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ABSTRACT Cancer remains a major health threat with rising incidence and mortality rates. Despite the
efficacy of chemotherapy, its lack of selectivity and associated severe side effects highlight the need for
new, targeted anticancer therapies. Anticancer peptides (ACPs) have emerged as a promising alternative
due to their biocompatibility, broad-spectrum anticancer activity, and unique mechanisms of action. This
study presents a novel computational approach to design and identify ACPs using a multi-tier filtration
system. Our method begins with peptide sequence generation via a recurrent neural network (RNN)
trained on the acp740 dataset. The generated sequences undergo rigorous filtration: Tier-1 employs three
deep learning-based classifiers (ACP-DL, ACP-MHCNN, ACP-LSE) to identify potential ACPs; Tier-2
uses a nearest centroid classifier to filter out statistically less relevant sequences; Tier-3 involves a final
filtration using unsupervised nearest neighbor learning based on fused feature encoding schemes (CKSAAP,
k-Mer, and BPF). Experimental results demonstrate a significant improvement in identifying viable ACP
candidates, with the proposed method showing a 2.21-fold higher hit-rate compared to random sequence
generation. Further analysis using t-SNE, PCA, and antimicrobial peptide (AMP) prediction tools confirms
the robustness and effectiveness of the selected ACPs. Furthermore, performance comparisons using the
proposed sequence filtering technique reveal that it surpasses the baseline LSTM and RNN-based sequence
generation models by 2.95% and 14.11%, respectively. Complementary reverse analyses further validate
the robustness and effectiveness of proposed sequence generation framework. The proposed computational
approach offers a streamlined and economical alternative to traditional experimental methods, expediting the
discovery of new ACPs and enhancing the accuracy of anticancer peptide predictions. The relevant models,
codes, and results are also available on the authors github page at (https://github.com/mhdshl/ACP-Seq2Seq).

INDEX TERMS Anticancer peptides (ACPs), multi-tier filtration, unsupervised nearest neighbor learning,
fused feature encoding, peptide prediction.

I. INTRODUCTION
Cancer has become a significant threat to human health, with
rising incidence and mortality rates [1]. Among current can-
The associate editor coordinating the review of this manuscript and cer treatment strategies, chemotherapy remains a top priority
approving it for publication was Rajeswari Sundararajan . due to its non-invasiveness and anti-metastatic properties [2].
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However, conventional chemotherapeutic drugs often lack
selectivity for cancer cells, leading to severe adverse effects
and potential therapy discontinuation [3]. Additionally,
the development of drug resistance during chemotherapy
limits the effectiveness of existing antineoplastic agents [4].
Consequently, there is a continuous need to develop new,
selective, and more effective anticancer drugs for tumor
therapy.

In recent years, the discovery of numerous peptides
with medicinal properties has significantly advanced the
field of human treatment, opening up new horizons for
therapeutic development [5], [6], [7], [8]. Among such
peptides, Anticancer peptides (ACPs) have emerged as a
promising alternative to conventional anticancer drugs due to
their excellent biocompatibility, broad-spectrum anticancer
activity, and unique mechanisms of action [9]. ACPs are
typically small peptides, ranging from 5 to 50 amino
acids, and are primarily derived from antimicrobial peptides
(AMPs) [10]. They generally possess amphipathic structures
with more than two net positive charges and a high content of
hydrophobic residues—key structural properties that confer
their biological activity. ACPs can rapidly disrupt the cell
membrane, inducing tumor cell death through electrostatic
adsorption and hydrophobic interactions with the negatively
charged cancer cell membrane [11]. This selective membrane
damage mechanism is advantageous because it is less
influenced by tumor heterogeneity and is less likely to lead
to drug resistance, offering a significant edge over other
chemotherapeutic drugs [12]. Additionally, ACPs can inhibit
the growth of various cancer cells through apoptosis or other
mechanisms of action [13].

The design and identification of ACPs through experimen-
tal methods are often time-consuming and costly, making
computational approaches increasingly vital in this field.
Machine learning and deep learning techniques have demon-
strated significant potential in efficiently predicting and char-
acterizing ACPs, offering a more streamlined and economical
alternative to traditional laboratory methods [14]. These
computational models can analyze peptide sequences, predict
their anticancer properties, and identify patterns within the
amino acid sequences that correlate with anticancer activity.
This efficiency not only accelerates the discovery process
but also enhances the accuracy and specificity of ACP
predictions, thereby facilitating the development of new
therapeutic agents [15].

In recent years, a surge in scientific exploration has
seen an increasing reliance on machine learning mod-
els for peptide/protein classification and prediction. For
instance, Yi et al. [16] harnessed Long Short-Term Memory
(LSTM) alongside k-mer sparse matrix and binary profile
features to propose an ACP classification method. Another
study presented in [17] have leveraged the composition
of K-spaced amino acid pairs (CKSAAP) for feature
extraction, employing a kernel sparse representation clas-
sification approach for ACP detection. Another method,
termed ACP-MHCNN used a novel multi-headed convolution
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neural network for the combination and extraction of
various discriminating features for accurate detection of
ACPs [18]. ACP-LSE [19] employed deep representation
learning and latent space encoding for ACP classifica-
tion. Researchers also employed various feature encoding
and feature selection schemes aided by classic machine
learning algorithms such as SVM [20], fusion of various
classic machine learning algorithms by means of majority
voting and genetic algorithms [21]. Other popular deep
learning-based techniques include cACP-DeepGram [22],
pACP-HybDeep [23], mACPpred2.0 [24], ACP-LSTM-NFR
v1 [25] and ACP-LSTM-NEFR v2 [26], etc.

Drug discovery represents a complex challenge, consum-
ing substantial time and financial resources [27]. The process
can be delineated into four key stages: (1) target selection
and validation, (2) compound screening and optimization,
(3) preclinical studies, and (4) clinical trials. Following
exhaustive in-vitro and in-vivo assessments, the drug candi-
date undergoes FDA scrutiny before commercialization [28].
This conventional workflow typically spans over 12 years,
with costs estimated at approximately $2.6 billion [29].
Therefore, there is a shared interest in mitigating costs and
expediting candidate development.

In tandem with technological progress and the proliferation
of digital pharmaceutical data, Al has emerged as a potent
tool for managing vast datasets and finding diverse applica-
tions in the pharmaceutical domain [30]. In chemical-based
drug development, Al facilitates primary and secondary
drug screening and predicts drug—target interactions [31].
Moreover, computational approaches enable the prediction
of pharmacological properties, potential efficacy, and in-
silico absorption, distribution, metabolism, excretion, and
toxicity (ADMET) profiles of drug candidates [32]. These
active engagements with Al hold promise for accelerating and
cost-reducing the process of drug discovery. In this context,
Grisoni et al. [33] designed an LSTM-based constructive
machine learning model trained on «-helical cationic amphi-
pathic peptide sequences, and fined-tuned with known ACP
sequences to generate novel ACP sequences that were tested
and verified againts MCF7 cancer cells. Similarly in [34], the
authors used a generative RNN model to generate novel ACP
sequences followed by another RNN classification model
for activity and homolysis. Their experimental evaluation
resulted in eleven active ACP sequences. Yue et al. [35] pre-
sented, CNBT-ACPred, a three-channel deep learning-based
ACP prediction technique augmented by in-vivo and in-vitro
testing of anticancer activity in candidate ACPs.

The current methods of ACP design and discovery rely
heavily on the conventional methods to test the novelty, activ-
ity, helicity, and amphiphilicity of the designed sequences,
which can act as the bottleneck for the design process. There-
fore, in this study, we present lightweight computational
methods to filter/select statistically viable ACP candidates
for experimentation and evaluation to expedite the peptide
discovery pipeline. The key contributions of this study are as
follows:
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« Development of a GRU-based ACP sequence generation
model that eliminates the need for complex feature
encoding during the peptide synthesis process.

« Introduction of a novel multi-tier filtration framework
for identifying statistically viable ACP candidates.

« Comprehensive analysis of candidate sequences at each
stage of the filtration process.

« Evaluation of antimicrobial activity using a state-of-the-
art AMP prediction tool to validate functional relevance.

« Structural modeling and 3D visualization of top candi-
date sequences using AlphaFold3 and ChimeraX.

o Performance benchmarking against baseline LSTM and
RNN-based sequence generation models.

o Reverse validation using classical machine learning
techniques to assess the robustness and generalizability
of the proposed generation and filtration pipeline.

The rest of the paper is organized as; Section II presents the

proposed method and its workflow, followed by the results in
Section III. Finally the paper concludes in Section I'V.

Tier-1 Filter
ACP-DL
Classifier

ACP-MHCNN
Classifier

ACP-LSE
Classifier

FIGURE 1. Workflow of the proposed method.
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Il. MATERIALS AND METHODS

The workflow of the proposed method, as illustrated in Fig. 1,
involves peptide sequence generation using a RNN-based
generative model trained on the acp740 dataset [36], [37]. The
generated sequences are then forwarded to a rigorous filtra-
tion and statistical evaluation process where the filtration and
evaluation is carried out in three tiers; 1) filter using known
ACP classifiers, 2) filtering out statistically less significant
sequences by a clustering-based centroid filter, and 3) finer
filtration on the basis of the statistical similarity between the
known and generated sequences using unsupervised nearest
neighbor learning.

A. DATASET

The dataset used in this study is titled acp740, as presented
in [36] and [37]. It comprises 740 peptide sequences, with
376 classified as ACP and 364 as non-ACP. A refined version
of this dataset is available in [16]. The acp740 dataset is
employed for training both the sequence generation model
and the classifiers and machine learning models used in
the various filtration steps. Fig. 3 in Sec. III illustrates the
distribution of sequence lengths in the acp740 database.
It was found that the ACP sequence length within the
dataset ranges from 10 amino acids to 97 amino acids,
with an average sequence length of 30.1. The minimum
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FIGURE 2. The proposed ACP sequence generation model.
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and maximum sequence lengths of a known benchmark
dataset are used when designing a model for ACP sequence
generation.

B. ACP SEQUENCE GENERATION RNN MODEL

The sequence generation model is presented in Fig. 2. The
sequence generation model has a simple architecture where
the input character batch is forwarded to an embedding layer
with its embedding dimensions as 256. Each character in
the peptide sequence is transformed into a dense vector
representation by the embedding layer, enabling the model
to understand the relationships between different characters.
The embedding layer is followed by a block of 2 RNN
layers composed of gated recurrent unit (GRU) layers. The
GRU layers are capable of capturing long-term dependencies
within the sequences thanks to their recurrent connections
and gating mechanisms. Each of the GRU layers have
1024 RNN units. The RNN block is followed by a dense
layer with the number of units as the number of unique
characters in the training dataset. During the inference phase,
the output of the model is fed to the input to generate the
sequences autonomously, with the seed input (\n) as the
sequence termination code.

0.05 [ Random Sequences
[0 ACP740 Dataset
780 Synthetic ACPs

Sequence Length

FIGURE 3. Distribution of sequences from acp740 dataset, randomly
generated es, and es generated using the trained
sequence generation model.

C. FILTRATION MECHANISM

The filtration mechanism is executed in three stages: tier-1
filter, tier-2 filter, and tier-3 filter.
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1) TIER-1 FILTER

In tier-1, three contemporary deep learning-based classifiers
are employed: ACP-DL [16], ACP-MHCNN [18], and
ACP-LSE [19]. The generated sequences are evaluated by
these three classifiers, and only those sequences that are
positively classified by all three are selected to proceed to the
next filtration step.

ACP-DL [16] is a deep learning model using a long
short-term memory (LSTM) neural network to predict novel
anticancer peptides. It integrates binary profile features and
k-mer sparse matrices of the reduced amino acid alpha-
bet for efficient feature representation, enabling automatic
identification of anticancer and non-anticancer peptides.
ACP-MHCNN [18] is a multi-headed deep convolutional
neural network model designed to extract and combine
discriminative features from various information sources
interactively. It identifies ACPs by extracting sequence,
physicochemical, and evolutionary features using different
numerical peptide representations while minimizing param-
eter overhead. Finally, ACP-LSE [19] presents an intuitive
classification strategy based on representation learning,
specifically employing a deep latent-space encoding scheme.
It excels in scenarios with limited sample sizes and abundant
features by embedding high-dimensional features, such as
g-spaced amino acid pair compositions, into a compressed
latent space using an auto-encoder-inspired network. Unlike
conventional auto-encoders, ACP-LSE ensures that the
learned feature set is both compact and effective for
classification, providing a transparent alternative to typical
closed-box approaches.

The three deep learning-based classifier networks
explained earlier are used in the first step of filtration
where the generated sequences are classified using the three
classifiers. The result of the classification from each network
are compared and the sequences that qualify as ACPs by all
three classifiers are then selected for further filtration and
analysis in the Tier-2 filtration.

2) TIER-2 FILTER
In the tier-2 of the filtration process, we employ the nearest
centroid classifier to filter-out the statistically less relevant
sequences that might have been misclassified as ACPs in the
tier-1 filter. The nearest centroid [38] method is a simple
and efficient classification algorithm that assigns a data point
to the class whose centroid (mean position of all points in
the class) is closest to it. During the training phase, the
centroids for each class are calculated by averaging the
feature vectors of all points in that class. In the classification
phase, the distance from the new data point to each centroid
is computed, and the point is assigned to the class with the
smallest distance. This method is particularly effective for
well-separated classes and is computationally inexpensive,
making it suitable for large datasets with relatively simple
structures.

For the tier-2 filtration analysis, t-SNE features of the
combined BPF and k-Mer features for the acp740 database
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are used to train the nearest centroid model. After training, the
t-SNE feature embeddings of the combined BPF and k-Mer
features for the tier-1 filtered ACP candidates are analyzed by
the nearest centroid classifier and the resulting sequences are
then forwarded to the final tier-3 filtration step.

3) TIER-3 FILTER

The tier-3 filter involves a statistical analysis and evaluation
of the tier-2 filtered candidates using an unsupervised nearest
neighbor model [39]. The unsupervised nearest neighbor
method is a type of clustering algorithm that groups data
points based on their proximity to each other without
using predefined labels. This method involves calculating
the distance between all pairs of points in the dataset
and then forming clusters by linking each point to its
nearest neighbors. These clusters are formed iteratively,
with each point being added to the cluster containing its
nearest neighbor or forming a new cluster if it does not
closely match existing clusters. This approach is useful for
discovering natural groupings in data and is commonly used
in applications like anomaly detection, data compression, and
pattern recognition.

For the analysis at this stage, a fusion of three feature
encoding schemes i.e., CKSAAP, k-Mer, and BPF [16], [17]
are used. For the nearest neighbor analysis, only the positive
sequences from the acp740 dataset have been selected and
forwarded to the feature encoding process where the three
features are extracted and fused together. The candidate
sequences from the tier-2 filtered follow the same feature
encoding process. The nearest neighbor model is trained
using the fused features from the positive sequences of the
benchmark dataset and the trained model is used to evaluate
the closest distance from the training set. This results in
a distance vector and a vector correspoding to the closest
known ACP sequences from the benchmark dataset. The
distances are analyzed and the sequences with the minimum
distances are selected for further visualization and analysis
using AlphaFold3 [40] and ChimeraX [41].

Ill. EXPERIMENTAL RESULTS

This section presents the experimental evaluation and the
analysis performed in this study. As explained in the previous
section, the sequence generation model is trained with acp740
dataset. As mentioned in Sec. II-A, the ACP sequences
in the training dataset have the sequence lengths with the
ranges (10,97), the minimum and maximum threshold for
sequence generation is kept within this range. The sequence
generation model is trained for 100 epochs, keeping a batch
size of 64, and an early stopping criterion with patience
value of 25 epochs is used to avoid model overfitting. The
model is optimized using the Adam optimizer for a sparse
categorical cross-entropy loss, keeping the optimizer learning
rate at 1073, To evaluate the performance of the sequence
generation model, random sequences were also generated
using the untrained model to compare the distributions of
the sequences generated from the trained model and that
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TABLE 1. Tier-1 filtration analysis of random sequences compared to
sequences generated using the trained model.

Hit-Rate (%
Seq it-Rate (%) Combined Hit-Rate (%)
ACP-DL | ACP-MHCNN | ACP-LSE
Random Sequences 36.31 43.07 38.32 11.31
Trained Sequences 43.07 41.22 41.34 36.25

of the randomly generated sequences with the presence of
the known ACP dataset. Fig. 3 presents a comparison of
the distribution of the length of the known ACPs in acp740
dataset with randomly generated sequences and sequences
generated using the trained RNN model. It can be observed
from the figure that the distribution of synthetic ACPs
(sequences generated using the trained model) closely follow
the distribution of the acp740 dataset. The relevant models,
codes, and results are also available on the authors github
page at (https://github.com/mhdshl/ACP-Seq2Seq).

A. TIER-1 FILTRATION ANALYSIS

For the experiment and analysis, we generated 5000 ran-
dom sequences and 5000 sequences using the trained
sequence generation model. These random and predicted
sequences were evaluated using ACP-DL, ACP-MHCNN,
and ACP-LSE benchmark classifiers as stated in previous
section. The experiment in tier-1 filter is evaluated on the
basis of the individual hit-rate of the classifiers as well as
the combined hit-rate of the benchmark classifiers. Table 1
presents the comparison of the hit-rate of the individual
classifiers and the combined hit-rate, where a candidate
sequence is classified as a positive ACP sequence from
all three classifiers. It can be observed from the combined
hit-rate that the sequences generated using the proposed
model have 2.21 x higher hit-rate compared to the randomly
generated sequences.

Furthermore, the candidate sequences obtained after tier-1
filtration are visualized using t-stochastic neighbor embed-
ding (t-SNE) of their feature space. The t-SNE visualization
of the tier-1 candidate sequences compared to the acp740
dataset is presented in Fig. 4. We used a combination
of BPF and k-mer feature encoding schemes as utilized
in [16] and evaluated the 2-component t-SNE embeddings
for both sets of sequences. In the figure, the green dots
represent the tier-1 candidate sequences, demonstrating
that they overlap nicely with the positive ACP sequences
(blue dots) from acp740 while maintaining good separation
from the non-ACP sequences. After the tier-1 filtration,
1909 candidate sequences are forwarded for further filtration
and analysis to the tier-2 filter. The corresponding tier-1
candidate sequences can be found on the authors github page
in the directory titled synthetic_ACPs under the file name
ACP_seq2seq_20240605_first_tier_filter.xlsx.

B. TIER-2 FILTRATION ANALYSIS
For tier-2 filtration, the t-SNE of the combined k-Mer and
BPF features of the acp740 dataset is used to train a nearest
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FIGURE 4. t-SNE of the Tier-1 filter candidate sequences vs. acp740
dataset.
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FIGURE 5. t-SNE of the tier-2 candidate sequences compared to tier-1
candidate sequences in the presence of acp740 dataset.

centroid classifier. The trained nearest centroid classifier
is then used to evaluate the t-SNE features of the tier-1
candidate sequences. The nearest centroid classifier aims
to restrict the spread of the tier-1 candidate sequences and
removes any outlier sequences. A visualization of the effect
of the tier-2 filtration is also visualized using the t-SNE.
A visualization of the effect of the tier-2 filtration is presented
in Fig. 5. It can be observed that the tier-2 candidates
are more restricted within the vicinity of the majority of
the known acp740 positive sequences. The filtered tier-2
candidate sequences can be found on the authors github page
in the directory titled synthetic_ACPs under the file name
ACP_seq2seq_20240605_second_tier_filter.xlsx.

C. TIER-3 FILTRATION ANALYSIS
In tier-3 filtration, an unsupervised nearest neighbor model
is trained on only the positive ACP sequences from acp740
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database. For training the unsupervised nearest neighbor
model, we used a fusion of BPF, k-Mer, and CKSAAP
features to enable the search in a high-dimensional space.
After training the nearest neighbor model, we performed
the inference on the tier-2 candidate sequences features
and analyzed the distances of each tier-2 candidate with its
nearest matching positive ACP sequence from the acp740
database. For further analysis, the tier-2 candidate sequences
with the minimum distance values were selected as tier-
3 candidate sequences. As an initial analysis for the tier-3
candidate sequences, the 2-component PCA embeddings of
the tier-3 candidate sequences were visualized in the presence
of their neighboring sequences, from acp740 database,
obtained using the minimum distance. Fig. 6 presents
the PCA embeddings of the tier-3 candidate sequences
compared to their neighboring known ACP sequences from
the dataset. It can be observed in the figure that the
PCA embeddings of the tier-3 candidate sequences closely
match with their corresponding known ACP sequences.
After tier-3 filtration, a total of 187 candidate sequences
were obtained for further analysis. The tier-3 candidate
sequences, their closely matching positive ACP sequences
from the benchmark dataset, the corresponding distance
values, and the results of further analysis are maintained
in spreadsheets on the authors github page mentioned earlier
in this section. The tier-3 candidate sequences can be found in
the directory titled synthetic_ACPs under the file name ACP_
seq2seq_20240605_third_tier_filter_second_method.xlsx.

Tier-3 Filtered ACPs vs Positive ACP Dataset (acp740)
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FIGURE 6. PCA emdeddings of the Tier-3 filter candidate sequences vs.
positive sequences from acp740 dataset.

1) EVALUATING ANTIMICROBIAL PROPERTIES

To support the visual and statistical analysis, we analyzed the
tier-3 candidate sequences for antimicrobial peptide (AMP)
properties using the widely known CAMPSign [42] tool for
identification of AMP family signatures. This analysis is
conducted due to the reason that ACPs can be considered
a sub-family of the AMPs due to their common properties
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such as selective toxicity, broad spectrum activity, cationicity
(positive net charge), high hydrophobicity, and amphipathic
structure, giving them an increased affinity for cell mem-
branes [10]. In the AMP analysis using the CAMPSign tool,
we used the three well-known classifiers namely support
vector machine (SVM), random forest (RF), and artificial
neural network (ANN) available in the tool. A comparison of
the AMP prediction analysis of the tier-3 candidate sequences
with their neighboring ACP sequences from acp740 dataset is
presented in Table 2. The AMP analysis presented in the Table
also confirm the findings of the analysis conducted in tier-3
filtration stage that the tier-3 candidate sequence contain
similar characteristics as their closely matching known ACP
sequences. The results of AMP analysis, tier-3 candidate
sequences, their corresponding ACP sequences from dataset,
and other analysis can be found in the spreadsheet titled
ACP_seq2seq_Filtration_Analysis.xlsx in the authors github

page.

TABLE 2. AMP analysis of the tier-3 candidate sequences compared to
their closest matching positive ACP sequences.

Hit-Rate (%) .
Dataset Mean Hit-Rate (%)
SVM RF ANN
ACPs (acp740) 90.91 | 95.18 | 9091 92.33
Tier-3 Candidate Sequences | 86.09 | 86.09 | 86.09 86.09

(c) View-1

(d) View-2

FIGURE 7. 3D structure comparison of a tier-3 candidate sequence and
its closely matching known ACP sequence from the acp740 dataset using
AlphaFold3 and ChimeraX.(a) Known ACP sequence (ACP-67) from acp740
dataset,(b) Tier-3 candidate sequence (ACP-39) corresponding to the
sequence structure in (a),(c) Superimposed view of the known and its
corresponding sequence (view-1), and(d) Another superimposed view of
the known and its corresponding sequence (view-2).

2) EVALUATING STRUCTURAL SIMILARITIES
For structure analysis, we selected a sequence from

the tier-3 candidate sequences and its closely matching
known ACP sequence. We utilized Alphafold3 [40] for
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the prediction of the 3D structure of the sequence pair
and used ChimeraX [41] for the visualization of these
sequences individually and as a superimposed pair to
visualize the structure similarity of both the known and
synthesized sequences. The selected sequence pair for
visualization can be observed in the Fig. 7. For the 3D
visualization of the sequences, we selected ACP-39 (KSCC-
PNTTGRNIYNACRLTGAPRPTCAKLSGCKIISGSTCPS-
DYPK) from the tier-3 candidate sequences and its closely
matching sequence ACP-67 (KSCCPNTTGRNIYNTCR-
FGGGSREVCARISGCKIISASTCPSDYPK) from the pos-
itive ACP sequences in the acp740 dataset. The visual
comparison of the structures shows a high degree of structural
similarity, further supporting the validity of the generated
candidate sequences as potential ACPs. The candidate
sequences at each filtration stage, their parent sequences, the
results of the analysis conducted during each tier, etc., have
been maintained in various spreadsheets and made available
on the authors github page.

D. ABLATION STUDIES

1) PERFORMANCE EVALUATION ON A LARGER DATASET

To further assess the generalizability and robustness of
the proposed sequence generation model, we conducted
additional training using the recently introduced mACP-
pred2.0 dataset [24]. This dataset contains an equal number
of positive and negative ACP sequences, with 1175 samples
in each class. The proposed sequence generation model was
trained on mACPpred2.0 dataset using the same architecture
and training hyperparameters as described previously. For the
filtration process, the first-tier filter was adapted to utilize the
mACPpred2.0 online ACP prediction tool, while the second
and third-tier filters followed the same methodology as out-
lined in the earlier sections. Upon evaluating 4000 sequences
generated by the trained model, the first-tier classifier
achieved an accuracy of 96.37%. After completing all three
filtration stages, 240 high-confidence ACP candidates were
identified.

These final candidates were further subjected to antimi-
crobial peptide (AMP) analysis using the same set of
classifiers—Support Vector Machine (SVM), Random For-
est (RF), and Artificial Neural Network (ANN)—as used
in the primary experiments. The AMP evaluation yielded
a mean hit-rate of 92.74%, with individual hit-rates
of 92.6% (SVM), 94.94% (RF), and 90.66% (ANN). These
results further validate the effectiveness of the proposed
sequence-to-sequence generation model and its associated
three-tier filtration mechanism in identifying statistically
viable ACP candidates from larger and more diverse datasets.

2) PERFORMANCE COMPARISON WITH BASELINE MODELS

To evaluate the effectiveness of the proposed sequence gener-
ation framework, we designed two baseline models based on
standard RNN and LSTM architectures. These baseline mod-
els adopt the same architecture and training hyperparameters
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TABLE 3. Tier-1 filtration analysis and comparison of the sequence
generation ability of the proposed model compared to the baseline RNN
models.

Model Hit-Rate (%) Combined Hit-Rate (%)
ACP-DL | ACP-MHCNN | ACP-LSE
RNN 4234 38.69 3535 2125 +3.59
LSTM 53.90 48.58 4825 32.41 + 0.50
Proposed | 54.03 47.75 49.92 35.36 + 1.91

as the proposed GRU-based model, as described in Sec. II-B,
with the only difference being the replacement of GRU layers
with standard RNN and LSTM layers, respectively.

To ensure fair evaluation, each baseline model was trained
over five independent trials. In each trial, 4000 sequences
were generated and subjected to the first-tier filtration using
three benchmark ACP classifiers (ACP-DL, ACP-MHCNN,
and ACP-LSE). The classifier hit-rates for each model were
then compared with those of the proposed method. Table 3
presents the mean hit-rate of individual classifiers, along with
the combined hit-rate (mean + standard deviation) where
all three classifiers simultaneously identify a sequence as an
ACP. Interestingly, while the LSTM-based model achieved
comparable or slightly better individual hit-rates, the pro-
posed GRU-based model consistently outperformed both
RNN and LSTM baselines in terms of the combined hit-rate.
Specifically, it achieved a performance gain of 2.95% over the
LSTM-based model and 14.11% over the RNN-based model.
These results demonstrate the superior generalization ability
of the GRU-based model for generating high-quality ACP
candidates.

We also compared the computational complexity of the
proposed model with the RNN and LSTM baselines, as sum-
marized in Table 4. The proposed sequence-to-sequence
model contains approximately 10.26 million parameters
(39.15 MB), which is lower than the LSTM-based model
(13.66 million parameters, 52.13 MB), but higher than the
simpler RNN model (3.43 million parameters, 13.11 MB).
Despite having more parameters than the RNN, the proposed
GRU model offers a balanced trade-off between model
size and performance, achieving better generalization and
sequence generation quality while maintaining a relatively
lightweight computational footprint compared to the LSTM
counterpart.

TABLE 4. Comparison of model parameters and memory size for the
proposed, LSTM, and RNN sequence generation models.

Model RNN | LSTM
Parameters (Million) 343 13.66 10.26
Model Size (MB) 13.11 | 52.13 39.15

Proposed

3) REVERSE ANALYSIS

To further assess the robustness and practical utility of the
proposed sequence generation framework, we conducted
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TABLE 5. Tier-wise reverse analysis and comparison of the proposed sequence generation method and random sequence generation.

) N . Accuracy F1-Score Sensitivity Specificity MCC
Filtration Tier
Random | Proposed | Random | Proposed | Random | Proposed | Random | Proposed | Random | Proposed
Tier-1 67.70 79.86 0.66 0.80 0.45 0.78 0.90 0.81 0.40 0.59
Tier-2 69.32 80.13 0.68 0.80 0.47 0.78 0.92 0.82 0.43 0.60
Tier-3 - 74.86 - 0.75 - 0.75 - 0.75 - 0.50

a reverse analysis using a classic machine learning classifier.
Specifically, a linear Support Vector Machine (SVM) was
trained on the synthetic ACP sequences produced and
filtered through the three-tier pipeline and then tested on
the benchmark acp740 dataset. For comparison, a similar
analysis was conducted using sequences generated by an
untrained (random) model. To ensure fairness, the training
data at each filtration tier was balanced by incorporating
non-ACP sequences from the independent mACPpred2.0
dataset [24]. The performance of the reverse classifier, evalu-
ated in terms of Accuracy, F1-Score, Sensitivity, Specificity,
and MCC, is summarized in Table 5. The results clearly
show that sequences generated by the proposed method
consistently outperform those from the random model across
all metrics and filtration tiers. Notably, after the third
filtration stage, all random sequences were excluded, further
demonstrating the effectiveness of the proposed three-tier
filtration strategy. These findings highlight the ability of the
generated sequences to generalize and retain discriminative
features, reinforcing the value of our sequence generation and
filtration framework in ACP discovery.

IV. CONCLUSION
In this study, we presented a comprehensive computational
approach to generate, filter, and evaluate potential ACPs
using a combination of deep learning models and statistical
analysis. The proposed method leverages a GRU-based
generative model for sequence generation, followed by a
rigorous three-tier filtration process involving state-of-the-art
classifiers, nearest centroid classification, and unsupervised
nearest neighbor analysis. The results demonstrate that
the proposed approach is capable of generating candidate
sequences that closely match known ACPs in terms of
sequence length distribution, feature space, and structural
properties. The final tier-3 candidate sequences exhibit strong
antimicrobial properties, as verified through external tools,
and show significant structural similarity to known ACPs,
suggesting their potential efficacy in anticancer therapy. The
statistical evaluation, structural analysis, baseline compar-
isons, and reverse analysis collectively validate the robustness
and effectiveness of the proposed sequence generation and
three-tier filtration method. The framework holds practical
relevance for accelerating early-stage anticancer peptide
discovery, offering a cost-efficient alternative to conventional
screening processes.

However, this study also has certain limitations. Firstly,
it is restricted to computational evaluations; the predicted
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ACP candidates have not undergone experimental validation
through in-vitro or in-vivo assays, which is essential to
confirm their biological activity. Secondly, the model training
is based on publicly available datasets, which may not
comprehensively capture the sequence diversity found in
real-world biological systems. These limitations may impact
the generalizability of the findings in clinical settings.
Future work may involve experimental validation of the
predicted peptides through in-vitro and in-vivo assays to
confirm their biological activity. In addition, future directions
will explore training on larger and more diverse ACP
datasets, and adopting advanced generative models such as
transformer-based architectures to further improve sequence
diversity, accuracy, and clinical relevance. Furthermore, the
integration of safety profiling and pharmacokinetic modeling
will be essential for advancing promising candidates towards
preclinical development. These enhancements are expected
to facilitate smoother clinical translation and align the
discovery pipeline with regulatory requirements for peptide-
based therapeutics.
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