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Abstract: The industrial application of artificial intelligence (Al) has witnessed outstanding
adoption due to its robust efficiency in recent times. Image fault detection and classification
have also been implemented industrially for product defect detection, as well as for main-
taining standards and optimizing processes using Al. However, there are deep concerns
regarding the latency in the performance of Al for fault detection in glossy and curved
surface products, due to their nature and reflective surfaces, which hinder the adequate
capturing of defective areas using traditional cameras. Consequently, this study presents
an enhanced method for curvy and glossy surface image data collection using a Basler
vision camera with specialized lighting and KEYENCE displacement sensors, which are
used to train deep learning models. Our approach employed image data generated from
normal and two defect conditions to train eight deep learning algorithms: four custom
convolutional neural networks (CNNs), two variations of VGG-16, and two variations of
ResNet-50. The objective was to develop a computationally robust and efficient model
by deploying global assessment metrics as evaluation criteria. Our results indicate that a
variation of ResNet-50, ResNet-50,54, demonstrated the best overall efficiency, achieving an
accuracy of 97.97%, a loss of 0.1030, and an average training step time of 839 milliseconds.
However, in terms of computational efficiency, it was outperformed by one of the custom
CNN models, CNNg-240, which achieved an accuracy of 95.08%, a loss of 0.2753, and an
average step time of 94 milliseconds, making CNN-240 a viable option for computational
resource-sensitive environments.

Keywords: convolutional neural network; ResNet-50; VGG-16; Dijkstra’s algorithm; glossy
surface; curved surface; fault classification; fault detection

1. Introduction

Over the years, the manufacturing sector has undergone a remarkable transforma-
tion since the introduction of Industry 4.0, uniquely revolutionizing industrial operations
through smart technological implementations. These innovations have enhanced and
fostered global innovation and competitiveness within the manufacturing sector. Artifi-
cial intelligence (AI) has been used not only in manufacturing processes but also plays a
crucial role in the maintenance and reliability of industrial machinery. One aspect of Al,
known as Prognostics and Health Management (PHM), ensures uninterrupted production
by monitoring the life and performance of a system. PHM enables real-time monitoring
and assessment of systems, with the capacity to monitor a system both online (while in
operation) and offline (when not in operation) [1]. It can predict the current and future
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state of a given system based on information generated through sensor technology. Al-
though PHM originated in the aerospace industry;, its reach has expanded to industries
such as manufacturing, energy, production, automotive, construction, textile, healthcare,
and pharmaceuticals.

Vision-based analysis has been successfully employed in manufacturing for standard
and quality control inspections [2]. It is also used in technical fields such as intelligent
traffic monitoring and unmanned aerial vehicles [3,4]. Despite the success of Prognostics
and Health Management (PHM) models in system diagnostics and monitoring, researchers
continue to enhance condition-based system models to improve efficiency and robustness,
addressing unresolved challenges. One such challenge is automated defect inspection
and machine vision-based fault detection for glossy and curvy surfaces. The complex
reflectiveness and curvy morphology of these surfaces often cause defects to go unnoticed
when captured by traditional cameras [5,6]. For decades, such inspections have been
performed manually by trained human inspectors, which is time-consuming and costly
compared to automated non-glossy surface inspection [5,7].

Generally, product quality inspection is critical in manufacturing, with methods like
visual inspection, automated optical inspection (AOI), machine vision, infrared thermog-
raphy, laser scanning, and X-ray inspection widely used [8-10]. Among these, computer
vision stands out for its precision, computational efficiency, and non-contact approach,
particularly as industries shift from Industry 4.0 to Industry 5.0 [11,12]. However, issues ex-
perienced with glossy and curved surfaces have prompted researchers to explore different
methodologies to overcome these challenges.

Some methods for mitigating glossy surface effects primarily involve modifying
image capture techniques and using advanced cameras with enhanced lighting to reduce
surface reflectiveness. Techniques such as polynomial texture mapping, surface-enhanced
ellipsometry, specular holography, and near-field imaging have proven effective when
implemented correctly [13-15]. Their efficacy is demonstrated in several studies. For
example, Miiller used polarization filters to diminish surface reflectiveness, capturing two
images with different filter orientations and then deriving the specular reflectance intensity
on plane surfaces, effectively mitigating surface reflections [16]. Similarly, Yoon et al. [17]
proposed a method to remove light reflections in medical diagnostic imaging by adjusting
the angle of a linear polarized filter. By controlling vertical and horizontal polarization
through filter rotation, they eliminated light reflections and expanded the field of view.
In another study [18], the authors introduced a spatial augmented reality framework to
improve the appearance of glossy surfaces. Their technique spatially manipulates an
environment’s appearance, allowing a glossy surface to reflect a projected image without
direct modification, thus enabling effective appearance editing through careful content
control. Nevertheless, environmental factors, incompatibility with certain surfaces, and
reduced image resolution remain limitations of this approach [19-21].

Another unique method often utilized involves implementing advanced algorithms
and unique image processing deep learning models, robust enough to handle glossy
surfaces. The study by Yuan et al. [22] proposed a dual-mask-guided deep learning
model specifically designed to detect surface defects on highly reflective leather materials.
Their model enhances defect detection accuracy by effectively removing surface specular
highlights in images while preserving bright defects. Although leather surfaces may not
be perfectly reflective, this technique could be effective on highly glossy surfaces when
implemented with robust models. In another notable study [23], the authors presented an
object detection and classification model of polished metal shaft surface defect using a deep
learning method based on convolutional neural network feature extraction. Their method
was achieved through image segmentation, architecture setup, and parameter optimization
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of a Fast-R-CNN object detection framework. According to the assessment, their model
proved to be implementable in practical production; hence, their model can also be extended
to other fields of large image micro-fine defects with large light surfaces. However, model
performance can decline in real-life applications involving intense reflections or varying
levels of reflectiveness. For example, a glass defect detection method proposed in [20]
struggled when the background image closely resembled the reflected image.

For curved surfaces in fault detection—especially with fixed cameras—researchers
have developed various techniques to address the challenges. Among these, robotic arms
stand out for their flexibility in navigating curved geometries. Wang et al. [24] demon-
strated a robotic arm equipped with a 3D micro X-ray fluorescence (uLXRF) spectrometer
and a depth camera for high-precision scanning of curved surfaces. They emphasized that
maintaining consistent X-ray incident angles and scanning distances minimizes counting
errors and improves accuracy. The arm’s flexible six-axis design enables comprehensive
surface inspections from multiple perspectives, enhancing its industrial utility. Similarly,
Huo et al. [25] highlighted the advantages of robotic arms by employing a six-degree-of-
freedom manipulator integrated with a line scan camera and high-intensity lighting. This
setup successfully inspected convex, free-form, and specular surfaces by dynamically
adapting the region of interest, ensuring robust defect detection on complex geometries.

Regardless of the technique used to establish a robust image fault detection or clas-
sification model, the classifier or fault detection algorithm remains critical to achieving
accurate results. Among deep learning algorithms, convolutional neural networks (CNNs)
stand out as one of the most powerful. They have dominated the field of computer vision
since their remarkable performance in the ImageNet Large Scale Visual Recognition Com-
petition in 2012 and are widely employed in diverse areas, including medical imaging for
tumor detection and fault identification using MRI and X-ray images [26-28]. A typical
example can be seen in this study by Rajeshkumar et al. [29]; they used CNNs to diagnose
brain tumors via MRI scans, emphasizing prompt and efficient defect detection in medical
practice. Their methodology demonstrated the flexibility of CNNs; by employing a grid
search optimization technique, they enhanced the performance of three CNN models for
multi-classification tasks involving brain tumor images. While the models exhibited vary-
ing performance levels, they demonstrated the flexibility and adaptability of CNNs. The
high accuracy achieved in identifying and classifying brain tumors further underscores the
reliability and effectiveness of CNNs in medical image analysis.

Over the years, convolutional neural networks (CNNs) have branched into various
specialized architectures to tackle specific challenges in computer vision—including seg-
mentation, object detection, fault detection, and more. For instance, the Visual Geometry
Group (VGQG) architecture is a standard CNN model with multiple sequential layers, em-
phasizing simplicity in design to enhance feature extraction [30,31]. However, this comes
at a high computational cost due to its depth. The Residual Neural Network (ResNet)
architecture revolutionized deep networks by introducing residual connections, which
address the vanishing gradient issue and enable much deeper architectures [32].

The strength of ResNet was demonstrated in [33], where several CNN architectures—
including Inception V3, VGG-16, VGG-19, and a conventional CNN—were compared for
early fault detection in rice leaf blast disease. ResNet-50 achieved a top accuracy of 99.75%,
highlighting the importance of deep feature extraction in agricultural applications. In some
cases, combining multiple CNN architectures can yield better results. For example, in [34],
the authors employed a combination of CNN subtypes for COVID-19 detection and classifi-
cation. They used Faster R-CNN with a VGG-16 backbone to detect and classify COVID-19
infections in computed tomography (CT) images, achieving an accuracy of 93.86%. This
further validates the utility of region-based CNNs in medical image analysis. CNN has also
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been integrated into various advanced models to create more sophisticated frameworks.
For instance, the authors in [35] proposed a novel transformer network enhanced with
a CNN cross-attention mechanism for hyperspectral image (HSI) classification. Despite
the constraint of limited data samples, their framework demonstrated exceptional classi-
fication performance. In another study, He et al. [36] utilized a cross-fusion of CNN and
transformer architectures for high-speed railway dropper defect detection. Their robust
framework achieved accurate defect detection even under challenging weather conditions,
such as rain, fog, sunlight, and nighttime. Deployed across over 300 high-speed trains,
their system successfully detected more than 10,000 dropper defects, outperforming most
state-of-the-art networks in terms of competence and reliability.

The motivation behind this study stems from the pressing demand within a manu-
facturing company to create a reliable classification model for products with glossy and
curved surfaces. Figure 1 illustrates a product sample: a uniquely designed hairbrush case
cover tailored for women. This product merges aesthetic appeal with practical functionality,
catering to a specific consumer need. Its distinctiveness arises not only from its visual de-
sign but also from its ergonomic construction, material durability, and comfortable palm fit.
Beyond its user-centric features, the case enhances the hairbrush’s longevity by providing
protection and portability. Its versatile design ensures adaptability to diverse settings and
uses, further solidifying its value in everyday life.

Figure 1. Heart case product sample.

Nevertheless, the product’s aesthetic nature not only attracts customers but also poses
challenges. Its glossy and curved design complicates traditional machine-vision inspection
techniques. For example, as shown in Figure 1, the white circles highlight dent locations
that are difficult to detect visually due to surface reflectivity. Quality inspection is critical
for this product, as the target demographic demands flawless items, and even minor defects
like cracks, dents, or scratches lead to rejection. This stringent requirement has prompted
online platforms to automatically flag and reject listings with such imperfections.

To ensure that fault classification is effectively carried out on glossy and curved
surfaces in the manufacturing industry, this study makes the following contributions:

* A proposal for integrating a Basler vision camera with enhanced lighting to achieve
clear, high-quality image acquisition of glossy surfaces. This integration is aimed to
facilitate the development of a robust fault detection and classification framework
specifically designed for reflective surfaces.

¢  The utilization of a KEYENCE laser displacement sensor in combination with a
Motoman-GP7 Yaskawa robotic arm to enable the precise and effective acquisition of
curved geometries. Additionally, the integration of images from the Basler vision cam-
era and the laser displacement sensor is proposed as an ideal approach for developing
a fault classification framework for glossy and curved surface image products.
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* A thorough comparative assessment of robust deep learning algorithms for image-
based fault detection, with global assessment metrics such as accuracy, loss, computa-
tional efficiency, recall, F1 score, specificity, mAP, and confusion matrix, to validate
the performance of our model and identify an efficient algorithm that is also computa-
tionally cost efficient.

The rest of the paper is structured as follows: Section 2 explains the theoretical
background of the core techniques employed in the study. Section 3 details the proposed
system framework and methodologies used to achieve the study’s objectives. Section 4
presents the experimental setup and visualizations. Section 5 discusses and evaluates the
results, while Section 6 concludes the study.

2. Theoretical Background

This section discusses the theoretical background of CNN architecture and its sub-
types as employed in the study. It also explores key techniques utilized in the development
of the proposed framework.

2.1. Convolutional Neural Network

Convolutional neural networks (CNNs), or ConvNets, are a class of deep learning
models with multi-layered neural network architectures. They excel in tasks such as image
classification, object detection, segmentation, natural language processing, and time series
analysis, and are widely used in fields like computer vision and fault detection [37,38]. Their
ability to learn directly from raw data, eliminating manual feature extraction, enhances
their efficiency in complex tasks with minimal human intervention.

First conceptualized by Hubel and Wiesel in the 1950s-1960s through studies of the
visual cortex, CNNs gained prominence in 2012 after dominating the ImageNet Large Scale
Visual Recognition Competition [37,39]. CNNs are categorized by input dimensionality:
1D CNNs are used for sequential data such as audio and time series, 2D CNNs excel in
image-related tasks like classification and segmentation, and 3D CNNs handle volumetric
datasets such as CT scans and video [40-42]. Each category employs specialized kernels to
extract task-specific features, making CNNs versatile for applications like fault detection
and signal processing.

CNN Architectural Overview
A typical CNN architecture is composed primarily of six layers, namely:
e Inputlayer;
¢ Convolutional layer;
e Pooling layer;
¢  Flatten layer;
¢ Fully connected layer;
¢ Output layer.

A typical convolutional neural network (CNN) consists of specialized layers, each
performing distinct tasks, making it a powerful algorithm for image understanding tasks
such as processing, classification, and fault detection. The architecture begins with the
input layer, which determines the nature and format of the input. For image inputs, pixels
represent numerical color grades (0-255), forming a matrix that the CNN processes. The
brightness, shade, and tint of an image are determined by pixel value grading, which is
sequentially organized into a digital layout [37,38]. The input layer is critical as it defines the
raw data structure, influencing model performance. Factors such as image resolution, data
augmentation, normalization, and input channels (e.g., grayscale, RGB, or RGBA) must
align with the input layer format to ensure optimal performance [43,44]. Normalization
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scales pixel values from 0-255 to 0-1, ensuring dataset consistency and training stability.
Mathematically, normalization is expressed as follows:

I 7 7
Inorm(x/ Y, C) = % (1)

where [;;or, stands for the normalized image pixel value, I presents the original pixel value.
The output of the input layer, a tensor, is passed to the convolutional layer for feature
extraction. This layer uses filters (kernels), small matrices of learnable weights, to convolve
through the input array, producing feature maps [45]. The convolution operation is defined
as follows:

u v cC
fi]; = Z 2 2 I(i+lt)(j+v)c : wac + bk 2)

u=1v=1c=1
where l-’; stands for the output values at positions i and j in the k-th feature map. U, V, and
V represent the filter’s height, width, and input channels, respectively; K. stands for the
filter weight at positions u and v for the c-th channel of the k-th filter; and b is bias.

Filter size (e.g., 3 x 3,5 x 5, or 7 x 7) determines the level of detail captured, with smaller
filters extracting finer details and larger filters capturing broader context. Convolutional
layers are stacked to progressively extract low-level (edges, corners), mid-level (shapes,
patterns), and high-level (complex patterns) features, enabling hierarchical representation
learning [46]. The number of filters in a layer determines the variety of features learned;
for example, 16 filters generate 16 feature maps. Strides and padding further influence
the output: strides control the filter’s step size (e.g., stride 1 processes all pixels), while
padding (e.g., Same or Valid) determines whether input edges are included in computations,
affecting output dimensions [43,47].

The pooling layer, also known as downsampling, refines the features extracted by the
convolutional layer by reducing the dimensionality of the feature map while retaining the
most significant features. This process enhances the network’s performance by maintaining
accuracy and computational efficiency [37,43]. Pooling operations include max pooling,
average pooling, and global pooling. Max pooling selects the maximum value within a
pooling window, while average pooling computes the average value in the window. Global
pooling applies max or average pooling over the entire feature map, reducing it to a single
value per channel [37,48].

The pooling window size is a critical parameter, as it determines the region over which
the pooling operation is applied and influences the nature of downsampling. Smaller
window sizes, such as 2 x 2, preserve finer details in the feature map, whereas larger
windows, like 3 x 3, provide more aggressive dimensionality reduction, potentially sac-
rificing fine details but capturing broader contextual features. The stride, which controls
the movement of the pooling window, also plays a significant role. Larger strides result in
greater dimensionality reduction, while smaller strides retain more spatial details in the
output feature map. Mathematically, the output dimensions of the pooling layer can be

expressed as follows:
Iy —Ty+2P
- S

where O, represents the output and its dimensions; I; represents the input and its dimen-

o) +1 ©)

sions; and Tj stands for the pooling window and its dimensions. P and S represent padding
and strides, respectively.

Additionally, the operations for max pooling and average pooling are defined as
follows:

P = max(l(i:i+h—1rjif+w‘1)) X
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Generally, the pooling layer’s effectiveness depends on the careful selection of window
size and stride, which together determine the balance between dimensionality reduction
and feature retention [37,43,48].

The flatten layer serves as a critical transition between the convolutional/pooling
layers and the fully connected layer, reshaping the multidimensional feature maps from
the pooling layer into a one-dimensional vector. This transformation ensures that spatial
features extracted by earlier layers are preserved and formatted for processing in the fully
connected layer [49,50]. For instance, a pooling layer output of size 3 x 3 with 64 feature
maps is flattened into a vector of size 576 (3 x 3 x 64). Once flattened, the data is passed to the
fully connected layer, where every neuron connects to every neuron in the previous layer,
enabling dense connectivity. This layer aggregates the extracted features and processes
them for tasks such as classification, regression, or prediction [37,43]. Each neuron in the
fully connected layer computes a weighted sum of its inputs, adds a bias, and applies an
activation function to introduce non-linearity, as described in Equation (6):

F= U(i Wix; + b) (6)

i=1

n
where F is the output of the neuron; ¢ is the activation function; ) represents the summa-

tion of all input; and W; is the weight of the i-th input. x; and b lie}iresent the input vector
and bias, respectively.

The activation function plays a vital role in both convolutional and fully connected
layers, enabling neurons to detect complex patterns and hierarchies in the input data. In
convolutional layers, activation functions process and retain spatial features extracted by
filters, while in fully connected layers, they introduce non-linearity, allowing the network
to learn and understand the complexity of the data. Without activation functions, neurons
would only perform linear transformations, limiting the network’s ability to model intricate
relationships [51,52]. Commonly used activation functions include ReLU, Softmax, and
Sigmoid, each serving specific purposes; these are represented mathematically in Equation
Equations (7)-(9) below.

ReLU(x) = max(0, x) @)
Softmax(x;) = % 8)
j=1¢"
. . 1
Sigmoid(x) = 7o )

where x is the input and ¢ represents Euler’s number.

ReLU is widely used in intermediate layers to prevent vanishing gradients and ensure
efficient training, as it activates neurons only for positive inputs. Softmax is typically
employed in multi-class classification tasks, converting outputs into probabilities, while
Sigmoid is used for binary classification, mapping outputs to a range between 0 and 1. The
choice of activation function depends on the task and defines the output layer of the CNN
architecture [37,53].

Despite their effectiveness, fully connected layers have limitations, such as high com-
putational costs and susceptibility to overfitting. These challenges can be mitigated through
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proper parameter tuning, including the selection of optimal layer sizes, filters, padding,
and strides, as well as the use of regularization techniques. Regularization methods—such
as batch normalization, L1/L2 regularization, early stopping, and dropout—improve a
model’s ability to generalize to unseen data by adding constraints that prevent overfit-
ting [54]. Batch normalization stabilizes the learning process by normalizing inputs to
each layer, while L1 regularization encourages sparsity by penalizing the absolute values
of weights. L2 regularization, on the other hand, penalizes squared weights, ensuring
even weight distribution without driving them to zero. Elastic Net combines L1 and L2
penalties, balancing sparsity and weight stability [37,43,54]. Early stopping monitors val-
idation performance during training and halts the process when improvements plateau,
while dropout randomly deactivates neurons during training, forcing the model to learn
robust and redundant features. Additionally, data augmentation is a powerful technique
to combat overfitting, especially with limited datasets. It generates additional training
samples by applying transformations such as zooming, flipping, and adjusting brightness
or intensity. These transformations increase data variability and complexity, ensuring the
model generalizes better to real-world variations, regardless of dataset size [37].

2.2. Visual Geometry Group 16 Layer CNN (VGG-16)

VGG-16 is one of the most popular CNN architectures, developed by the Visual
Geometry Group (VGG) at the University of Oxford. It was first implemented in 2014 by
Simonyan and Zisserman for large-scale image recognition, as described in their study [55].
The name VGG-16 comes from the number of trainable layers in the network, which totals
sixteen trainable layers comprising thirteen convolutional layers and three fully connected
layers. Although the network contains a total of twenty-one layers, some of these are
non-trainable (e.g., pooling layers).

The architecture was designed to deepen the structure of traditional CNNs while
maintaining simplicity in the network design. One of its standout features is the use
of 3 x 3 convolutional kernels, which help capture local patterns in the input data while
maintaining computational efficiency. To further increase its depth, VGG-16 utilizes a
stack of these small filters, enabling the model to train on and learn more complex fea-
tures. Another key feature of VGG-16 is the application of max-pooling layers after every
2-3 convolutional layers. These pooling layers use a 2 x 2 filter size with a stride of 2 to
reduce the spatial dimensions of the feature maps, making the model computationally
efficient while preserving the most important features. At the end of the convolutional
stack, the network outputs a feature map passed through fully connected layers, followed
by a Softmax layer for multi-class classification. However, though it is highly efficient for
feature extraction and transfer learning, VGG-16 is notable for being more computationally
demanding than traditional CNN due to its large number of parameters [56]. For instance,
it has two dense layers with 4096 neurons each, with an output layer of 1000 neurons in the
case of Imagenet classification, and it has a total of 138 million parameters.

2.3. Residual Network (ResNet)

ResNet is a distinctive CNN architecture first introduced by He et al. in their study [32].
It was specifically designed to address the vanishing gradient problem, a common issue in
deep neural networks where gradients become increasingly small during backpropagation,
hindering effective learning. This problem is particularly evident in architectures like
VGG-16. ResNet resolves this issue through residual learning and skip connections, which
ensure smoother gradient flow and mitigate the vanishing gradient problem. As the name
suggests, ResNet consists of various layers, including convolutional layers, activation
functions, normalization layers, and bottleneck residual blocks [32].
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The skip connection and bottleneck residual block are key characteristics of ResNet-
50 that enable it to achieve high efficiency and lower computational costs compared to
similar CNN architectures. Skip connections allow the input to bypass certain layers
and be added directly to the output, enabling the network to learn residual functions.
These residual functions are generally easier to optimize than direct mappings. On the
other hand, the bottleneck structure, which uses 1 x 1 convolutions to reduce and then
restore dimensionality, ensures smoother gradient flow during backpropagation, reducing
computational requirements [32].

ResNet architectures come in various depths, with the most popular models being
ResNet-18, ResNet-50, ResNet-101, and ResNet-152, each differing in the number of layers.
Due to its unique architecture, ResNet—particularly ResNet-50—has been successfully
employed in a variety of fields due to its efficiency and robust performance in image
classification, object detection, and numerous computer vision tasks [32,33].

2.4. Dijkstra’s Algorithm Overview

Dijkstra’s algorithm is one of the popular algorithms introduced by Edsger W. Dijkstra
that can be employed to determine the shortest paths in weighted graph instances where
edges have non-negative weights [57,58]. This technique, known for its simplicity and
efficiency, has been widely used in solving graph-based shortest path problems and has
found applications in various domains such as GPS navigation, network routing, and
optimization problems. The core principle of Dijkstra’s algorithm works by exploring the
paths from nodes to the source node, selecting the shortest possible path among them.
Dijkstra’s algorithm employs a greedy approach, enabling it to make a locally optimal
choice at every step, aiming to achieve the global optimum [57,58]. The algorithm begins
by initializing all nodes with a tentative distance of infinity, except for the source node. This
process is repeated until the shortest distance is determined. In practice, the initial distance
of the source node is set to zero, and the other nodes are set to infinity. The algorithm
marks all nodes as unvisited and, for each unvisited neighbor, calculates their tentative
distances by adding the weight of the edge connecting the current node to the neighbor.
Once all neighbors of the current node are processed, the node is marked as visited, and
the algorithm moves to the next unvisited node with the smallest tentative distance. This
process is repeated until all nodes have been visited, or the remaining unvisited nodes are
not connected to the source. As the algorithm terminates, each node will have the shortest
distance from the source node, providing the solution to the problem.

In the context of graph theory, given that G = (V,E) where V and E represent
the vertices and edges of a given graph, and assuming each edge (u,v) has a weight of
w(u,v), then d[v] stands for the shortest distance from a source node s to the node v, and
plv] represents the previous node in the shortest path from the source node s to node v.
Dijkstra’s algorithm initializes using Equation (10).

Set: d[s] =0, d[v]=oc0 forall v+#s (10)

where u is the current node and v is the neighbor node.
At this point, all nodes are marked as unvisited. While the nodes are unvisited, each
neighboring node v, updates its distance using Equation (11):

d[v] = min(d[v],d[u] + w(u,v)) (11)

After this, node n is marked as visited, and the algorithm moves to the next unvisited
node with the shortest distance of d[v].
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3. Proposed System Framework and Methodology

The proposed framework, illustrated in Figure 2, outlines the steps and methodolo-
gies used in our study to achieve fault diagnostic classification for glossy and curved
surfaces. A heart-shaped brush case with a glossy and curved surface was selected as the
reference sample.

Our methodology consisted of three key steps. The first step involved image data
collection, where two robust pieces of equipment were used to ensure the datasets were
suitable for deep learning-based fault classification. A Basler vision camera with lighting
was employed to capture images of the flat top surface, while a KEYENCE laser displace-
ment sensor, mounted on a robotic arm, was used to efficiently scan the curved surface. The
second step focused on data processing, which included data merging, data augmentation,
labeling, and dataset splitting. In the final step, the processed datasets were fed into various
deep learning image classification models. Validation assessments were conducted to
identify the best-performing model and ensure it met the required performance standards.

.....................
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Figure 2. Proposed system framework.

These stages are implemented to ensure that issues encountered with glossy and
curved surfaces are mitigated, thereby providing a reliable framework capable of achiev-
ing the desired efficiency for overall model validation. Given the nature of our dataset,
which originates from glossy and curved surfaces, we applied specific data augmentation
techniques to further enhance the images and ensure optimal adaptation.

3.1. Data Augmentation

The primary aim of data augmentation is to introduce variability into the dataset,
simulating real-world instances such as zoom, lighting changes, and flipping. This ensures
that the model does not rely on overly simplistic patterns, which could lead to overfitting.
Data augmentation is particularly crucial when working with unbalanced or small datasets,
as it serves as an efficient way to enhance and increase training data without the need to
acquire additional samples. In our study, the augmentation techniques employed were
brightness, zoom, and custom pixel multiplication, and their mathematical representation
is presented thus:
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Brightness:

X(i,j) = X(i,j) + Ab (12)
where (i, j) stands for the pixel value at position (i,), Ab is the brightness adjustment
constant.

Zoom:

X, j) = X(Zl Z]) (13)

Zs stands for the zoom factor.
Contrast:

X(i,j) = a- (X(i,]) — px) + px (14)

Custom Pixel Multiplication:
X(i,j) = k- X(i,j) (15)

where k is the scaling factor for each pixel value.
In this study, brightness and contrast were adjusted by +30% and 420%, respectively,
while zoom was adjusted by £10%. Additionally, a random multiplier of 3.0 was applied.

3.2. Model Performance Evaluation Criteria

Model evaluation is important to ensure that the model performs up to a given
standard. In this study, these metrics were implemented to help evaluate, validate, and
determine the best-performing deep neural network for our framework. Thus, some of
the core global performance metrics implemented in this study include accuracy (Acc),
precision (Py.), Fl1-score (Fsc), sensitivity (S,0), specificity (S pc), and mean average precision
(mAP), and their mathematical representations are shown in (16)—(20).

TP
A = 16
“ " TP+FP+TN+FN (16)
TP
= 17
Pe= 75 7p 17
Fo_ 2 * Sensitivity * Precision (18)
** " Precision + sensitivity
TP
g — 19
S0 = Tp +FN (19)
TN
= 20
Sre = TN +FP @0
1 N
mAP = — Y AP, (21)
N x=1

TP, FP, TN, and FN stand for true positive, false positive, true negative, and false
negative, respectively. APy represents the average precision of class x, while N is the total
number of classes.

TP represents the number of positive samples that a model accurately classified as
belonging to the positive class, while FP indicates the number of non-positive samples
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that the model falsely classified as belonging to the positive class. On the other hand, TN
represents the number of negative samples that the model accurately classified as belonging
to the negative class, and FN stands for the number of negative samples that the model
falsely classified as belonging to the positive class.

mAP measures the accuracy of a model in classifying within a dataset. It evaluates the
model’s performance across all classes and provides a single score for overall assessment,
indicating the model’s quality. Furthermore, a confusion matrix was implemented in our
study to provide a detailed analysis of the actual classification performance, represented in
percentages with respect to TP, FP, TN, and FN.

4. Experimental Setup and Visualization

The experimental data collection was conducted at the Defense Reliability Laboratory
of the National Institute of Technology Kumoh, Gumi, Republic of Korea. The procedure
involved two stages. In the first stage, high-vision imaging combined with appropriate
lighting was used to capture a detailed front view of the image data. In the second stage, a
laser displacement sensor mounted on a robotic arm was utilized to scan and reconstruct
3D surface data of the curved sections of the dataset.

4.1. Data Collection Using Basler Vision Camera

The Basler vision camera equipped with lighting was initially employed to generate
image data from our samples in this study. The setup for image data collection using the
Basler vision camera and lighting is shown in Figure 3. This setup was used exclusively
to capture the front glossy view of the heart-case samples, as it was unable to capture the
curved glossy portions of the samples. The curved surfaces were instead captured using
laser displacement sensors.

System components

Power connector.
S +» Camera

« Camera lens
* Dongle key

Sensor Power cable ) « Lan cable(Sensor to PC)
Surt Finder Camera\power cable
- « Power for sensor
SMPS Power cable i

Light ray « Camera cable(Camera to PC)

=2
sample « Power for camera

Sensor Power SMPS

Figure 3. Basler vision and lighting usage overview.

Due to the glossy nature of the heart case samples, a lighting device, Surf.Finder-SF,
was introduced to minimize glare and enhance image quality. Tables 1 and 2 present
the specifications of the camera and lighting equipment used. Figure 3 illustrates the
schematic diagram of the Basler vision camera setup with the lighting system. When
the lighting equipment is powered on through the sensor power SMPS, the Surf.Finder
light activates. This lighting system includes adjustable settings to reduce glare, ensuring
optimal illumination for the heart case samples. These settings can be modified through a
dedicated program, which requires a dongle key to be connected to the computer for access.
The camera is powered separately via the camera power SMPS. Focus adjustments can be
made using a screw attached to the camera lens. The camera is connected to the PC through
a dedicated cable, enabling parameter adjustments and facilitating the transmission of
captured images to the CPU for processing, storage, and further analysis.

Three core input parameters implemented include reference (REF), roughness (RGH),
and raw gray vertical (RGV).
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¢  REF: This parameter sets the lighting to capture photos by projecting light in all
directions. Three shots are taken at 1 ms intervals to minimize reflections caused by
brightness.

*  RGH: This parameter configures the lighting to check horizontal roughness. Lighting
is directed at a 45-degree angle to the vertical direction, and three shots are taken at
1 ms intervals to assess horizontal roughness or changes.

¢ RGV: This parameter configures the lighting to check vertical roughness. Lighting is
set at a 45-degree angle to the horizontal direction, and three shots are taken at 1 ms
intervals to assess vertical roughness or changes.

The Surf.Finder lighting system is designed to operate in a controlled environment,
minimizing the impact of external lighting variations. Its enclosed casing ensures a con-
sistent illumination field, reducing interference from ambient light sources. Additionally,
the adjustability of the REF, RGH, and RGV parameters allows for fine-tuned lighting
conditions that adapt to different surface reflectivities, ensuring robust and high-quality
image acquisition under varying conditions.

These three setups were used to capture our samples, which were then transferred to
a PC for review and selection of the desired data samples for implementation.

Table 1. Camera Specification.

Camera Specification Details

Product Name Hikvision MV-CA050-20UM

Lens f35 mm

Working Distance 20 mm

Pixel 5MP

Field of view (FOV) 91 mm x 72 mm

Manufacturer Hangzhou Hikvision Digital Technology Co., Ltd., headquartered

in Hangzhou, Zhejiang, China.

Table 2. Lighting specification.

Lighting Specification Details

Product Name surf.Finder-SF
Dimension 335 x 325 x 330 mm?
(FOV) 60 x 60 mm?

Weight 6.9 kg

Other Accessories  Built-in Controller, S/W Package (SDK, Viewer), Lan cable, SMPS, Dongle key

Manufacturer Didim Sensor Co., Ltd. Seoul, South Korea.

4.2. Data Collection Using KEYENCE Laser Displacement Sensor

In our setup, we employed a Basler vision camera with controlled lighting to capture
front-view image data samples. However, the curved surfaces of the data samples posed
challenges for the Basler camera, as its point of view (POV) was not optimal for effectively
imaging curved geometries. To overcome this, a laser displacement sensor was introduced.
For curved surfaces with glossy finishes, using the laser displacement sensor alone intro-
duced noise due to the diffuse reflection of light during surface scanning, as illustrated in
Figure 4. To mitigate this issue, a YASKAWA robotic arm was utilized to scan the surface in
a curved motion with the laser displacement sensor. Table 3 summarizes the specifications
of the laser displacement sensor used in this study.
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Table 3. Laser displacement specification.

Laser Specification Details

Product Name LJX-8080

Measuring range Z-axis (height) 73 mm (£20.5 mm)

(Measuring range X-axis (width)) ~ 35.0 mm

Repeatability Z-axis (height) 0.5um

Repeatability X-axis (width) 1.0pm

Figure 4. Laser noise overview.

Traditionally, visual inspection is performed at least three times for the appearance
inspection of glossy products, with an average inspection time of about 15 s. However, to
measure a defect of 0.1 mm or more on a curved surface, it takes an average of 60 s for a
laser displacement sensor with a precision of about 12.5 pm, operating at a speed of 1.15 cm
per second, to scan the entire shape. Therefore, it is necessary to maintain a time period
similar to that of visual inspection to avoid disrupting production speed. To address this
issue, a vision camera is first used to quickly photograph the front part of the heart case,
which has many flat areas, and a laser displacement sensor is used for the side parts to
reduce the overall measurement time. The more laser displacement sensors there are, the
shorter the measurement time, but the higher the initial cost purchase of the robotic arm
and laser displacement sensors. To solve this, the study developed a technology that moves
the optimal path at an angle that minimizes reflection using one robotic arm and one laser
displacement sensor. Our goal was to achieve an average inspection time of about 15s. An
overview of the setup is shown in Figure 5.

Robotic Arm

KEYENCE
Laser Sensor

Curved Surface
Material

Robotic Arm
Controller

Figure 5. Robotic arm.

Data Generation Using the Laser Displacement Sensor and Robotic Arm

To minimize glare caused by the glossy surface of the materials, the primary objective
was to determine the normal vectors of all sample surfaces. This was achieved by aligning
the vertical relationship between the surface of the heart case samples and the measurement
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setup, thereby reducing light reflection. To obtain the normal vector coordinates of the
heart case-shaped samples, CATIA’s NC (Numerical Control Machining) module was
utilized. This module automatically generates tool movement paths and optimizes the
machining process by preventing collisions between the tool and the machined object.
This optimization is based on the shape of the designed 3D model. Using the NC module,
coordinates offset from the surface of the heart case were obtained. To ensure accurate
measurement, the laser displacement sensor was set to an identification distance of 70 mm,
meaning coordinates were collected 70 mm vertically above the heart case surface. Figure 6
provides an overview of the obtained coordinates.

The collected coordinates represent areas that theoretically minimize diffuse reflection.
However, many of these coordinates included overlapping measurement regions. To
address this, the teaching function of YASKAWA—which refers to a mode allowing the
operator to define tasks, movements, or paths for the robot to follow and execute—was
utilized to first identify and select the coordinates that minimized diffuse reflection. Next,
overlapping areas among the selected coordinates were eliminated, and the remaining
coordinates were further refined through a second selection process. Using the coordinates
generated through the NC module and the process of minimizing diffuse reflection while
removing duplicates, 10 measurement paths for the sides of the heart case were created.
The inspection results, as shown in Table 4, indicate a measurement time ranging from
approximately 20 to 26 s.

N1 G49 G64 GI7 GBO GO GSO G40 G99
N2 TOOO1 M6

N3 X43.473 Y-45.1 S70 M3

N4 G43 Z31.014 Hi

N5 Gl GS4 Z21.014 F300.

N6 Y-37.
N7 X0 F1000.
N8 YO

Figure 6. Coordinates obtained through NC module.

Table 4. Measurement results for shooting from the side

Number of Inspections  Number of Coordinates Moved Time (s) Inspection Speed (mm/s)

1 22 21.2 11.5
2 23 20.8 11.5
3 23 23.4 11.5
4 24 25.1 11.5
5 23 24.2 11.5
6 23 25.1 11.5
7 23 23.1 11.5
8 23 229 11.5
9 23 229 11.5
10 23 26.0 11.5

Since the selected coordinates include several paths, the shortest optimal path among
them must be determined. However, before introducing the Dijkstra algorithm, the co-
ordinates of the heart case were selected by manually choosing the areas with the least
light reflection on the curved surface from the coordinates extracted through the NC code.
The coordinates were selected at 2 cm intervals. In the case of the inspection time, the left
side of the heart case was photographed in the order of the front, right side, and back. It
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took 21 s based on the 11 mm/s movement of the Yaskawa robotic arm that received the
coordinates and moved. This was because there were many instances where the same scene
was filmed repeatedly, as the focus was on minimizing diffuse reflection. By excluding
the overlapping areas through the Dijkstra algorithm, the result was reduced to 15 s based
on the 11 mm/s movement. It is observed that the movement path was optimized while
excluding overlapping filming scenes. For this purpose, the Dijkstra algorithm was used
to determine the shortest path the robotic arm could follow for fast execution. The input
data were obtained by calculating the travel time for each coordinate using the 3D coordi-
nates, and one path was selected through the algorithm. The information about the path is
summarized in Table 5 below.

Table 5. Selected path information when shooting from the side.

Number of Coordinates Moved Measurement Time (s) Inspection Speed (mm/s)

23 18.2 11.5

The inspection speed is set to 11.5 mm /s because the amount of data collected per unit
of time is fixed due to the characteristics of the laser displacement sensor. The amount of
data collected during measurement is inversely proportional to the range to be measured.
Thus, if the inspection speed exceeds 11.5 mm/s, the shape to be measured is compressed,
and if the inspection speed is slower than 11.5 mm/s, the shape to be measured is expanded.
Therefore, to measure the heart case shape without distortion, the inspection speed must
be set to 11.5 mm/s.

To match the inspection time to 15 s, a method is required to increase the inspection
speed while minimizing distortion in the results. To achieve this, images were captured
under conditions where the heart-shaped case measured 90 mm x 90 mm, ensuring that the
side could be fully observed in a single pass during measurement. This approach increases
the inspection speed by reducing the collection area while simultaneously increasing
the amount of data collected within a confined space. As a result, the inspection speed
improved from 11.1 mm/s at 500 Hz to 13.2 mm/s at 750 Hz, as shown in Figure 7. The
results are summarized in Table 6.

LIPETEUR . h

@) (b)

Figure 7. Laser displacement sensor measurable range based on (a) data collection speed of 500 Hz;
(b) data collection speed of 750 Hz.

Table 6. Selected path information while shooting from the side.

Number of Coordinates Moved Measurement Time (s) Inspection Speed (mm/s)

23 14.6 13.2

Using the 2D CSV file acquired through a laser displacement sensor, a 2D matrix is
generated based on the sensor’s movement trajectory and measurement conditions. The
horizontal axis is defined as x, the vertical axis as y, and the measured values as z. The
generated matrix is expressed by the following function:

z(x,y) = Results from height measurement (22)
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There may be unmeasured areas within the data collection range, and these gaps
are filled using interpolation methods such as linear interpolation or spline interpolation.
Through this process, a continuous 3D data structure is formed. Subsequently, the matrix
is input into 3D graphics software or a visualization tool to generate a 3D surface image.
During rendering, tools such as OpenGL 4.6, Matplotlib 3.7.1, or other 3D libraries are
utilized to visualize the data in three dimensions.

4.3. Dataset Description

As previously highlighted, the study utilized two data acquisition techniques: a Basler
vision camera with lighting and a laser displacement sensor. Each technique generated
two image samples per data point—one from the camera and one from the laser sensor.
Data labeling and model selection in this study were guided by customer requirements,
including alignment with historical rejection patterns and a target accuracy of 95% or
higher. The dataset, derived from production records, was labeled to reflect defect types
and severity levels critical to the customer’s quality standards, ensuring the model was
trained on operationally meaningful data. The data samples were categorized into three
classes, as summarized in Table 7. As a result, six distinct data classes were generated from
these three classes using the two techniques: HCC Basler camera images, HCC laser sensor
images, DC Basler camera images, DCC laser sensor images, SCC Basler camera images,
and SCC laser sensor images. To ensure consistency and reduce data complexity, similar
data classes were merged. For instance, HCC Basler camera images and HCC laser sensor
images were combined into a single HCC dataset. Pictorial samples of the merged images
are shown in Figure 8.

Table 7. Summary of different classes of images involved in the study.

Label Image Class Description

HCC Healthy-case class The healthy cases of the image samples.
DCC Dented-case class The dented cases of the image samples.
SCC Scratched-case class The scratched cases of the image samples.

Healthy-Case

(@)

Dented-case Scratched-case

(b)

Figure 8. Combined image class samples: (a) Healthy class; (b) Dent class showing dent portion in
red circles; (c) Scratch class showing scratch portion in yellow circles.

After the combination, a total of 6902 images—2452 HCC images, 2414 DCC images,
and 2037 SCC images—were generated, approximately in a ratio of 35.52%, 34.97%, and
29.51%, respectively. In terms of dataset distribution, the data were relatively balanced
across categories. However, to mitigate potential bias due to slight class size differences,
data augmentation techniques such as brightness adjustment, zooming, contrast enhance-
ment, and custom pixel multiplication—as discussed in Section 3.1—were applied to en-
hance model generalization. This approach ensured that the model learned meaningful fea-
tures from all defect types effectively while preventing overfitting to dominant categories.
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4.4. Deep Learning Algorithms Parameters

The performance of any fault classification model largely depends on the choice of
classifier algorithm. To address this, we evaluated four custom CNN architectures along-
side four pre-trained models: two variants of VGG-16 and two variants of ResNet-50. Our
objective was to develop an efficient model optimized for low computational energy con-
sumption. To achieve this, we designed streamlined architectures that balance performance
and efficiency, prioritizing minimal resource usage without compromising accuracy. Addi-
tionally, the hyperparameters of the deep learning algorithms were optimized empirically.
A summary of the models is provided in Table 8.

Table 8. Summary of the models used in the study.

Model Name  Input Image Resolution =~ Number of Layers Description

CNN5s-128 128 x 128 Five (5) A traditional CNN model with 128 x 128 image input dimension and five layers.
CNN5-240 240 x 240 Five (5) A traditional CNN model with 240 x 240 image input dimension and five layers
CNNg-128 128 x 128 Six (6) A traditional CNN model with 128 x 128 image input dimension and six layers
CNNg-240 240 x 240 Six (6) A traditional CNN model with 240 x 240 image input dimension and six layers
VGG-16128 128 x 128 Default with one dense layer A typical VGG-16 algorithm with 128 x 128 image input dimension and a dense layer
VGG-16224 224 x 224 Default with one dense layer A typical VGG-16 algorithm with 224 x 224 image input dimension and a dense layer
ResNet-50128 128 x 128 Default with one dense layer A typical ResNet-50 algorithm with 128 x 128 image input dimension and a dense layer
ResNet-50224 224 x 224 Default with one dense layer A typical ResNet-50 algorithm with 224 x 224 image input dimension and a dense layer

4.4.1. Custom CNN Parameters

The study evaluated four custom CNN architectures—CNN5-128, CNN5-240, CNNg-128,
and CNNpg-240—each subjected to varying hyperparameter configurations, including the
number of convolutional layers, strides, pooling layers, and fully connected layers. These
configurations were optimized to evaluate fault classification performance while mini-
mizing computational demands. A summary of the architecture details and the n-layer
structure of the custom CNN framework is presented in Table 9 and Figure 9.
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Figure 9. The n-layer structure of the custom CNN architecture with 3 x 3 filter and a stride of 2.

Table 9. Architectures of the custom CNN models.

Model Name Number of Conv IS(iezl;xls7Il“eaming Pooling. Activ;lition Fully Connected In}age ) B.atch
Layers/Stride Rate Layer/Size Functions Layers/Dropout Dimension Size/Epochs
CNN;5-128 3/1 3x3/0.001 3/2%x2 Relu/Softmax 2/0.1 128 x 128 16/200
CNN35-240 3/1 3 x3/0.001 3/2%x2 Relu/Softmax 2/0.1 240 x 240 16/200
CNNs-128 4/1 3x3/0.001 3/2x2 Relu/Softmax 2/0.1 128 x 128 16/200
CNN,-240 4/1 3x3/0.001 3/2x2 Relu/Softmax 2/0.1 240 x 240 16/200
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The custom CNNs with three convolutional layers (CNN5-128 and CNN5-240) include
32, 64, and 128 kernels across their respective layers, while the custom CNNs with four
convolutional layers (CNNg-128 and CNNg-240) contain 16, 32, 64, and 128 kernels. All
custom CNN models also feature dense layers with 128 kernels. To optimize efficiency and
minimize computational energy, the input image dimensions were carefully chosen, as they
significantly affect the speed and resource requirements of the CNN models. Common
input dimensions for CNNs include 128 x 128, 224 x 224, 256 x 256, or their multiples.
While larger dimensions can improve performance by offering more detailed images, they
also increase the computational resource demands.

Consequently, we explored image pixel sizes of 128 x 128 and 240 x 240 during training.
Dimensions of 256 x 256 and larger were avoided due to their high computational demands.
However, we chose 240 x 240 as it provided better image clarity than 224 x 224 while
maintaining reasonable computational requirements.

4.42. Other Deep Learning Models’ Parameters

VGG-16 was introduced in this study due to its compatibility with our dataset, despite
not being the most advanced architecture compared to robust image classification models
like Inception, ResNet, and EfficientNet. Although the optimal input size for VGG-16 is
typically 224 x 224, we trained VGG-16 variants using two image dimensions: 128 x 128
(VGG-16128) and 224 x 224 (VGG-16,24) to evaluate the best balance between performance
and computational requirements. This approach aimed to assess whether comparable
results could be achieved with a lower resolution.

Similarly, ResNet-50 was included to ensure the selection of the most suitable neural
network for the dataset through performance comparisons. Known for its efficiency and
lower computational demands compared to VGG-16, ResNet-50 was chosen to provide
a practical assessment of model performance, rather than relying solely on assumptions.
Although ResNet-50 often outperforms VGG-16 in many applications, the effectiveness of
any model depends heavily on its adaptability to the specific dataset. To further optimize
ResNet-50 for low computational energy, we trained it using two image dimensions:
128 x 128 (ResNet-50158) and 224 x 224 (ResNet-50,,4) to identify the best performing
configuration. A summary of the VGG-16 and ResNet-50 architectures used in this study is
provided in Table 10.

Table 10. Summary of the modified VGG-16 and ResNet-50 architecture employed in the study.

Model Name Pre-Trained VGG-16 Model = Image Dimension  Dense Layer Dropout Rate Output Layer Optimizer/Learning Rate
VGG-16128 ImageNet weights 128 x 128 256, ReLU 0.2 Softmax Adam/0.0001
VGG-1624 ImageNet weights 224 x 224 256, ReLU 0.2 Softmax Adam/0.0001
ResNet-501,8 ImageNet weights 128 x 128 256, ReLU 0.2 Softmax Adam/0.0001
ResNet-5074 ImageNet weights 224 x 224 256, ReLU 0.2 Softmax Adam/0.0001

The models were executed with unfrozen layers to achieve the desired results. This
approach allows for weight updates during the training process, enabling the model to
adapt to the specific dataset.

5. Result Evaluation and Discussion

The eight neural networks were empirically evaluated and assessed using three image
classes, with the evaluation based on global metrics outlined in the previous section. This
approach ensured the selection of the best model for our fault classifier. In addition to
performance metrics, computational cost and the confusion matrix were also considered
to guarantee a comprehensive evaluation of the models. A total of 6902 images were
used, consisting of 2452 HHC, 2414 DCC, and 2037 SCC images. The dataset was divided



Sensors 2025, 25, 2449

20 of 28

Training and Validation Accuracy

Training and Validation Loss

into training, validation, and testing sets. For VGG-16 and ResNet-50, a 70:15:15 ratio
(training:validation:testing) was used, while custom CNN models were trained with an
80:10:10 ratio, based on their respective adaptation requirements. For VGG-16 and ResNet-
50, both the 70:15:15 and 80:10:10 splits produced similar results. However, the 70:15:15
ratio was chosen because it allocated fewer resources to training, reducing computational
demands while maintaining performance. In contrast, for the custom CNN models, the
80:10:10 ratio yielded better performance, as evidenced by higher accuracy and lower loss
values compared to the 70:15:15 split, making it the preferred choice.

The experiments were conducted on a system configured with an Intel Core i7-11700
processor (8 cores, 16 threads, 2.50 GHz base frequency), 32 GB of DDR4 RAM, and running
the Windows 10 operating system. The hardware was manufactured by Gigabyte Technol-
ogy Co., Ltd., New Taipei City, Taiwan, featuring the B560M AORUS ELITE motherboard.
The system designation is DESKTOP-J1TP30L, operating on a 64-bit architecture (x64-based
PC). The deep learning models were trained using TensorFlow 2.x and NumPy 1.23.4
without GPU acceleration. The decision to use only the CPU was intentional, as the goal
was to establish a resource-aware framework that could be deployed on systems without
GPU acceleration, making it more accessible for practical applications. Consequently, some
state-of-the-art algorithms, such as R-CNN, Mask R-CNN, and YOLO, were not feasible
due to their high computational demands, which stem from their reliance on large-scale
feature extraction and real-time processing capabilities. Figure 10 presents the training
and loss curves for all models, illustrating their convergence behavior and performance
during training.
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Figure 10. Accuracy and loss curve: (a) CNN5-128; (b) CNN5-240; (c) CNNpg-128; (d) CNNg-240;
(e) VGG-1612g; (f) VGG-16224; (g) ResNet-501,g; (h) ResNet-50754.

As shown in the plots, the training accuracy and loss curves of all eight neural network
models used in this study reveal key insights into their performance. The results demon-
strate that higher image resolution improved model efficiency, emphasizing the importance
of resolution in enhancing training outcomes. In general, all models displayed strong
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learning capacity, as reflected in their accuracy curves, with the exception of ResNet-50128
and ResNet-505p4, which experienced some instability during the early stages of training.

However, this instability was not observed in the loss curves, where the validation
curves for VGG-16128, VGG-16224, ResNet-501,5, and ResNet-50,,4 struggled to converge,
despite the models” inherent robustness. This could be attributed to the input image
dimensions, as the VGG-167,4 and ResNet-50,,4 models showed greater stability than their
128 x 128 counterparts. Additionally, the high learning rate used due to the complexity of
the dataset may have contributed to the observed fluctuations. While early fluctuations
in accuracy and loss curves do not necessarily indicate poor performance, they suggest
potential challenges in model convergence. Upon closer inspection, despite the fluctuations,
ResNet-50,,4 demonstrated the ability to adapt and stabilize towards the end of the training
process, showcasing its robustness and capacity to efficiently optimize and generalize from
the data.

To provide a more comprehensive evaluation, the models were further assessed using
the test dataset, and the results are summarized in Table 11 below.

Table 11. Performance Eevaluation summary.

Model Test Accuracy  Test Loss  Precision  Recall F1Score  Specificity mAP

CNN35-128 91.03 0.4064 91.47 90.82 91.07 95.30 0.9697
CNN5-240 93.63 0.3651 91.41 91.33 91.36 95.62 0.9723
CNNe-128 91.75 0.3459 92.58 91.64 91.86 95.72 0.9795
CNNj-240 95.08 0.2753 95.09 95.21 95.14 97.53 0.9878
VGG-16128 95.66 0.1981 95.91 95.79 95.85 97.75 0.9906
VGG-16224 97.49 0.1911 97.61 97.61 97.52 98.71 0.9963
ResNet-5018  95.85 0.2073 96.21 96.21 96.12 97.83 0.9869
ResNet-50p4  97.97 0.1030 98.16 97.99 98.05 97.78 0.9942

In our assessment, macro-averaging was preferred over weighted averaging for the
evaluation metrics to ensure that the models were evaluated based on their performance
across each individual class. Given the slight imbalance in our dataset classes, macro-
averaging was chosen to provide a more balanced evaluation. As shown in Table 11,
VGG-167p4 and ResNet-500,4 outperformed the other models across various metrics. Specif-
ically, ResNet-5024 achieved the best performance in most cases, including accuracy, loss,
precision, recall, and F1-score. On the other hand, VGG-164 excelled in specificity and
mean average precision (mAP).

While ResNet-50,,4 can be considered the best classifier based on these results, it is
important to note that specificity and mAP are also critical metrics. In particular, mAP is
often the most important metric for evaluation, especially in multi-class and imbalanced
data scenarios. Notably, ResNet-50,,4 did not achieve the highest mAP score, suggesting
that other models, such as VGG-16;74, may offer better performance in certain aspects.

To gain deeper insights into the models’ performance, the confusion matrix was also
employed to evaluate the actual class classification performance, focusing on TP, FP, TN,
and FN.

Figure 11 displays the confusion matrix for all models. The reduced performance of
most models can be attributed to the high FN values in the dent class, with many datasets
incorrectly predicted as belonging to the normal class. Overall, the dent class had the
highest FN, while the scratch class had the lowest FN on average across all models. The
normal class consistently showed the highest percentage of TP, whereas the dent class had
the lowest percentage of TP.
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Figure 11. Confusion matrix: (a) CNNj5-128; (b) CNN5-240; (c) CNNg-128; (d) CNNjg-240; (e) VGG-
16128; (f) VGG-16224,' (g) ResNet—SOlzg; (h) ResNet—50224.

A comparative analysis of the performance of VGG-16,54 and ResNet-50,,4—based
on their confusion matrix evaluations shown in Figures 11f and 11h, respectively—was
conducted to determine the superior model, as these two emerged as the top performers.
The performance of each model across all classes was evaluated to identify their respective
strengths and weaknesses in class prediction. ResNet-50,,4 demonstrated superior TP
performance for the normal and scratch classes, while VGG-167,4 excelled in the dent
class. Furthermore, ResNet-50,,4 achieved lower FN scores in two classes (normal and
scratch), while VGG-169,4 recorded a lower FN only for the dent class. A similar pattern
was observed in the FP assessment, where ResNet-50,,4 exhibited lower scores for the dent
and scratch classes, whereas VGG-16,,4 had a lower score for the normal class.

These findings suggest that ResNet-50,4 demonstrated greater data adaptability and
overall efficiency compared to VGG-16y4 in this study.

5.1. Computation Efficiency Evaluation

One of the key factors in determining an optimal model is its computational efficiency.
Therefore, this section discusses the selection of an adequate model and offers sugges-
tions for alternative models that could be considered when computational efficiency is a
critical factor.

For a more in-depth analysis, floating point operations (FLOPs) are introduced to
concisely determine the computational energy requirements of each model. FLOPs are
a key metric for assessing model complexity, especially in deep learning models. They
provide valuable insights into the computational requirement of a model, which is key for
model optimization, hardware implementation, and real-time performance.

Figure 12a—c provide a comprehensive computational analysis of the models imple-
mented in this study. The plots clearly show that the custom CNN models outperformed
the pre-trained models (VGG-16 and ResNet-50 variants) in terms of computational ef-
ficiency. An interesting observation from the computational analysis is that the CNN5
models exhibited higher computational energy demands for their respective input pixel
dimensions, despite having shallower architectures compared to the CNNg models. This
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behavior may be attributed to the complexity of the dataset, which likely challenges the
CNN5 architectures in fully capturing and learning its features.
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Figure 12. (a) Models’ total training time; (b) Models” average training step for one image data;
(c) Models’ floating points operations; (d) Models” accuracy.

While ResNet-50,,4 demonstrated exceptional performance across various evaluation
metrics, its significant computational energy demand raises concerns for applications where
computational efficiency is a key factor, as shown in Figure 12a,b. Furthermore, Figure 12c,
which displays the FLOPs of the models, revealed similar findings. ResNet-504—with a
total of 7,751,510,674 FLOPs—may not be the ideal choice for real-time system applications
due to its computational complexity. In contrast, CNNg-240 presents itself as a more
desirable option. Its accuracy—reaching up to 95% as shown in Figure 12d—though lower
than that of ResNet-50294, requires significantly less computational energy and has FLOPs
of 459,072,914, suggesting suitability for real-time system implementation. This can be
attributed to its lighter architecture, making it a practical alternative despite its slightly
lower accuracy compared to ResNet-502,4. Moreover, its computational efficiency offers an
opportunity for further hyperparameter tuning, which could enhance its accuracy. This
makes the CNNg-240 model adaptable, cost-effective, and well-suited for resource-sensitive
environments without compromising performance.

5.2. K-Fold Model Evaluation

To validate the two best-performing models—ResNet-50,,4 (best overall) and CNNg-
240 (most computationally efficient)—we implemented a 3-fold cross-validation. This
technique partitions the dataset into three folds, using two folds for training and one for
validation in each iteration. By rotating the validation fold, we ensure every data point
contributes to both training and evaluation, reducing bias from a single split, hence provid-
ing a more generalized performance assessment. Stratified sampling was implemented to
ensure robust evaluation.

Figure 13 illustrate the outcomes of the 3-fold cross-validation, showing both models’
accuracy and loss curves, alongside their respective test accuracies and losses. CNNg-240
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maintained an average k-fold test accuracy of 94.86%, closely mirroring its initial test accu-
racy of 95.08%. This reflects its strong efficiency and reliability in maintaining performance
across different splits. Meanwhile, ResNet-50,p4 demonstrated superior accuracy, achieving
an average of 98.088% with a reduced average loss of 0.0932, outperforming its original test
results of 97.97% accuracy and 0.1030 loss. These findings highlight ResNet-505,4"s advan-
tage in generalization and accuracy, while CNNg-240 remains an effective, computationally
efficient alternative.
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Figure 13. 3-Fold validation curves: (a) CNNg-240; (b) ResNet-50754.
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6. Conclusions and Further Works

In this study, we proposed a framework for image data generation and fault classifica-
tion on glossy and curved surfaces. Data collection was achieved using two complementary
techniques: a Basler vision camera with specialized lighting to capture front-view images of
heart case glossy surface samples while minimizing reflectiveness, and a laser displacement
sensor paired with a robotic arm to accurately capture the curved surfaces of the samples.

Our dataset—consisting of three classes (HCC, DCC, and SCC)—was used to train
eight deep neural networks. These networks were selected for their adaptability to the data
and lower computational energy requirements. The architectures included four custom tra-
ditional CNNs (CNN5-128, CNN5-240, CNNg-128, CNNg-240) trained on image dimensions
of 128 x 128 and 240 x 240 pixels, as well as four pre-established models: two variations of
VGG-16 (VGG-16128, VGG-16954) and two variations of ResNet-50 (ResNet-501,g, ResNet-
50224), which were trained on images of 128 x 128 and 224 x 224 pixels, respectively. From
our evaluation results, ResNet-509,4 achieved the highest accuracy at 97.97%, followed
closely by VGG-16294 with an accuracy of 97.49%. However, ResNet-50,24’s computational
demands were less efficient compared to some of the custom traditional CNN architectures.
Notably, CNN,-240 delivered an accuracy of 95.08% with an average step time of 94 mil-
liseconds, compared to ResNet-50,54"s 839 milliseconds, making CNNg-240 a viable choice
in scenarios where computational efficiency is paramount.

Our framework significantly advances glossy and curved surface defect detection
by integrating specialized imaging hardware with tailored deep learning models. Using
a Basler camera with custom lighting minimizes reflections on glossy surfaces, while a
laser displacement sensor with a robotic arm precisely captures curved surfaces—yielding
high-quality, reliable data. Beyond technical metrics, our framework also has significant
industrial implications. Its deployment in manufacturing could lead to substantial cost



Sensors 2025, 25, 2449

25 of 28

References

savings by reducing defect rates and minimizing downtime, ultimately improving product
quality and competitiveness.

For future work, we plan to further optimize and enhance the custom CNN models to
achieve higher accuracy while reducing energy consumption. The lag observed in most
models can likely be attributed to the high FN rate of the dent class, as indicated by the
confusion matrix. This issue is more likely caused by feature overlap with normal surfaces
rather than class imbalance. To address this, targeted data augmentation like CLACHE
(Contrast Limited Adaptive Histogram Equalization), feature engineering, and loss function
modifications can be employed to enhance detection accuracy. In addition, systematic
optimization techniques such as grid search and Bayesian optimization can be introduced
to fine-tune hyperparameters for improved model performance. Furthermore, we aim to
explore federated learning for multi-factory deployment, enabling collaborative, privacy-
preserving model training across distributed production sites. We also plan to investigate
lightweight model distillation techniques to facilitate real-time, energy-efficient deployment
in industrial settings, potentially achievable through fine-tuning the custom CNN.

However, a key limitation of our approach is its reliance on controlled lighting condi-
tions and specific robotic arm configurations. The reliance on controlled lighting conditions
may limit the framework’s applicability in environments with no lighting, variable lighting,
or uncontrolled lighting, such as outdoor or poorly lit industrial settings. For example, in
environments with uncontrolled lighting, the system’s accuracy could drop significantly
due to increased reflections and noise. Furthermore, the use of a robotic arm for precise
positioning introduces scalability limitations and challenges in integrating with other auto-
mated systems. Additionally, its deployment is heavily dependent on expert knowledge,
which may restrict widespread adoption. Future work will focus on mitigating these limi-
tations by improving adaptability to diverse lighting conditions and exploring alternative
data acquisition methods.
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