainfall events, where predicted
flood characteristics are compared against those obtained from traditional hydrodynamic
simulations. This evaluation considers prediction accuracy and computational efficiency,
ensuring the proposed CNN framework is suitable for practical, near real-time urban flood
forecasting applications. In this study, the model was trained using 12 synthetic rainfall
scenarios, while validation was performed using the real rainfall event of 23 July 2020,
with hourly data generated through the Thiessen polygon method. For hyperparameter
selection, we manually tested various combinations of kernel sizes, batch sizes, and filter
numbers to identify the optimal configuration that maximizes prediction accuracy while
maintaining computational efficiency suitable for near real-time applications.

Figure 1. Diagram of deep learning framework for urban flood prediction.

2.2. Physics-Based Inundation Model

In this study, we utilized the CA Dual-DraInagE Simulation (CADDIES)-caflood model
(CADDIES-caflood here after), a 2D flood simulation tool based on the CA algorithm, which
offers efficient numerical calculations by employing grid-based methodologies for fast com-
putation [27,28]. Within CADDIES-caflood, each grid cell incorporates terrain elevation and
surface roughness characteristics, enabling rapid routing of surface runoff using simplified
hydrodynamic rules. For this study, we applied a Manning’s roughness coefficient of 0.15
for the entire study area, along with a runoff coefficient of 0.4. These parameter values
were adopted from previous work that validated the CADDIES-caflood model for the
Oncheon Stream catchment [53]. For a detailed description of the underlying methods, see
Guidolin et al. [28]. The CADDIES-caflood model has been validated previously across
various urban catchments, demonstrating its reliability in simulating urban inundation
processes [53–57]. The model software CADDIES-caflood (version 120) is provided in
three variants optimized for different computational resources: (i) a sequential (single-
core) version without parallelization, (ii) an OpenMP-based parallel version suitable for
multi-core CPUs, and (iii) an OpenCL-based parallel version capable of leveraging GPU
acceleration. In the current study, flood simulations were performed using the sequential
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and OpenMP-based versions of CADDIES-caflood, executed exclusively on CPUs, without
considering GPU-based parallel computation.

2.3. Deep Learning-Based Flood Prediction Model (CNN)

The proposed deep learning model used for urban flood prediction is based on a CNN
architecture specifically designed to effectively capture and predict the spatiotemporal
patterns of urban pluvial flooding from rainfall data. The model architecture, as illustrated
in Figure 2, comprises multiple convolutional layers, batch normalization layers, rectified
linear unit (ReLU) activation functions, dropout layers, and fully connected layers.

Specifically, the CNN architecture includes two initial convolutional layers, each using
32 filters with a kernel size of 3 to progressively extract spatial and temporal features from
the input rainfall data. Both convolutional layers are followed by batch normalization
layers to stabilize training and accelerate convergence, and ReLU activation functions
to introduce nonlinearity. The extracted features from the convolutional blocks are then
passed through fully connected layers to capture deeper feature interactions for accurate
flood prediction. The fully connected network consists of three sequential layers with
32, 256, and 512 neurons, respectively. Each fully connected layer is followed by batch
normalization, ReLU activation, and dropout layers (with dropout rates of 0.2) to improve
generalization and prevent overfitting (Figure 2).

The CNN model’s training involves optimizing its parameters over 50 epochs using
the synthetic rainfall and inundation datasets. This number of epochs was determined
experimentally after evaluating the convergence patterns of the loss function with our
limited training dataset, finding that 50 epochs provided an optimal balance between
model performance and computational efficiency. During training, the Adam optimizer
was applied with the mean squared error (MSE) as the loss function to ensure efficient
convergence. The Adam optimizer was selected due to its efficiency in handling sparse
gradients and adaptive learning rate capabilities, typically leading to faster and stable
convergence in various deep learning applications, including hydrological predictions. For
hyperparameter selection, we implemented a manual grid search approach, systematically
testing combinations of kernel sizes (1, 3, 5), batch sizes (16, 32, 64), and filter numbers
(32, 64, 128) to determine the configuration that optimized prediction accuracy while
maintaining computational efficiency for real-time applications. The model architecture
and training strategies were selected based on their demonstrated capability to accurately
capture complex, nonlinear spatiotemporal patterns associated with urban flooding, thus
enabling rapid flood prediction once the model is trained.

Figure 2. Architecture of CNN model.
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2.4. Performance Assessment
2.4.1. Binary Classification Measures

To quantitatively assess flood prediction performance, three binary classification
measures—CSI, HR, and FAR—were used. Areas were classified as flooded if inundation
depth exceeded 15 cm, and non-flooded otherwise. This threshold aligns with guidelines
from the UK Environment Agency, which identifies inundation depths above 15 cm as
significantly hazardous [11,58]. Similarly, governmental agencies in South Korea commonly
adopt 15 cm as the official threshold for flood warnings, inundation alerts, and emergency
responses [59].

In Table 1, a represents grids classified as flooded in the CNN model, b represents
grids classified as flooded in the benchmark CADDIES-caflood model, c represents grids
classified as non-flooded in the CNN model, and d represents grids classified as non-flooded
in the CADDIES-caflood model.

Table 1. Grid descriptors in binary classification measures.

Inundated Grid in CNN Non-Inundated Grid in CNN

Inundated grid in CADDIES-caflood a (Hits) c (Misses)
Non-inundated grid in CADDIES-caflood b (False alarms) d (True negatives)

(1) HR
The HR represents the flood area ratio of the CNN model relative to the CADDIES-

caflood model. The equation is given in Equation (1), which indicates the model’s tendency
to underestimate flood risk. The HR ranges from 0 to 1, with values closer to 1 indicating
better alignment between the CNN model’s and CADDIES-caflood model’s flood areas.

HR =
a

a + c
(1)

(2) FAR
The FAR represents the ratio of areas classified as flooded by the CNN model within

non-flooded areas in the CADDIES-caflood model. The equation is given in Equation (2),
serving as an indicator of the model’s overprediction of flood extent. The range is from 0 to
1, with 0 indicating no false alarms.

FAR =
b

a + b
(2)

(3) CSI
The CSI is a comprehensive performance indicator that considers both over- and

underprediction, as shown in Equation (3). It ranges from 0 to 1, with 1 indicating perfect
alignment between the CNN and CADDIES-caflood model flood areas.

CSI =
a

a + b + c
(3)

2.4.2. Flood Depth Prediction Measures

To evaluate the accuracy and reliability of flood depth prediction performance, we
employed three assessment metrics: Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), and the coefficient of determination (R2). These metrics provide complementary
insights into the model’s predictive precision, error magnitude, and ability to replicate the
spatial variability of flood depths.

(1) Root Mean Square Error (RMSE)
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RMSE is defined as the square root of the arithmetic mean of the squared residuals
between predicted and benchmark values. This metric is widely used to evaluate the
accuracy of flood depth predictions, emphasizing larger errors and providing a conservative
assessment of model performance. The equation is given as:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2 (4)

where N is the total number of simulation grids, yi represents the observation or benchmark
model (in this case, CADDIES-caflood model’s flood depth), and ŷi represents the simulated
result (CNN model’s flood depth).

(2) Mean Absolute Error (MAE)
MAE is defined as the arithmetic mean of the absolute differences between predicted

and benchmark values. This metric measures the average magnitude of errors without
considering their direction, treating all deviations equally regardless of their sign. Unlike
RMSE, it is less sensitive to outliers and provides an intuitive measure of the typical
prediction error. The equation is given as:

MAE =
1
N

N

∑
i=1

|yi − ŷi| (5)

(3) Coefficient of Determination (R2)
R2 is defined as the proportion of variance in the benchmark data that is explained by

the CNN model. This metric evaluates how well the predicted flood depths capture the
variability in the benchmark data, with values ranging from 0 to 1. A value of 1 denotes
perfect prediction, while 0 indicates no explanatory power. Negative values suggest
performance worse than using the mean as a prediction. The equation is given as:

R2 = 1 − ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − ȳ)2

(6)

where ȳ represents the mean of the observation or benchmark model values (CADDIES-
caflood model’s flood depths).

2.5. Study Area and Data

The study area is the Oncheon-cheon catchment, with an area of 56.3 km2 and a stream
length of 14.1 km, located in Busan, South Korea. Oncheon-cheon, the first tributary of the
Suyeong River, flows through a densely urbanized watershed characterized by complex
topography. The catchment exhibits steep slopes upstream, ranging approximately from
1/40 to 1/520, and transitions downstream into relatively flat terrain with gentle slopes of
about 1/840 to 1/1000. This varied topography, combined with the catchment’s extensive
urbanization, contributes significantly to its vulnerability to pluvial flooding. Historically,
intense rainfall events have frequently caused severe flooding and damage in this area.
In particular, the pluvial flooding event in 2020, which is used in this study for model
validation, resulted in multiple fatalities and extensive inundation of low-lying urban areas.
This susceptibility to recurring flooding emphasizes the critical importance of accurate and
timely flood forecasting and effective flood management strategies [59].

For the CADDIES-caflood simulations, a Digital Surface Model (DSM) with a spatial
resolution of 10 m was utilized to represent the detailed topography of the Oncheon-cheon
catchment (Figure 3). Specifically, the DSM was constructed by extracting contour lines from
the 1:5000 digital topographic maps provided by the National Geographic Information
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Institute (NGII) of Korea, and subsequently using the triangulated irregular network
(TIN) interpolation method within a Geographic Information System (GIS). This DSM was
generated from digital contour maps, supplemented with river cross-section survey data
and road network information, which were incorporated to realistically represent urban
structures and river morphology. Cells corresponding to road areas were assigned relatively
lower elevation values to more accurately simulate potential road inundation. This DSM
construction methodology has been previously validated and successfully applied in urban
flood modeling studies within the study domain [53]. Previous studies have demonstrated
the effectiveness of such high-resolution elevation datasets for urban flood modeling in the
study domain [60].

Figure 3. Study area map of the Oncheon-cheon catchment.

2.6. Experimental Setup

To generate training data for the deep learning model, synthetic precipitation sce-
narios were developed using probabilistic precipitation data from South Korea’s Na-
tional Water Resources Management Comprehensive Information System (WAMIS, http:
//www.wamis.go.kr/, accessed on 1 September 2024). These synthetic scenarios were
classified into four distinct temporal distribution patterns: (1) early peak, (2) central peak,
(3) late peak, and (4) multi-peak (double peak), each constructed at 1 h intervals to match
the duration of real rainfall events for validation (Figure 4a). The synthetic rainfall patterns
covered a wide range of intensities, from low-intensity events (no inundation) to extreme
rainfall conditions, ensuring a comprehensive evaluation of the model’s performance across
different flooding scenarios. Specifically, the rainfall scenarios included total precipitation
amounts corresponding to return periods of up to 50 years.

For training datasets, flood simulation results from the CADDIES-caflood model were
saved at hourly intervals, ensuring a consistent temporal resolution for deep learning model
development. The optimal temporal window for the rainfall time series was determined to
be 4 h based on a manual sensitivity analysis, where different window sizes were tested to

http://www.wamis.go.kr/
http://www.wamis.go.kr/
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identify the most effective input duration for flood prediction. This selection means that
the CNN model utilized the preceding 4 h rainfall data as input to predict flood inundation,
balancing prediction accuracy and computational efficiency.

For validation, a synthetic rainfall event with a central-peak temporal distribution
and a 20-year return period (total rainfall of 307.7 mm) was used to evaluate the model’s
ability to reconstruct flood conditions (Figure 4b). Additionally, an actual historical rainfall
event from 2020 was selected to assess the model’s predictive accuracy under real-world
conditions (Figure 4c). Hourly rainfall measurements for this event were obtained from
automatic weather stations (AWSs) operated by the Korea Meteorological Administration
(KMA) in the Geumjeong and Dongnae districts, accessible through KMA’s Open Portal.
To obtain catchment-averaged precipitation, the Thiessen polygon method was applied to
spatially average the hourly rainfall data from these two stations. The resulting Thiessen
weights were 0.234 for the Geumjeong station and 0.766 for the Dongnae station. The
locations of both AWS stations are indicated in Figure 3, providing spatial context. This
event occurred from 14:00 on 23 July 2020 to 06:00 on 24 July 2020 producing a total rainfall
of 174.2 mm and a peak hourly intensity of 58.8 mm.

Figure 4. Rainfall time series used for model development and validation: (a) synthetic training event
(gray), (b) synthetic validation event with a 20-year return period (blue), and (c) real validation event
from 2020 (blue).
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3. Results
This section presents the performance evaluation of the CNN-based flood prediction

model by comparing its results with the physics-based CADDIES-caflood model. The
analysis includes the spatiotemporal evolution of inundation depths, binary classification
assessments, flooded area comparisons, and quantitative performance metrics under both
synthetic and real flooding experiments. Additionally, the computational efficiency of the
CNN model is assessed, highlighting its potential for near real-time flood forecasting.

3.1. Comparison of Spatiotemporal Evolution Between Physics-Based and Deep Learning Models

Figure 5 compares the spatiotemporal evolution of inundation depths simulated by the
physics-based CADDIES-caflood model and the deep learning-based CNN model under
a synthetic rainfall scenario. In this figure, buildings are overlaid solely for visualization
purposes and were not incorporated into the DSM as physical features. The observed
flow discontinuities and localized ponding primarily result from terrain characteristics
represented in the DSM, where roads are modeled with slightly lower elevations com-
pared with their surroundings. These topographic depressions naturally lead to water
accumulation, resulting in disconnected flow paths and localized ponding. Focusing on the
simulation results, overall, both models exhibit strong agreement in predicting the extent
and distribution of flooding over time. At 07:00, minimal inundation is observed, with
water beginning to accumulate in low-lying areas. By 10:00, flooding expands significantly
along major drainage pathways and urban depressions, with both models capturing similar
spatial patterns of inundation. At 13:00, slightly over the peak flooding stage, the CNN
model closely follows the CADDIES-caflood results, capturing widespread inundation
along the river and adjacent urban areas. The deepest floodwaters are concentrated in simi-
lar locations, particularly near the main channels and low-lying road networks. At 16:00,
as water levels begin to recede, both models depict a gradual reduction in flood extent,
with flooded areas contracting in a comparable manner. While the CNN model accurately
represents most flood-prone areas, some discrepancies are observed in specific locations
where CADDIES-caflood predicts deeper inundation, particularly in narrow streets and
intersections. In the enlarged region, these differences are more noticeable at peak flooding
(13:00) and during recession (16:00), where small-scale drainage complexities may not be
fully captured by the CNN model. Despite these localized variations, the CNN model
effectively replicates the overall flood dynamics and spatial patterns of inundation.

Figure 6 presents a spatial evaluation of CNN flood predictions compared with the
physics-based CADDIES-caflood model using binary classification metrics: hits (blue), false
alarms (green), and misses (red) for both the synthetic (a) and real (b) experiments. The
results indicate that the CNN successfully reproduces the overall flood extent, with a high
proportion of hits, demonstrating strong agreement with CADDIES-caflood. However,
some differences in prediction accuracy are observed, particularly in areas with complex
drainage characteristics.

In the synthetic experiment (Figure 6a), CNN predictions show relatively larger false
alarms, particularly along road networks and urban depressions, suggesting slight overes-
timation of flooding in some areas. Misses are also present in certain flood-prone zones,
indicating slight underprediction of flood extents, particularly at peak inundation. In
contrast, in the real experiment (Figure 6b), CNN predictions show a notable reduction
in misses, implying improved accuracy in capturing actual flood extents. However, false
alarms increase, indicating that the CNN slightly overpredicts flood-prone areas under real
rainfall conditions. This trade-off suggests that the CNN generalizes well to real-world
events but exhibits increased sensitivity to flooding in urban environments. Despite these
variations, the CNN model effectively captures the major flood patterns in both experi-
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ments, reinforcing its capability to reproduce large-scale flood dynamics while highlighting
areas for further refinement in predicting localized flood variations.

Figure 5. Comparison of spatiotemporal inundation depth evolution between CADDIES-caflood and
the CNN under the synthetic rainfall scenario.

Figure 7 presents the temporal evolution of flooded areas estimated from the simula-
tion results shown in Figure 5, comparing CADDIES-caflood and the CNN in both synthetic
(a) and real (b) experiments. The flooded area is calculated based on the inundation extent
at each time step, providing insight into how well the CNN model replicates the flood
progression predicted by the physics-based model. The comparison highlights similarities
in flood growth and peak inundation, as well as differences in the timing and extent of
flood recession.

In the synthetic experiment (Figure 7a), the CNN closely follows the flood extent
evolution predicted by CADDIES-caflood, with both models showing a steady increase
in flooded area up to the peak at 10 h, followed by a gradual decline. Minor differences
appear in the later stages, where the CNN slightly overestimates flood persistence. The
agreement between the two models suggests that the CNN effectively captures the overall
flood dynamics under controlled synthetic conditions.
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Figure 6. Spatiotemporal evolution of binary classification metrics for the CNN compared with
CADDIES-caflood in both synthetic and real experiments.

In the real experiment (Figure 7b), the CNN exhibits larger deviations, particularly in
the early and late stages of flooding. The model predicts a greater flooded area in the initial
phase (before 8 h) compared with CADDIES-caflood, likely due to its tendency to generalize
flood expansion patterns, leading to overestimation in areas constrained by urban drainage
capacity. Additionally, the CNN overpredicts peak inundation (10–14 h) and maintains
a higher flooded area during the recession phase, indicating that it slower in capturing
flood drainage dynamics. These trends align with Figure 5, where the CNN predicts more
extensive flooding along road networks and low-lying urban zones. The overestimation
observed here is also reflected in Figure 6, where the CNN shows larger false alarms in real
conditions, contributing to the larger predicted flood extent. Despite these discrepancies, the
CNN successfully captures the overall flood evolution trends, demonstrating its potential
for flood forecasting while indicating areas for further improvement in real-world urban
flood dissipation modeling.

Figure 8 illustrates the temporal evolution of CNN flood prediction performance
using the CSI, HR, FAR, and Miss Rate, demonstrating how prediction accuracy changes
throughout the flood event. The results indicate that the HR and CSI increase over time,
while the FAR and Miss Rate decrease, suggesting that CNN predictions improve as the
flood progresses. In the synthetic experiment (Figure 8a), the CSI and HR stabilize above
0.8 after 08:00, showing strong agreement with CADDIES-caflood. The FAR and Miss
Rate decline consistently, indicating that the CNN initially overpredicts certain areas but
corrects itself as the event unfolds. In the real experiment (Figure 8b), the CNN maintains a
high HR, but the CSI exhibits slight fluctuations, ranging between 0.7 and 0.8 after 08:00.
A brief decline in the HR and CSI around 09:00–10:00, alongside a temporary rise in the
Miss Rate, suggests that the CNN has minor difficulties capturing flood evolution during
this period. Additionally, while misses decrease in the real experiment compared with
the synthetic case, the FAR is noticeably higher, consistent with Figure 6, where the CNN
predicts flooding in additional areas under real conditions.

Figure 9 illustrates the temporal variation in CNN flood depth prediction accuracy
using RMSE, MAE, and R2 metrics for both the synthetic (a) and real (b) experiments. In



Water 2025, 17, 1239 13 of 20

both scenarios, R2 increases rapidly as the flood progresses, rising from approximately
0.2 at 05:00 to above 0.8 by 08:00–10:00. The initially low R2 values correspond to early
stages with minimal flooding, where limited inundation extent reduces the effectiveness
of statistical correlation. As flooding expands and affects a broader area, the CNN model
demonstrates improved agreement with CADDIES-caflood, maintaining high R2 values
throughout the main flood period, with only a brief dip around 14:00 in the real experiment
that quickly recovers.

RMSE values rise gradually during peak inundation phases, reflecting the increasing
complexity of flood dynamics and spatial heterogeneity. In contrast, MAE remains consis-
tently low (generally below 0.06 m) across both experiments, indicating that most depth
predictions fall within a narrow error range. Both RMSE and MAE exhibit a temporary
increase during peak flooding hours (approximately 10:00–14:00), which corresponds to
periods of more intense and spatially complex inundation. This reflects the challenge of
accurately capturing highly dynamic flood depths in certain localized areas. However, the
overall error levels remain low, and the majority of predictions maintain high accuracy
throughout the event.

These trends are in line with the classification-based findings presented in Figure 8, and
further highlight that, despite localized discrepancies, the CNN effectively captures both the
spatial distribution and temporal evolution of urban flooding. The model delivers robust
performance under synthetic conditions and maintains acceptable predictive accuracy
under real-world complexity, reinforcing its applicability for rapid urban flood forecasting.

Table 2 quantifies these trends by providing numerical values of the performance met-
rics shown in Figure 8. The table confirms that the CNN performs well in both experiments
but with notable differences. In the synthetic experiment, the CNN achieves an average
CSI of 0.79 and an HR of 0.85, indicating strong agreement with CADDIES-caflood. The
FAR remains low at 0.11, and the Miss Rate averages 0.15, demonstrating effective flood
detection with minimal false predictions. In the real experiment, the CNN maintains a high
HR of 0.93, but the CSI is slightly lower at 0.73, reflecting a slight decrease in prediction ac-
curacy. The FAR increases to 0.22, indicating a greater tendency to overpredict flood-prone
areas, while the Miss Rate improves to 0.07, confirming reduced underprediction. The
average RMSE is 0.15 m in the synthetic experiment and 0.17 m in the real experiment, with
peak deviations occurring at 12:00–14:00 in real conditions, aligning with the overestimated
flooded areas observed in Figure 7b. These findings highlight the CNN’s capability to
generalize flood dynamics effectively while revealing the need for refinements to improve
localized accuracy in real-world urban flood modeling.

Table 2. Performance metrics in synthetic and real experiments.

Synthetic Experiment Real Experiment

Time
(h) HR FAR CSI Misses RMSE

(m) HR FAR CSI Misses RMSE
(m)

06:00 0.78 0.31 0.57 0.22 0.10 0.96 0.32 0.66 0.04 0.11
08:00 0.86 0.04 0.84 0.14 0.12 0.82 0.06 0.77 0.18 0.11
10:00 0.90 0.04 0.87 0.10 0.22 0.95 0.17 0.80 0.05 0.13
12:00 0.96 0.06 0.90 0.04 0.12 0.95 0.22 0.75 0.05 0.21
14:00 0.97 0.06 0.91 0.03 0.15 0.99 0.28 0.72 0.01 0.34
16:00 0.98 0.04 0.94 0.02 0.15 0.98 0.21 0.78 0.02 0.13

Average 0.85 0.11 0.79 0.15 0.15 0.93 0.22 0.73 0.07 0.17
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Figure 7. Comparison of flooded areas in (a) synthetic and (b) real experiments.

Figure 8. Comparison of binary classification measures in (a) synthetic and (b) real experiments.
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Figure 9. Comparison of performance assessment results in (a) synthetic and (b) real experiments.

3.2. Computational Efficiency

The computational efficiencies of the CNN-based surrogate model and the physics-
based CADDIES-caflood model were compared using the historical event in the real
experiment (17 h rainfall event from 2020, Table 3). The CADDIES-caflood model was
executed on a personal computer equipped with an Intel I7-1260p CPU, 32GB RAM, and
an Intel Iris Xe Graphics GPU (Intel Corp., Santa Clara, CA, USA). In contrast, the CNN
model was trained and executed on Google Colab Pro Plus (Google LLC, Mountain View,
CA, USA), utilizing an NVIDIA A100 GPU (NVIDIA Corp., Santa Clara, CA, USA).

For the CADDIES-caflood model, the OpenMP version, which leverages multi-core
parallel computing, required approximately 121.7 s to generate the inundation maps for a
single rainfall event when executed on 12 CPU cores. In contrast, the sequential computing
approach using a single core took approximately 600 s. For the CNN model, training on
synthetic inundation scenarios generated from probabilistic rainfall data took approxi-
mately 40 s. Once trained, the CNN model required only 7 s to predict the inundation maps
for the real rainfall event, significantly reducing computation time.

To ensure a robust and fair comparison, all simulation times were estimated by av-
eraging computation times from 10 repeated runs, reducing the impact of variability in
system performance. The CNN model significantly improved computational efficiency,
achieving a 98.8% reduction in computation time compared with the sequential execution
of CADDIES-caflood (82.2× speedup) and a 93.9% reduction compared with the parallel ex-
ecution (16.4× speedup). These results confirm the CNN model’s computational advantage,
making it highly suitable for near real-time flood prediction applications.

Since the CADDIES-caflood model is already more computationally efficient than
conventional physics-based models, the proposed deep learning-based surrogate model
further enhances computational efficiency. Our CNN-based model can generate high-
resolution inundation maps in less than 10 s (approximately 7 s on average), compared
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with the several minutes or even hours typically required by traditional hydrodynamic
models. This significant reduction in computation time effectively addresses the limitations
historically associated with real-time flood forecasting. Consequently, rapid scenario
analysis and timely decision support become feasible during flood events, highlighting the
proposed approach as a promising tool for operational urban flood forecasting, particularly
where immediate response is critical.

Table 3. Comparison of simulation time for 17 h real experiment.

Model
CADDIES-

Caflood
(Sequential)

CADDIES-
Caflood (OpenMP) CNN

Simulation time (s) 608.53 121.70 7.40

4. Conclusions
This study developed a deep learning-based urban flood prediction model that effec-

tively replicates the spatiotemporal evolution of pluvial flooding simulated by physics-
based hydrodynamic models. By training a CNN on synthetic precipitation scenarios and
flood simulations from the CADDIES-caflood model, the study demonstrated that deep
learning can serve as a computationally efficient surrogate for conventional urban flood
modeling approaches.

The CNN model exhibited strong predictive performance in both synthetic and real
flooding conditions, achieving high HR and CSI values. While the HR (0.85) and CSI (0.79)
were higher in the synthetic experiment, the real experiment maintained a strong HR (0.93)
but a slightly lower CSI (0.73), with an increased FAR, indicating a tendency to overpredict
flooding, particularly along urban road networks.

A major advantage of the CNN model is its computational efficiency. In the real
experiment, the CNN generated inundation maps in just 7 s, achieving a speedup 16.4 times
the parallel version and 82.2 times the sequential version of the CADDIES-caflood model.
These findings highlight the CNN’s feasibility for near real-time urban flood prediction,
making it a promising tool for operational forecasting.

Despite its strong performance, the CNN model exhibited limitations in accurately
capturing localized hydrodynamic interactions, particularly under real precipitation condi-
tions. The overprediction of flood extents suggests that further improvements are needed
to better account for drainage infrastructure, urban surface roughness, and sub-grid-scale
hydrodynamic features.

Further improvements could include expanding the training dataset to encompass a
broader range of real rainfall events and incorporating critical hydrological variables, such
as drainage infrastructure capacity and soil infiltration rates, to enhance predictive accu-
racy and reduce false alarms. Additionally, the fidelity of the physics-based simulations
underlying our CNN model can be improved through more comprehensive environmental
monitoring, including denser ground-based observation networks and high-resolution
topographic and land-use data. Complementary approaches, such as citizen science initia-
tives, could also provide valuable flood-related observations with enhanced temporal and
spatial resolution, particularly in areas lacking traditional monitoring infrastructure.

While deep learning models like CNNs offer powerful predictive capabilities, future
work should also explore explainable AI techniques to improve model transparency and
interpretability. Additionally, successful deployment in practice requires close collaboration
with stakeholders. Developing intuitive and accessible visualization tools, and actively
engaging municipal authorities, emergency management teams, and urban planners will
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help ensure that flood predictions are effectively translated into actionable insights for
decision-making in urban flood management.

Future research should further incorporate additional physical constraints into the model
training process by leveraging hybrid physics-guided deep learning methods to enhance
model transferability and physical realism. A promising direction is the integration of Physics-
Informed Neural Networks (PINNs), which embed conservation laws directly within neural
network architectures. For example, embedding the Shallow Water Equations into the PINN
loss function serves as a regularization mechanism, guiding the model to learn physically
plausible solutions, even in sparse-data or unseen scenarios [61–63]. Such integration could
significantly improve predictive accuracy for extreme events and strengthen the physical
consistency of flood predictions. However, addressing implementation challenges in complex
urban settings remains an important consideration for future studies.

Overall, this study demonstrates the potential of deep learning as a fast and reliable
alternative to conventional physics-based urban flood modeling. By combining deep
learning with physics-based simulations, the proposed approach offers a cost-effective,
high-resolution, and computationally efficient method for urban flood forecasting, paving
the way for more adaptive and scalable flood risk management strategies.
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