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A B S T R A C T

Urban flooding, intensified by both climate change and urbanization, requires high-fidelity and computationally 
efficient modeling frameworks for effective risk assessment and mitigation. This study presents FLO-SR, a deep 
learning-based super-resolution (SR) model, to enhance the spatial resolution of urban flood simulations while 
significantly reducing computational costs. FLO-SR leverages a convolutional neural network (CNN) to convert 
low-resolution (LR) flood maps into high-resolution (HR) outputs. The model was validated using two distinct 
flood events: Hurricane Harvey in Houston, Texas (synthetic scenario using bicubic interpolation) and an urban 
flood event in Portland, Oregon (physics-based simulation scenario). FLO-SR was evaluated in terms of image 
similarity, flood depth, and inundation extent. FLO-SR achieved accuracy improvements in both cases at scale 
factors of 2, 4, and 8×, with average RMSE reductions of 56.2, 32.4, and 10.7 % in Houston and 24.5, 33.8, and 
44.1 % in Portland. However, performance at the 8× scale was limited due to challenges in reconstructing fine- 
scale flood features and spatial discontinuities in LR inputs. To address this, future improvements should 
incorporate hydrodynamic constraints and enhance model generalization. Despite these limitations, FLO-SR 
combined with physics-based modeling achieved up to 63 and 45.7 % runtime reductions when reconstruct
ing 2 m from 4 m and 4 m from 8 m simulations, respectively, highlighting its potential for real-time urban flood 
forecasting.

1. Introduction

Urban flooding, which is intensifying in both severity and frequency 
due to climate change and inappropriate urban development, poses a 
substantial threat to human life and economic sustainability. From 1990 
to 2022, floods affected over 3.2 billion people globally, causing 
218,353 deaths, and resulting in more than $1.3 trillion in economic 
losses (Liu et al., 2024). A wide range of natural processes contribute to 
flooding, including heavy rainfall, spring snowmelt, and rain-on-snow 
events in cold climate regions (Myers et al., 2023; Zaghloul et al., 
2022). As urban areas expand, runoff increases and the natural drainage 
network changes, affecting hydrological processes (Guan et al., 2015). 
The implementation of dual drainage systems in urban areas adds 
further complexity to urban hydrological systems, increases the risk of 
urban flooding, and complicates simulation and risk management. This 
growing complexity underscores the need for more accurate flood 

mapping in urban areas (Liu et al., 2021; Zandsalimi et al., 2025).
Physics modeling based on hydrodynamics or empirical equations 

has traditionally been employed for simulating the complex rainfall- 
runoff process leading to flooding (Henonin et al., 2013). However, 
urban flood predictions remain challenging because these events can last 
for a short period of time but produce sudden inundation in the dual 
drainage systems (Chowdhury et al., 2023; Roy et al., 2025). One- 
dimensional (1D) hydraulic models are typically employed to simulate 
flow through sewer drainage networks, while two-dimensional (2D) 
models dynamically simulate the movement of water flow over a two- 
dimensional surface. These models often incorporate simulation of 
water flow within the drainage network to represent the interaction 
between the drainage system and the watershed area, providing an ac
curate and reliable simulation of urban surface flooding (Gao et al., 
2024). However, the complexity of solving physical equations (the full 
or simplified form of the 2D Saint Venant or Shallow Water Equations 
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(SWE)) typically results in time-consuming and high computational 
costs, limiting their application to real-time or near real-time flood 
forecasting systems (Bermúdez et al., 2018; Piadeh et al., 2022).

With advances in data-driven technology, surrogate models or 
alternative methods has emerged as a key strategy for addressing chal
lenges related to computational efficiency (Contreras et al., 2020; 
Demiray et al., 2021; Ivanov et al., 2021). Deep learning technology can 
provide an approach to complement physics-based urban flood 
modeling. It has the potential for high-fidelity simulations by leveraging 
its capability to learn from data with complex non-linear relationships, 
while also enabling near-real-time predictions due to significant im
provements in computational efficiency. These methods offer significant 
advantages in terms of computational efficiency and practical applica
bility to hydrological modeling (Ren et al., 2025). Recent studies have 
also applied deep learning models such as U-Net and long short-term 
memory (LSTM) to precipitation nowcasting and time series fore
casting, which are essential components of flood forecasting systems 
(Ghaderpour et al., 2023; Li et al., 2024). These applications highlight 
the growing role of deep learning in real-time flood prediction and risk 
mitigation efforts. Convolutional neural networks (CNNs) can extract 
and reduce the dimensionality of important features by using convolu
tional and pooling layers. In combination with other neural networks or 
physics-based methods, several studies have demonstrated the utility of 
the CNNs technology in flood predictions (Chen et al., 2021; Guo et al., 
2021; Kabir et al., 2020). More recently, physics-informed neural net
works (PINNs) have emerged as hybrid models that embed governing 
physical equations into deep learning frameworks to improve general
izability (Qi et al., 2024; Yang et al., 2024).

The application of deep learning techniques to spatial resolution 
enhancement in hydrological applications is a constantly growing 
research field. It has been widely applied to spatial data reduction and 
enhancement tasks in remote sensing, such as downscaling and seg
mentation of satellite imagery (Cui et al., 2023; Galar et al., 2020; Jian 
et al., 2025; Li et al., 2023; Mohamadiazar et al., 2024; Poehls et al., 
2025; Xu et al., 2022; Zeng et al., 2024). In a similar context, super- 
resolution (SR) techniques have been actively developed in the fields 
of computer vision and medical imaging to enhance the resolution of 
images and videos. SR refers to the process of reconstructing high- 
resolution (HR) images from low-resolution (LR) inputs. In the context 
of urban flood mapping, LR flood maps often lack the spatial detail 
necessary for street-level risk assessment, whereas HR flood maps pro
vide more refined information but are computationally expensive to 
generate using traditional physics-based models. SR addresses this gap 
by learning the transformation from LR to HR through data-driven 
models, thereby enabling the efficient production of HR-like outputs 
from computationally cheaper LR simulations.

Among various deep learning techniques, CNNs and generative 
adversarial networks (GANs) have been widely adopted for SR tasks due 
to their strong capability in extracting spatial features (Wang et al., 
2021). CNN-based architectures such as U-Net have shown effectiveness 
in capturing flood extent and fine-scale hydrodynamic patterns by 
leveraging encoder–decoder structures (He et al., 2023; Yin et al., 2024). 
GANs have also been employed to enhance flood inundation maps by 
learning sharper details from coarse inputs (Demiray et al., 2021). Both 
approaches have been successful in various applications, including im
aging and pixel classification, and enhancement, demonstrating prom
ising results in fields such as satellite image mapping, hydrology, and 
climatology. For example, the CNN-based SRM (SRMCNN) model, which 
uses CNN-based SR techniques to map fine-grained land cover from 
remote sensing images. CNN has proven effective in capturing the 
spatial characteristics of geographical objects and extrapolating cali
brated methods to other research areas. The results showed a perfor
mance improvement of 3–5 % over existing SR mapping methods (Jia 
et al., 2019). In Cheng et al. (2020), they reported that ResLap, a CNN- 
based method for downscaling in HR, could generate high-quality 
climate images and improved performance in climate predictions. 

Their results showed similar or improved levels of bias correction 
compared with NASA’s CMIP6 climate model products for both daily 
precipitation and temperature. Additionally, the performance of various 
SR imaging methods in enhancing gridded rainfall data to a higher 
resolution was compared (Golla et al., 2024). Recently, SR with a U-Net 
structure was applied to hydrodynamic flood modeling under spatial 
and temporal dynamic storm conditions (He et al., 2023). In Lombana 
and Martínez-Graña (2022), a methodology combined with SR algo
rithms for flood mapping of satellite images in small bodies of water was 
proposed. They applied image reconstruction in the preprocessing step 
and used the SEN2RES tool of the Sentinel Application Platform (SNAP) 
developed by the European Space Agency (ESA). In a similar context, a 
study combined a UNET-based downscaling model with a two- 
dimensional rainfall runoff simulation (Jian et al., 2025). The pro
posed terrain-based attention U-Net model (TA-U-Net) improved the 
accuracy of regional precipitation estimates by downscaling satellite 
precipitation data. This approach shares strong similarities with image 
super-resolution methods in term of algorithmic logic. Another study 
sought to recover lost physical details and information from LR nu
merical simulations by generating HR flood maps using CNN-based U- 
Net and GAN models (Yin et al., 2024). Most existing studies have 
adopted U-Net-based architectures for SR applications, while CNN- 
based SR techniques for urban flooding have not been fully explored. 
Furthermore, current methods lack a thorough analysis of the reliability 
and applicability of SR techniques in urban flood scenarios. These lim
itations underscore the need for a more comprehensive approach to 
improving the spatial resolution and accuracy of urban flood simula
tions. The objective of this study is to introduce FLO-SR, CNN-based 
super-resolution (SR) framework developed to enhance the spatial res
olution of urban flood simulations. The key contributions of this 
research are as follows: 

• A deep learning-based SR model, FLO-SR, is proposed for upscaling 
coarse-resolution flood simulation outputs to finer resolutions.

• The performance of FLO-SR is evaluated across multiple scale factors 
(2, 4, and 8 ×), using both synthetic data and physics-based simu
lation outputs.

• The accuracy of FLO-SR in reconstructing flood depth and delin
eating flood extent is quantitatively assessed using multiple evalua
tion metrics.

• The computational efficiency of the FLO-SR framework, when inte
grated with physics-based models, is compared against conventional 
high-resolution simulations.

The remainder of this paper is organized as follows. Section 2 de
scribes the study areas, FLO-SR framework, the data preparation pro
cess, and super-resolution modeling. Section 3 presents the experimental 
setup, results, and evaluation. Section 4 discusses the findings and im
plications. Finally, Section 5 concludes the study and outlines potential 
directions for future research.

2. Materials and methods

2.1. Study region

2.1.1. Houston: Hurricane Harvey flood event
Hurricane Harvey struck southeastern Texas in August 2017. This led 

to extraordinary flooding of the Houston area from August 26–28, 
resulting in rainfall totals with staggering statistical return periods of 
over 9,000 years for the three-day totals in some locations and over 
2000 years for the cumulative rainfall of the storm. The flooding caused 
by Hurricane Harvey was catastrophic, resulting in over 70 deaths. The 
financial damage caused by Harvey was estimated to be approximately 
$125 billion, making it the second most financially destructive hurri
cane in USA history (Noh et al., 2019).

The model domain was approximately 100 × 65 km in the Houston 
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metropolitan area, including Buffalo, Brays, Greens, Hunting, Sims, and 
White Oak Bayous. Urban flood modeling at 4 km resolution was forced 
by rainfall data, based on the West Gulf River Forecast Center’s radar- 
based operational multi-sensor precipitation estimator. The amount of 
precipitation in the Houston metropolitan area ranged from 800 to 
1,100 mm from August 25–31, 2017. On August 27, the daily rainfall 
estimates exceeded 300 mm in most areas and 500 mm in the Brays 
Bayou lowlands. For more information about inundation modeling of 
Hurricane Harvey flooding in Houston, refer to (Noh et al., 2019). Fig. 1
shows an enlarged map of the maximum flood depth resulting from a 2D 
flood simulation of Hurricane Harvey at 10 m resolution. To construct 
and validate LR and HR pairs of model input data and learn SR processes 
at various scales, the LR input data were generated by bicubicizing the 
10 m resolution Hurricane Harvey 2D flood simulation results to reso
lutions of approximately 20, 40, and 80 m.

2.1.2. Portland: Urban flood event
Another study domain includes an urban catchment located in the 

western region of the Willamette River basin, Portland, OR, USA. Port
land is located in a low-lying area between the Oregon Coast and 
Cascade Ranges, resulting in lower precipitation levels compared with 
other regions of the Pacific Northwest. It receives an average precipi
tation of 930 mm annually, based on 1981–2010 data (Chang, 2007; 
Cooley and Chang, 2017). The majority of precipitation occurs from 
November to April, primarily in the form of rain. The average annual 
temperature is 11.3 ◦C and the mean annual precipitation is approxi
mately 1,095 mm (Franczyk and Chang, 2009). The model domain 
covers an area of approximately 9 km2.

To construct the model training dataset, rainfall data of urban 
flooding events for a total of 95 h, from 01:00 on December 6 to 9, 2015, 
were used. The simulations included five land cover types: water bodies, 
impervious areas, bare land, grass, and forests. Different runoff co
efficients were applied depending on the land cover type. 2D pluvial 
flood simulations were conducted at different spatial resolutions of 1, 2, 
4, and 8 m to construct and validate LR and HR pairs of model input data 
and to elucidate the SR process at different scales. Fig. 2 shows an 
enlarged map of the maximum flood depth resulting from a 2D flood 
simulation of a Portland flood at 1 m resolution.

2.2. FLO-SR: Urban flood SR framework

The proposed framework, FLO-SR, is designed to enhance the spatial 
resolution of urban flood simulations using SR techniques (Fig. 3). This 
methodology comprises two major procedures: (1) data preprocessing 
and (2) SR modeling, as described below.

2.2.1. Data preprocessing
This procedure prepares the input dataset for utilization in the SR 

model. The maximum inundation depth images, simulated by physics- 
based modeling, are preprocessed to create paired LR and HR datasets. 
In this study, input urban flood data are generated using the H12 
physics-based urban flood model (Noh et al., 2018). The input data for 
the H12 model includes a digital elevation model (DEM) with building 
footprint data, rainfall, and land cover maps. H12 employs hybrid 
parallel-computing technologies that combine message-passing inter
face (MPI) and OpenMP to enable efficient high-resolution simulations. 
Although H12 can simulate the interactions between 2D surface runoff 
and 1D sewer network flows, in this study, only the H12 2D flow analysis 
module was used to assess the effects of maximum inundation depth 
images at different resolutions for the SR process.

Flood maps for an entire simulation area (e.g., maximum inundation 
depth distributions) often lack sufficient detail for evaluating specific 
inundation patterns. Therefore, pixel dimensions are selected to enable a 
detailed examination of the flooding patterns at street level within the 
simulated area. But, since only a small percentage of pixels in a full-size 
image correspond to the inundated area, directly processing the full- 
resolution image would lead to significant class imbalance and compu
tational inefficiency (Li et al., 2023). Therefore, we only retain images 
where at least 0.2 % of the pixels in each image are labeled as water. For 
the HR data, we utilized the high-resolution simulated results as syn
thetic truth. Two methods were employed in the preprocessing stage to 
construct LR data. First, interpolation techniques were applied to the LR 
data during the SR process to enhance image quality. Interpolation in
volves estimating intermediate values between discrete data points and 
is widely used in digital image processing for resizing images and cor
recting spatial distortions. Among the various interpolation techniques, 
bicubic interpolation was used to generate LR images because of 

Fig. 1. An enlarged maximum inundation depth map for 10 m spatial resolution of the Hurricane Harvey flood, TX, USA.
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superior performance in interpolation accuracy (Khaledyan et al., 
2020). Second, the physics-based urban flood simulation results gener
ated at LR were directly used as LR inputs through a resizing process. 
These LR and HR images are then paired to form input–output datasets 
for training the SR model. Data augmentation techniques, including 
flipping and rotation, are applied to the validated data pairs to enhance 
dataset diversity and reduce the risk of overfitting during model 
training. This preprocessing pipeline is essential for the effective 
development of SR models. Table 1 summarizes all datasets utilized in 
this study, including their types, spatial and temporal characteristics, 
and the method used to generate LR data from HR data. The generated 
image datasets for the study can be accessed as described in the 
“Availability of data and material” section.

2.2.2. SR modeling
The SR model of the FLO-SR framework is based on an enhanced 

deep SR (EDSR) (Lim et al., 2017) which improves performance and 
reduces memory usage by removing unnecessary batch normalization 
layers from the SRResNet architecture. Unlike conventional image 
classification tasks, in which batch normalization aids in faster and more 
stable learning, SR tasks can limit the flexibility of the network and 
produce pixel values that differ from the original data. EDSR is well- 
suited for processing flood simulation data because it can restore HR 
images more accurately by removing batch normalization.

The FLO-SR model begins by extracting initial features from LR input 
images using a convolutional layer with 64 filters and a kernel size of 3 
× 3. These features are then passed through a series of 16 residual 
blocks. Each residual block has two convolutional layers. The first layer 
uses the rectified linear unit (ReLU) activation function, and the second 
layer omits activations to retain raw feature representation. Skip con
nections within each residual block mitigates vanishing and explosion 
gradients. After feature extraction, the processed features were con
verted into HR outputs through a pixel shuffle upsampling process. The 
number of channels is dynamically increased depending on the scaling 
factor. For instance, in the 4 × and 8 × SR configurations, the number of 
output channels before pixel shuffle is set to 256 and 512 respectively, 
corresponding to the spatial resolution increase required. The pixel 
shuffle operation then rearranges these channels to form the final HR 

image. To train the FLO-SR model, the mean absolute error (L1 loss) 
between the predicted HR images and the ground truth reference images 
was minimized. The model was trained with a batch size of 16 using the 
Adam optimizer, with default β1 = 0.9, β2 = 0.999, and ε = 1 × 10− 7. A 
piecewise constant learning rate schedule was applied: the initial 
learning rate was set to 1 × 10− 4 and reduced to 5 × 10− 5 after 5,000 
steps to promote convergence. Each model was trained over 400 epochs, 
with 100 steps per epoch to maintain consistency across experiments. 
For each case study domain, 70 % of the data were used for training and 
30 % for validation. These hyperparameter settings were determined 
through preliminary tuning experiments and are provided in the sup
plementary data (Table S1).

2.3. Evaluation metrics

We evaluated FLO-SR performance in multiple aspects including 
image pixel and maximum flood depth reconstructions, and flood area 
similarities, using all metrics evaluated at the pixel level. Methods for 
image quality evaluation can be divided into subjective and objective 
approaches. Subjective evaluation reflects human perception but is 
time-consuming and lacks clear criteria, whereas objective evaluation 
employs mathematical algorithms and is widely used. Both methods 
were used to ensure a comprehensive assessment. Binary classification 
indicators were used to evaluate the flooded area simulation perfor
mance of the FLO-SR. The estimation method measures the proportion 
of observed and predicted events that are correctly predicted, consid
ering into account hits (correct predictions) and false alarms (incorrect 
predictions) per pixel based on a minimum acceptable threshold. The 
minimum allowable threshold was set at 15 cm, considering that it is an 
urban watershed with high building density (Jasour et al., 2022; Wing 
et al., 2017).

2.3.1. Peak signal to noise ratio
The peak signal to noise ratio (PSNR) is the most commonly used 

quality assessment technique to measure the quality of reconstruction of 
loss image compression codecs (Sara et al., 2019). It evaluates the 
similarity of images by calculating the loss information for the resulting 
image quality. In image and video compression quality degradation, the 

Fig. 2. An enlarged maximum inundation depth map for 1 m spatial resolution in the Portland flood, OR, USA.
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PSNR value varies from 30 to 50 dB for 8-bit data representation and 
from 60 to 80 dB for 16-bit data. In wireless transmission, accepted 
range of quality loss is approximately 20 to 25 dB (Deshpande et al., 
2018). PSNR can be defined as: 

PSNR = 10log10(
M2

MSE
) (1) 

Where M is the maximum value that a pixel value can have regard
less of the size of an image. MSE is the mean squared error and calculates 

the pixel value difference between the super-resolution image and the 
original image. N is the total number of pixels in the image, Iy is the i-th 
pixel value of the original image, and ISR is the pixel value of the super- 
resolution image (Wang et al., 2022). The higher the PSNR value is, the 
better the result, so the higher the PSNR, the higher the similarity to the 
original image.

2.3.2. Structure similarity index method
The structure similarity index method (SSIM), proposed by Wang 

Fig. 3. Illustration of urban flood super-resolution framework: FLO-SR.

Table 1 
Details of datasets utilized in the FLO-SR.

Type Dataset Product type Spatial resolution Simulation period Source/Generation method

Physics-based flood 
model (H12)

Houston precipitation Radar-based precipitation 
estimates

4 km August 25–31, 2017 
(hourly)

West Gulf River Forecast Center 
operational data

Portland precipitation Ground-based 
observations

− December 6–9, 2015 
(hourly)

Local meteorological stations

DEM / Land Cover Elevation and land cover 
maps

1 m (Portland), 10 m 
(Houston)

− Used as input for H12 model

FLO-SR Houston Hurricane Harvey 
flood maps

Maximum inundation 
depth maps

HR: 10 m; 
LR: 20 m, 40 m, 80 m

August 25–31, 2017 H12 model (HR) 
Bicubic interpolation (LR)

Portland urban flood maps Maximum inundation 
depth maps

HR: 1 m; 
LR: 2 m, 4 m, 8 m

December 6–9, 2015 H12 model (HR, LR) at each 
resolution
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et al. (2004), is based on human perception of structural information 
within an image. This metric is widely used for comparing the structural 
similarity between images (Blau and Michaeli, 2018; Sara et al., 2019). 
The SSIM is more in line with the intuition of the human eye because it 
comprehensively measures three factors: luminance, contrast, and 
structure, which are recognized as the main contents of the human vi
sual system (Wang et al., 2022). SSIM is expressed as: 

I
(
ISR, Iy

)
=

2μISR
μIy + C1

μ2
ISR

+ μ2
Iy + C1

(2) 

c
(
ISR, Iy

)
=

2σISR σIy + C2

σ2
ISR

+ σ2
Iy + C2

(3) 

s
(
ISR, Iy

)
=

σISR Iy + C3

σISR σIy + C3
(4) 

SSIM
(
ISR, Iy

)
= I

(
ISR, Iy

)α
• c(ISR, Iy)

β
• s

(
ISR, Iy

)γ (5) 

Eqs. (4)-(6) compare the luminance, contrast, and structure of the 
two images, respectively. µ represents the mean, σ represents the stan
dard deviation, and σ (ISR, Iy) represents the covariance. C1, C2, and C3 
are constants. α, β, and γ mean weights. SSIM has values between 0 and 
1, and the closer the value is to 1, the more similar the two images are. 
Therefore, the higher the value, the higher the quality.

2.3.3. Root mean square error
The root mean square error (RMSE) measures the error between 

predictions flood depth and actual values, emphasizing that smaller 
RMSE values indicate better performance. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1

(
ISR − Iy

)2

√
√
√
√ (6) 

2.3.4. Hit rate
The Hit rate (H) indicates the proportion of pixels identified as wet in 

the FLO-SR results that correspond to pixels identified as wet in the 
benchmark physics-based model (H12), excluding overpredictions. This 
proportion is expressed as a value that ranges from 0 (indicating that all 
pixels identified as wet in the FLO-SR are dry in the benchmark physics- 
based model (H12) results) to 1 (indicating an accurate prediction of all 
wet pixels in the model). 

H =
M1B1

M1B1 + M0B1
(7) 

2.3.5. False alarm ratio
The false alarm ratio (F) measures the percentage of pixels identified 

as wet by the FLO-SR that are dry in the reference. This metric assesses 
the FLO-SR’s propensity to overestimate flood coverage, with values 
ranging from 0 (indicating no false alarms) to 1 (all false alarms). 

F =
M1B0

M1B0 + M1B1
(8) 

2.3.6. Critical success index
The critical success index (C) is a metric of discrepancy between the 

FLO-SR and the benchmark physics-based model (H12) pixels, encom
passing both underprediction and overprediction. The C assumes values 
within the range of 0 to 1, wherein a C value of 0 signifies a bench
marking result predicting the exact opposite of the FLO-SR, while a C 
value of 1 denotes a perfect reproduction of the model result. 

C =
M1B1

M1B1 + M0B1 + M1B0
(9) 

As illustrated in Table 2, the term M1 denotes to the number of pixels 
flooded by the benchmark physics-based model (H12) with a water 

depth of at least 15 cm, while B1 signifies the number of pixels flooded 
by the FLO-SR at least 15 cm, and M0B0 represents the number of pixels 
that remain non-flooded across all models.

2.4. Experimental setup

The experimental design intentionally includes two distinct ap
proaches for generating LR inputs (bicubic interpolation for Houston 
and direct physics-based simulations for Portland) to demonstrate the 
versatility and limitations of FLO-SR under controlled and realistic 
conditions. The bicubic interpolation approach in Houston provides a 
controlled environment where spatial patterns and features from the 
original HR simulation are systematically downgraded, enabling an 
isolated assessment of the SR algorithm’s capacity to recover lost in
formation. This approach is analogous to traditional SR benchmarking 
in computer vision and establishes an upper performance bound. In 
contrast, the physics-based approach in Portland represents realistic 
operational conditions where different resolution simulations produce 
inherently different hydrodynamic behaviors, boundary interactions, 
and flood patterns. These two approaches (bicubic interpolation for 
Houston and physics-based simulation for Portland) were deliberately 
chosen to evaluate the performance of the SR model under different 
conditions. The Houston case provides ideal conditions that show the 
upper performance limit of the SR algorithm itself, while the Portland 
case demonstrates its applicability in actual operational conditions. By 
comparing these approaches, we gain insights into both the theoretical 
capabilities of SR techniques and their practical applicability in opera
tional flood modeling contexts.

The proposed FLO-SR was evaluated in two regions: Hurricane 
Harvey in Houston, TX and an urban flood event in Portland, OR. The 
experimental settings in these two cases differed, depending on the 
method used to generate.

LR input data that reflect the specific characteristics of flood events 
and regional modeling requirements. For Houston, LR input images 
were generated by upsampling HR maximum flood inundation maps 
(10 m resolution) using bicubic interpolation. To analyze changes in 
flood patterns in detailed areas at the road level, a pixel size of 240 ×
240 was selected. HR maximum flood inundation maps were upsampled 
to coarser spatial resolutions of 20, 40, and 80 m using bicubic inter
polation as the input to the SR process. We used the simulation result 
with 10 m data as a reference and evaluate the accuracy and perfor
mance of other simulation results with different spatial resolutions using 
accuracy assessment metrics. This method provides a controlled envi
ronment for evaluating FLO-SR by isolating the effects of the SR process. 
This is consistent with the existing SR practice of synthetically gener
ating LR images to ensure a consistent comparison with the HR ground 
truth. In contrast, for Portland, LR input data were derived directly from 
physics-based hydrological-simulations. Maximum inundation maps 
were generated at resolutions of 1, 2, 4, and 8 m, reflecting a more 
realistic scenario in which LR data were produced using operational 
flood modeling systems. We used the simulation results with 1 m data as 
a reference and evaluated the accuracy and performance of other 
simulation results with different spatial resolutions using accuracy 
assessment metrics. Unlike the bicubic interpolation approach used in 
Houston, this method captured the inherent complexities and un
certainties of physical modeling, providing an opportunity to evaluate 

Table 2 
Flood pixel descriptors in a binary classification. States: wet (1) and dry (0) and 
15 cm as a threshold water depth to classify the status of each pixel.

Flooded area by FLO- 
SR

Non-flooded area by FLO- 
SR

Flooded area by H12 M1B1 M1B0

Non-flooded area by 
H12

M0B1 M0B0
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FLO-SR under practical urban flood modeling conditions. Considering 
the size of the simulated area, the pixel size was selected as 200 × 200.

The FLO-SR performance was evaluated using a combination of 
metrics that assessed different aspects of SR accuracy. The image quality 
and structural similarity were evaluated using PSNR and SSIM. The 
accuracy of flood depth reconstruction was estimated using the RMSE, 
whereas binary classification metrics such as hit rate (H), false alarm 
ratio (F), and critical success index (C) were used to assess the accuracy 
of flood extent delineation. To better understand the reconstruction of 
the flood depths, we systematically mapped the image pixels to their 
corresponding flood depth values. This was achieved by implementing a 
color palette that converted pixel RGB values into normalized flood 
depth values, which were then used to quantitatively compare LR, SR, 
and HR images. These comprehensive metrics allowed for a thorough 
evaluation of the capability of FLO-SR to reconstruct both flood depth 
and extent across diverse scenarios. All the experiments were conducted 
using TensorFlow version 2.15.0, which was implemented on a system 
equipped with NVIDIA A100-PCIE-40 GB GPUs and Intel Xeon Gold 
6248(R) CPUs.

3. Results

3.1. FLO-SR model results: visual inspection and overall statistics

3.1.1. Houston: Hurricane harvey flood SR results
To validate the FLO-SR performance, 300 maximum inundation 

depth images with 240 × 240 pixels from the Hurricane Harvey flooding 
simulations in Houston were analyzed. FLO-SR was employed to 
reconstruct HR inundation maps from the LR inputs at various scales 
(The resolution of the SR magnitude is as follows: 2, 4, and 8 ×). LR 
input images were generated by upsampling HR maximum inundation 
maps (10 m resolution) using bicubic interpolation, which is commonly 
applied in conventional SR studies.

Fig. 4 presents examples of HR (synthetic truth), LR (input), and SR 
(output) images at various scales. The 2 × scale results, which showed 
minimal visual difference from the HR images due to the relatively small 
spatial resolution gap (20  m → 10  m), can be found in the supple
mentary data (Fig. S1). Higher values of PSNR and SSIM indicate better 
reconstruction quality and greater similarity to the reference HR image 
in terms of both pixel-level accuracy and spatial structure. FLO-SR 
consistently reconstructed more accurate spatial patterns of inunda
tion depth compared to the LR inputs, as evidenced by both visual in
spection and enhanced evaluation metrics, including PSNR and SSIM. 
The structural similarity between the SR and original HR images 
confirmed that FLO-SR effectively restored the overall inundation dis
tribution at all SR scale factors. When comparing the SR results and HR 
images, it was found that key information, such as predicted flood 
contours and depths around road edges and buildings, was restored with 
minimal distortion. Even in areas with high inundation depths, FLO-SR 
successfully captured the spatial distribution of maximum inundation 
depths, similar to the original HR results. Textural details were best 
preserved at low scale factors, while higher scale factors showed visually 
consistent inundation patterns, but some blurriness was observed in 
complex regions. More SR results for Hurricane Harvey flood can be 
found in the supplementary data (Fig. S2 and S3).

A quantitative evaluation of the FLO-SR performance on the 300 
validation images is presented in Table 3 and Fig. 5. The evaluation 

Fig. 4. Hurricane Harvey flood SR results by scale factors: (a) 4 × scale factor; (b) 8 × scale factor.

Table 3 
Evaluation metrics for SR performance across different scale factors in the 
Houston Hurricane Harvey flood event.

Scale factor PSNR (dB) SSIM RMSE (m) H F C

2 × 41.57 0.96 0.03 0.98 0.01 0.97
4 × 32.30 0.83 0.07 0.94 0.03 0.91
8 × 17.75 0.61 0.14 0.80 0.06 0.73
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focused on three key aspects: image quality (PSNR and SSIM), inunda
tion depth estimation accuracy (RMSE), and flood extent classification 
(H, F, and C indices). The results showed an average PSNR of 41.6 dB 
and SSIM of 0.96 at the 2 × scale, indicating relatively accurate recon
struction quality and strong structural similarity to the original HR 
image (Table 3). For inundation depth estimation, the RMSE was 0.03 
m, indicating high accuracy in reconstructing flood depth. In addition, 
the evaluation results for flood extent classification were H = 0.98, F =
0.01, and C = 0.97, indicating reliable flood area classification. At the 4 
× scale, the PSNR and SSIM decreased to 32.30 dB and 0.83, respec
tively, but still demonstrated strong performance. The RMSE slightly 
increased to 0.07 m, but showed overall satisfactory results with H =
0.94, F = 0.03, and C = 0.91. However, at the 8 × scale, the PSNR and 
SSIM further decreased to 17.75 dB and 0.61. The RMSE for flood depth 
reached 0.14 m, H and C decreased to 0.80 and 0.73, respectively, 
whereas F increased to 0.06, indicating increasing difficulties in accu
rately capturing flood depth and spatial details.

The box plots in Fig. 5 provide a detailed comparison of the evalu
ation metrics between the LR inputs and the FLO-SR outputs across all 
scale factors, focusing on the resolution enhancement rates achieved by 
FLO-SR. As shown in Fig. 5 (a), FLO-SR significantly improved the PSNR 
values compared with the LR inputs at all scales. The resolution 
enhancement rates for the average PSNR were 68.65, 36.83, and 8.53 % 
at the 2, 4, and 8 × scales, respectively. FLO-SR achieved the greatest 
improvement at the 2 × scale, where the median PSNR reached 49.30 
dB, compared to 25.51 dB for LR inputs, demonstrating substantial 
enhancement in image quality. The resolution average enhancement 
rates for SSIM, which measures the structural similarity, were 7.37, 
13.92, and 13.73 % at the 2, 4, and 8 × scales, respectively. FLO-SR 
maintained consistently high SSIM values at lower scale factors, with 
medians of 1 and 0.97 at the 2 and 4 × scales, respectively, indicating 
superior preservation of structural integrity. However, at the 8 × scale, 
the SSIM decreased to a median of 0.71, reflecting a reduced ability to 
preserve fine structural details at higher magnifications. Distribution of 
RMSE for flood depth estimation, demonstrated a clear trend of 

increasing errors at higher scales. The average RMSE enhancement rates 
were 56.23, 32.35, and 10.70 % at the 2, 4, and 8 × scales, respectively. 
At the 2 × scale, FLO-SR achieved a median RMSE of 0 m, representing 
flawless depth reconstruction compared with the LR input. At the 4 ×
scale, the median RMSE increased slightly to 0.03 m, and at the 8 ×
scale, it increased to 0.11 m, reflecting the increasing difficulty in 
accurately estimating depth at coarser resolutions. Based on the reso
lution enhancement rates across all metrics, the 2 × scale factor 
demonstrated the most significant improvements, achieving near- 
perfect fidelity in terms of image quality, structural similarity, and 
flood depth estimation. The performance of FLO-SR gradually declined 
as the scale factor increased, but even at the 8 × scale, the reconstructed 
images and flood maps retained key spatial patterns and structural 
coherence.

In summary, Table 3 and Fig. 5 collectively highlight the robustness 
of FLO-SR in enhancing both the accuracy and consistency of SR 
reconstruction. At lower scale factors, FLO-SR preserves textural details, 
structural similarities, and flood extent accuracies, making it highly 
effective for urban flood analysis. Although the performance decreased 
slightly at higher scale factors, the reconstructed images and flood maps 
retained the core spatial patterns and structural integrity, demonstrating 
the applicability of the model across a range of multiple scaling factors.

3.1.2. Portland: Urban flood SR results
The Portland urban flood SR image measured 200 × 200 pixels, 

allowing for a more detailed SR analysis at the road level. A total of 300 
validation images were used for evaluation. Similar to the Houston 
event, the analysis focused on three key aspects. However, unlike in the 
Houston event, the LR input data for this scenario were generated using 
a physics-based hydrological simulation model, rather than bicubic 
upsampling. This approach was taken to provide a more realistic rep
resentation of the LR flood data and better reflect real-world conditions.

Fig. 6 provides a visual comparison of 1 m HR maximum flood depth 
images, LR simulation results, and SR images for each scale factors (4 
and 8 ×). As shown in the figure, the lower the scale factor, the more 

Fig. 5. Box plot comparing evaluation metrics of LR and SR performance at different scale factors for the Hurricane Harvey flood event: (a) PSNR; (b) SSIM; (c) 
RMSE; (d) H; (e) F; (f) C.
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accurately FLO-SR restored the detailed features within the flood 
boundary and flood extent. The 2 × scale results, which showed minimal 
visual difference from the HR images due to the relatively small spatial 
resolution gap (2 m → 1 m), can be found in the supplementary data
(Fig. S4). At the 4 × scale, the contours of the flooded roads, buildings, 
and other urban structures closely matched the original HR results, 
maintaining the integrity of the flood distribution. However, as the scale 
factor increased, the flood depth boundaries became increasingly blur
red, particularly at the 8 × scale, where the differences in the flooded 
area and boundary details compared with the HR ground truth became 
more pronounced. More Portland urban flood super-resolutions results 
can be found in supplementary data (Fig. S5 and S6).

Table 4 presents the averages of various indicators for 300 Portland 
validation images (physics-based hydrological simulation of LR input 
data). As shown in the previous example, the accuracy gradually 
decreased as the scale factor increased. The PSNR indicated a relatively 
high reconstruction quality ranging from 24.49 dB to 20.59 dB. Simi
larly, SSIM values decrease from 0.85 at the 2 × scale to 0.76 at the 4 ×
scale and to 0.69 at the 8 × scale, reflecting reduced structural accuracy 
at higher scale factors. The RMSE for the flood depth estimation 
increased with the scale factor, indicating that the accuracy decreased 
with decreasing resolution. Specifically, the RMSE increased from 0.06 
m at the 2 × scale, to 0.08 m at the 4 × scale, and finally to 0.10 m at the 
8 × scale. Binary classification metrics such as the H, F, and C showed a 

more significant decrease as the scale factor increased. The H decreased 
from 0.82 at the 2 × scale to 0.70 at the 8 × scale, indicating less ac
curacy in identifying flooded areas. The F remained low, slightly 
increasing from 0.01 at the 2 × scale to 0.02 at the 8 × scale. The C, 
which evaluates H and F combined, decreased to 0.78 at the 2 × scale, 
0.69 at the 4 × scale, and 0.64 at the 8 × scale, showing that although 
the composition characteristics of the input data varied, a trade-off 
occurred as the scale factor (2 to 8 × ) increases, as in the previous 
example.

Fig. 7 presents the accuracy metrics of the FLO-SR outputs in Port
land event compared to the LR physics-based simulations across 
different scale factors. Same as previous results, FLO-SR significantly 
improved the PSNR values compared with the LR inputs at all scales. The 
resolution enhancement rates for the average PSNR were 10.67, 19.03, 
and 31.83 % at the 2, 4, and 8 × scales, respectively. FLO-SR achieved 
the greatest improvement at the 2 × scale, where the median PSNR 
reached 24.59 dB, compared to 22.26 dB for LR inputs, demonstrating 
substantial enhancement in image quality. Similarly, the SSIM values 
measure the structural similarity between the reconstructed images and 
the HR ground truth. The resolution average enhancement rates for 
SSIM were 5.92, 16.55, and 33.77 % at the 2, 4, and 8 × scales. FLO-SR 
maintained consistently high SSIM values at lower scale factors, with 
medians of 0.86, 0.76 and 0.70 at the 2, 4 and 8 × scales. The average 
RMSE enhancement rates were 24.49, 33.75, and 44.11 % at the 2, 4, 
and 8 × scales. At the 2 × scale, FLO-SR achieved a median RMSE of 
0.06 m. At the 4 × scale, the median RMSE increased slightly to 0.08 m, 
and at the 8 × scale, it increased to 0.10 m. These results indicate that 
the FLO-SR performance is highly dependent on the scale factor, with 
lower scale factors allowing more accurate resolution enhancement and 
structural similarity preservation. In summary, the 2 × scale factor 
provided the highest accuracy improvement in both the image quality 
and flood mapping metrics, making it the most effective scale factor for 
urban flood analysis using FLO-SR.

Fig. 6. Portland urban flood SR results by scale factors: (a) 4 × scale factor; (b) 8 × scale factor.

Table 4 
Evaluation metrics for SR performance across different scale factors in the 
Portland urban flood event.

Scale factor PSNR (dB) SSIM RMSE (m) H F C

2 × 24.49 0.85 0.06 0.82 0.01 0.78
4 × 22.11 0.76 0.08 0.72 0.01 0.69
8 × 20.59 0.69 0.10 0.70 0.02 0.64
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As shown in the results, FLO-SR demonstrated strong potential in 
both scenarios. Although some flood information was blurred and some 
information was lost as the scale of super-resolution increased, the 
overall pixel accuracy and the evaluation results for flood depth and 
area were within a reliable range. FLO-SR achieved better performance 
with bicubic interpolation-generated LR images compared with physics- 
based modeled inputs. This can be attributed to the uniform and 
consistent nature of bicubic interpolation, which retains structural 
similarity to the original HR data. However, physics-based modeled data 
often introduce spatial artifacts, abrupt transitions, or noise due to hy
drodynamic simulation inaccuracies, parameter uncertainties, or non- 
uniform patterns of inundation. These challenges reduce the ability of 
the FLO-SR model to reconstruct fine-scale details accurately. Never
theless, physics-based modeling approaches are important for real- 
world applications, as LR flood maps are typically generated via fluid 
dynamics simulations to reflect real-world flood risk scenarios that 
capture complex urban flood processes and the interactions between 
rainfall, runoff, and infrastructure. Future work will focus on intro
ducing preprocessing techniques to mitigate the discontinuous inunda
tion patterns and spatial artifacts resulting from the grid size of physics- 
based modeled LR data, and on improving the robustness of FLO-SR to 
handle noise and inconsistencies in physics-based modeled data by 
expanding the training dataset to include a wider range of flood sce
narios. By addressing these challenges, FLO-SR can further enhance its 
utility in urban flood analysis and applications across a variety of data 
sources and operational contexts.

3.2. Configuration sensitivity and in-depth analysis

The sensitivity analysis focused on evaluating the impact of different 
LR image reconstruction methods on the performance of FLO-SR. The 
analysis aimed to quantitatively analyze the impact of the two ap
proaches for generating LR input images on the results of FLO-SR, and to 
investigate the performance and training time of FLO-SR as a function of 
the image size. This analysis was conducted specifically for the urban 

flood event in Portland.
The results in Figs. 8 and 9 show the sensitivity of FLO-SR to image 

size based on two distinct input data construction methods: bicubic 
interpolation (Fig. 8, Fig. S7) and physics-based modeling (Fig. 9, 
Fig. S8). Each evaluation index represents the average value of the 300 
Portland verification images. Input data generated using bicubic inter
polation (Fig. 8), FLO-SR showed consistent performance across a va
riety of metrics regardless of the image size and SR enlargement. Bicubic 
interpolation produce input images with well-defined spatial features 
and smooth gradients, thereby minimizing noise and abrupt transitions. 
These characteristics allowed FLO-SR to accurately reconstruct image 
quality, flood depth, and spatial patterns with minimal distortion, 
regardless of the image size or SR scale. In the case of input data 
generated using physics-based modeling (Fig. 9), similar to in that used 
in previous results, the average values tended to be slightly lower than 
those for bicubic interpolation for all image sizes and scales. To inves
tigate the loss in super-resolution performance when using physics- 
based model inputs instead of bicubic interpolation, we conducted a 
comparison at a fixed image size of 200 × 200 pixels. As the scale factor 
increased from 2 to 8×, PSNR decreased (by 7.13–27.50 %) and RMSE 
increased (by 25.0–66.67 %), reflecting a decline in reconstruction ac
curacy. C values showed smaller changes (a reduction of 0.14–16.13 %) 
but still indicated a mild decrease. A notable observation was the 
decrease in F with increasing image size at higher SR scales, such as 8 × . 
This phenomenon can be explained by larger image sizes providing 
additional spatial information, which may allow FLO-SR to better 
distinguish between flooded and non-flooded areas. Conversely, at 
reduced image sizes, the paucity of spatial detail may amplify the 
probability of misclassifications, particularly at magnifications where 
the reconstruction of finer-scale features becomes more challenging. For 
the results of various evaluation indicators by image size, refer to sup
plementary Fig. S9 and Fig. S10.

To better evaluate the accuracy of FLO-SR in reconstructing flood 
depths, scatter plots were created by systematically comparing pre
dicted depth values to their corresponding reference HR data (Figs. 10 

Fig. 7. Box plot comparing evaluation metrics of LR and SR performance at different scale factors for the Portland urban flood event: (a) PSNR; (b) SSIM; (c) RMSE; 
(d) H; (e) F; (f) C.

H. Choi et al.                                                                                                                                                                                                                                    Journal of Hydrology 661 (2025) 133529 

10 



and 11). Additional results at different locations are provided in the 
supplementary data (Fig. S9 and S10). This was achieved by imple
menting a color palette that converted pixel RGB values into normalized 
flood depth values, which were then used to quantitatively compare LR, 
SR, and HR images. This process involved creating a specified color 
palette, and normalizing the flood depth value range to an RGB color 
between 0 and 255. Each image was processed using this color palette to 
convert pixel colors to their corresponding flood depth values. In Fig. 10, 
the LR input exhibited significant scatter and variance along the diag
onal, reflecting the inaccuracy of the flood depth mapping. However, the 
FLO-SR output exhibits much denser clustering along the diagonal, 
indicating a higher level of accuracy in reconstructing the flood depth 
values. This trend was consistent across various input conditions, 
demonstrating the robustness of the FLO-SR framework for approxi
mating HR data.

In Fig. 11, the scatter plots illustrate the challenges associated with 
physically complex flood patterns. Additional results are shown in the 
supplementary data (Fig. S11). The LR inputs (4 and 8 m) exhibited 
discontinuous flood patterns and areas, as well as different maximum 
inundation depths, compared to the HR output (1 m) from the physics- 
based model. Although LR inputs struggled to capture these complex 
flood details, resulting in a larger spread in the scatter plots, FLO-SR 
successfully recovered most of the missing details, as evidenced by the 
improved alignment along the diagonal. The minor deviations observed 
in areas of extreme flood depth and the deviations due to missing flood 
spatial information in the input data highlight the necessity for further 
improvements in handling variable input data.

Pixel profiles were extracted along specific cross-sections of the flood 
depth maps, providing a detailed visualization of how each method 
captures spatial and depth variations in the flood patterns. This analysis 

Fig. 8. FLO-SR sensitivity to image size using bicubic interpolation for input data generation.
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visually demonstrates how FLO-SR bridges the pixel intensity gap be
tween LR and HR. In the context of image analysis, pixel intensity refers 
to the pixel values that represent specific characteristics depending on 
the image type. In this analysis, pixel intensity for brightness or lumi
nance was converted into a gray scale image and evaluated. Fig. 12
shows a pixel profile comparison between the HR, LR, and SR results for 
various cases. The HR profile serves as a reference, whereas the LR 
profile represents a coarser and less accurate input. The SR profile shows 
that FLO-SR reconstructs the flood depth with higher fidelity, bridging 
the pixel gap between LR and HR. Overall, the results show that SR 
restores the pixel intensity better than LR, but with increasing magni
fication. It was found that the model did not fully replicate the sharp 
transitions in the HR reference (implying high inundation depths in 
small areas). In particular, when LR inputs are used in physics-based 
models, they exhibit larger inconsistencies as the input information 

becomes increasingly sparse. This makes it difficult for FLO-SR to 
accurately interpolate depth changes, resulting in a smoother SR profile.

In summary, information loss issues arise depending on the method 
used to construct the input data, which has a significant impact on the 
performance and accuracy of the SR model. In this study, we confirmed 
that the input data generated from HR data by bicubic interpolation with 
a smooth gradient enables consistent reconstruction because the infor
mation loss is minimized. However, in actual situations, physical 
modeling using HR information (e.g., DEM or DSM, land cover) requires 
extensive calculation time and computing resources. Therefore, appli
cation of the existing SR methodology, which generates an LR input by 
applying bicubic interpolation to the results of an HR physical model, 
has clear limitations. However, as a result of applying SR to the physical 
model results using LR input in this study, it was possible to reconstruct 
the inundation depth and area within a reliable range. From a broader 

Fig. 9. FLO-SR sensitivity to image size using physics-based model for input data generation.
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perspective, this model represents an important advance in flood 
modeling, as it allows the efficient generation of HR flood depth maps 
from LR data. However, similar to existing deep learning-based models, 
SR models are highly dependent on learned patterns, which means that 
they perform best when the input data is clean and representative of the 
target output. Therefore, future studies could focus on improving the 
robustness of the model by reducing the grid like noise in the input 
image, preprocessing techniques such as artifact correction, or inte
grating multi-physics information.

3.3. Analysis of FLO-SR computational efficiency

In urban flood modeling that deals with large data sets, assessing 
computational efficiency is important. It is well-known that for any type 
of model, the greater the amount of data and information, the longer is 
the runtime. In this section, we analyze the computational efficiency of 
the SR model according to the size (number of pixels) of the input image 
and the scale of SR, and evaluate the computational efficiency compared 
to the physics-based model.

Fig. 13 illustrates the relationship between the computational effi
ciency and image size of FLO-SR, showing the correlation between the 
image size and training time at different SR scale factors. The compu
tational efficiency depends on the image size and scale factor, and as the 
image size increases, the training time increases exponentially. When 
the image size was gradually increased from 160 × 160 to 280 × 280, 

the calculation time increased by 1.33 times on average, requiring 
approximately 33 % additional calculation time. The computational 
efficiency of FLO-SR varied at different magnifications (2, 4, and 8 ×). 
For example, the average training time at each scale was 2,616, 1,163, 
and 864 s for the 2, 4 and 8 × scales, respectively. The 2 × scale required 
124.8 % more calculation time than the 4 × scale and the 4 × scale 
required 34.6 % more calculation time than the 8 × scale. These results 
suggest that the image size and computational cost must be balanced for 
appropriate SR reconstruction performance while maintaining compu
tational efficiency.

To estimate the approximate speedup between the physics-based 
model and FLO-SR, runtimes for 2D physics-based flood simulations at 
various spatial resolutions were assessed for the 95 h historical event in 
the Portland area. The simulation was performed at resolution intervals 
of 1 m up to 2 m and at 2 m intervals from 2 to 8 m for the 95 h historical 
event in the Portland area. For physics-based modeling, the number of 
computational grid cells varied significantly with resolution, ranging 
from 9,009,045 grids at 1 m resolution to 2,252,235 grids at 2 m reso
lution, 563,065 grids at 4 m resolution, and 140,773 grids at 8 m res
olution. The reduction in the number of grid cells at coarser resolutions 
highlights the trade-off between computational cost and spatial accu
racy. In all resolution cases, the simulation used a time step of 0.1 s and 
applied the same open boundary conditions at the edge of the study area. 
The computational run times for each resolution are listed in Table 5. 
The proposed FLO-SR model has clear advantages over physics-based 

Fig. 10. Evaluation of water depth predictions across scale factors using bicubic and SR methods: (a–c) Comparison of HR, LR, and SR water depth maps for Portland 
at scale factors of 2, 4, and 8 ×; (d–f) Scatter plots comparing predicted SR water depth values against HR references, with RMSE values for LR and SR methods at 
each scale factor.
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hydrological models in terms of computational cost and scalability. For 
example, when simulating at 2 m resolution using the physical model, 
the computation requires 10.73 h with 96 CPUs. In contrast, an alter
native approach involves performing the simulation at a coarse 4 m 
resolution using the physical model, which requires 3.35 h with 48 
CPUs, and subsequently applying FLO-SR to reconstruct the 2 m reso
lution results. The FLO-SR model requires 0.59 h for training and 0.03 h 
for validation when using a single GPU. The total computation time for 
this approach was 3.97 h, representing a 63 % reduction in computa
tional time compared with directly running the physical model at 2 m 
resolution. Similarly, when targeting 4 m resolution, running the 
physical model at 8 m resolution (1.52 h) and applying FLO-SR (0.27 h 
for training, 0.03 h for validation) results in a total computation time of 
1.82 h, achieving a 45.7 % reduction compared with the directly 
simulation at 4 m resolution (3.35 h). These results highlight the effi
ciency of FLO-SR in reducing computational costs while maintaining HR 
flood predictions.

This significant reduction in computational costs highlights the po
tential of FLO-SR as an efficient alternative to HR flood simulations. By 
employing FLO-SR, high-fidelity flood predictions can be obtained while 
substantially decreasing the computational burden, making large-scale 
urban flood modeling more feasible and resource-efficient. This drastic 
reduction in computational cost makes FLO-SR particularly advanta
geous for time-sensitive applications such as real-time flood forecasting 
and urban planning. However, it is important to acknowledge the 

limitations of directly comparing the computation time of the FLO-SR 
and physics-based models. The methodologies employed by the two 
approaches differ fundamentally, as FLO-SR focuses on enhancing the 
resolution of existing flood maps using SR techniques, whereas physics- 
based models simulate flood dynamics from scratch based on complex 
hydrological and hydraulic processes. Therefore, the comparison did not 
reflect an entirely equivalent process. Instead, the computation time 
reported for the physical model represents the time required to generate 
the flood simulation results, which is indirectly compared to the FLO- 
SR’s time for super-resolving LR inputs. It is also important to note that 
FLO-SR relies on the availability of LR input data, which is typically 
generated by a physical model.

4. Discussion

4.1. Model performance and scale dependent limitations

Deep learning has been widely applied to enhance raster-based 
spatial resolution across various fields. In remote sensing, SR 
improved satellite imagery for land cover classification and water body 
detection (Li et al., 2023), while in climate modeling, CNN– and GAN- 
based methods enhanced precipitation and temperature maps (Cheng 
et al., 2020). Compared to satellite or climate data, flood dynamics 
exhibit rapid spatiotemporal changes, posing significant challenges for 
fine-scale hydrodynamic reconstruction. Overall, the FLO-SR results 

Fig. 11. Evaluation of water depth predictions across scale factors using physics-based hydrological simulation and SR methods: (a–c) Comparison of HR, LR, and SR 
water depth maps for Portland at scale factors of 2, 4, and 8 ×; (d–f) Scatter plots comparing predicted SR water depth values against HR references, with RMSE 
values for LR and SR methods at each scale factor.
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demonstrate deep learning-based SR technology can effectively improve 
the spatial details of LR flood simulations and generate HR outputs, 
aligning with the previous research (e.g. He et al., 2023; Yin et al., 
2024).

Our analysis reveals important insights about SR methodology 
through the comparative evaluation of the Houston and Portland cases. 
The controlled approach in Houston, where bicubic interpolation was 

used to generate LR inputs, effectively isolated the intrinsic limitations 
of the SR algorithm itself. This isolation allowed us to establish theo
retical performance boundaries of FLO-SR without the confounding 
variables present in operational settings. Conversely, the Portland case 
demonstrated additional challenges that emerge when applying SR to 
outputs from physics-based models at different resolutions, where each 
resolution produces inherently different hydrodynamic behaviors and 

Fig. 12. Pixel profile analysis of FLO-SR performance using bicubic interpolation and physics-based hydrological simulation for input data: (a–c) Comparison of HR, 
LR, and SR profiles for bicubic interpolated inputs at scale factors of 2, 4, and 8 ×; (d–f) Pixel intensity profile comparisons for physics-based model inputs, showing 
differences in reconstruction accuracy across scale factors.
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boundary interactions. While the physics-based approach offers greater 
operational relevance, our results indicate that understanding the 
baseline performance established through controlled evaluation pro
vides critical context for interpreting SR performance in complex urban 
flood modeling applications. This dual-approach evaluation becomes 
particularly valuable given the limited previous research on SR appli
cations in urban flood modeling.

Furthermore, the suitability of SR models in flood modeling may 
vary depending on spatial resolution, geographical characteristics, and 
hydrological conditions. For example, He et al. (2023) reported that the 
grid sizes ranging from 450 to 1,800 m were appropriate for down
scaling into a 30 m resolution on large scale SR flood modeling with a U- 
Net-based model. Yin et al. (2024) applied SR techniques to two- 
dimensional fluvial flood simulations of river inundation events using 
U-Net and GAN models. In their study, the LR grid size was defined as 
150 feet (45.72 m), while the HR grid size was set to 20 feet (6.096 m), 
resulting in the number of HR cells being approximately 56 times greater 
than that of LR cells. Although the study did not specify an optimal grid 
size for SR application, it demonstrated that the model performance 
tended to degrade as the input resolution became coarser, indicating the 
sensitivity of SR accuracy to input grid resolution. In contrast to previous 
studies that primarily addressed large-scale or fluvial flood scenarios, 
FLO-SR is specifically designed for urban flood modeling applications 
where finer spatial resolution is essential due to the complexity of built 
environments. Unlike He et al. (2023), who focused on rural watersheds 
with grid refinement from 450–1800 m to 30 m, and Yin et al. (2024), 
who demonstrated efficiency gains in fluvial flood simulations, FLO-SR 
aims to capture the intricate interactions of urban infrastructure, such as 
buildings and road networks, with flood dynamics at sub-10 m scales. 
While differences in datasets and evaluation protocols hinder direct 
metric-based comparisons between studies, FLO-SR shows strong capa
bilities in reconstructing high-resolution flood patterns in complex 

urban settings, particularly in areas where both pluvial and fluvial 
processes interact. In urban environments, the complex layout of 
buildings and roads can lead to significant prediction errors when using 
coarse grids. Therefore, for accurate urban flood prediction, SR should 
be applied at a finer grid scale. In the Portland domain, we downscaled 
urban flood simulation results, covering a range of resolutions from 40 
to 2 m, to a fine-scale 1 m resolution. However, the enhancement of SR 
was also found only up to an 8 × scaling factor. This limitation suggests a 
need for further strategies to improve SR performance at higher 
magnification levels. Although digital elevation models (DEMs), land 
cover data, and building footprints were not explicitly included as 
separate input channels in FLO-SR, these geospatial features were 
inherently embedded within the high-resolution simulation outputs 
used for model training, which were generated through physics-based 
hydraulic modeling. Consequently, the model was able to implicitly 
learn patterns associated with urban topography and infrastructure. To 
overcome the performance degradation observed at higher scaling fac
tors, future versions of FLO-SR could incorporate these geospatial 
datasets explicitly as additional input channels. By leveraging multi- 
channel architectures, the model may achieve more accurate re
constructions of complex urban flood dynamics, particularly in envi
ronments characterized by dense infrastructure and heterogeneous 
surface conditions. Furthermore, incorporating remote sensing data 
such as Synthetic Aperture Radar (SAR)-based flood maps may offer 
valuable complementary information, enhancing the model’s capability 
to generalize across diverse flooding scenarios. Recent studies have 
demonstrated that U-Net-based architectures can effectively handle SAR 
data for urban flood mapping by capturing complex spatial relationships 
and mitigating the effects of low resolution and speckle noise (Yadav 
et al., 2022; Zhao et al., 2022). U-Net’s encoder-decoder structure, 
combined with skip connections, enables the model to learn and retain 
both global context and local spatial details, which is crucial for accu
rately delineating flood extents influenced by complex topography and 
infrastructure (He et al., 2023; Yin et al., 2024). Building on these ad
vances, coupling multi-channel geospatial inputs, including SAR-based 
flood maps, with a U-Net structure may further improve FLO-SR’s 
ability to reconstruct fine-scale flood dynamics across heterogeneous 
urban environments.

4.2. Transferability, input uncertainty, and future directions

This section discusses the model’s transferability across domains, the 
uncertainties involved in flood super-resolution modeling, and future 

Fig. 13. Relationship between image size and FLO-SR training time across different scale factors.

Table 5 
Comparison of computation time between physics-based urban flood model and 
FLO-SR.

Spatial 
resolution

Physics-based model FLO-SR

Calculation 
time (hr)

No. 
CPU

Training 
time (hr)

Validation 
time (hr)

No. 
GPU

2 m 10.73 96 0.59 0.03 1
4 m 3.35 48 0.27 0.03 1
8 m 1.52 48 0.20 0.03 1
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directions for improving the generalizability and robustness of FLO-SR. 
Although developing a generalized structure of SR flood models is 
beyond the scope of this research, the model transferability remains an 
important issue for further improving the applicability of SR in urban 
flood modeling. While this study is based on a single historical flood 
event in each case study area, the training data were constructed to 
include diverse local inundation patterns through spatial sampling. This 
approach allowed the model to learn from varying flood dynamics, 
despite being limited to a single event. To evaluate its transferability, the 
model trained on the Hurricane Harvey flood event in Houston was 
validated on the Portland urban flood event, which exhibits different 
hydrological and geographical characteristics. Cross-validation results 
related to the model’s generalization are presented in the supplemental 
data. A marginal improvement was observed at a lower magnification 
(2 ×), but the SR output did not show clear enhancement at higher scales 
(4 and 8 ×) (Table S2, Fig. S12). These results suggest that while the 
model exhibits limited transferability under certain conditions, its 
generalization capability across distinct hydrological contexts remains a 
challenge. To address this, multi-event and multi-region training will be 
conducted in future research. Moreover, the model’s sensitivity to input 
characteristics was further evident when the model trained using LR 
data generated by bicubic interpolation was validated on the Portland 
dataset constructed from physics-based flood simulation results, where 
the SR performance further declined (Table S3, Fig. S13). In addition to 
training data diversity, the model’s performance is also affected by the 
configuration of its SR pipeline, particularly the preprocessing strategies 
applied to LR inputs. However, the qualitative analysis of the pre
processing strategies in SR is not well discussed in the existing literature. 
One possible approach is the use of adaptive downscaling methods, such 
as wavelet-based decomposition (Ren et al., 2017) and deep learning- 
based downscale method (Mayya et al., 2023). These methods can 
minimize the loss of key physical information while refining low- 
resolution input images. Even in super-resolution models, including 
these techniques in the preprocessing process may reduce noise and 
improve grid patterns. Additionally, by leveraging multi-modal data 
fusion, FLO-SR could integrate additional hydrological variables, such as 
soil moisture or land use, to enhance flood prediction accuracy. These 
preprocessing advancements would not only improve super-resolution 
fidelity but also expand FLO-SR’s scalability for real-time applications. 
Future research can explore more advanced AI-driven preprocessing 
techniques and hybrid modeling approaches to further bridge the gap 
between physics-based and deep learning based super-resolution flood 
simulations.

5. Conclusion

In this study, a deep learning-based urban flood SR model (FLO-SR) 
was presented to improve the output of grid-based flood analysis models 
driven by physical processes. This model was evaluated for two flood 
events in two different geographical regions, Houston, Texas, and 
Portland, Oregon, with a focus on analyzing the performance and sta
bility at different spatial resolutions. FLO-SR’s performance was 
assessed using image pixel reconstruction, maximum flood depth pre
diction, and flood area similarity metrics. Based on the results, the 
following conclusions can be drawn: 

1. Comparison of bicubic interpolation and physics-based modeling 
approaches: FLO-SR demonstrated superior performance when 
trained with bicubic interpolated low-resolution data, achieving 
consistent structural fidelity and computational efficiency. However, 
performance declined when physics-based low-resolution flood 
simulation inputs were used, due to spatial inconsistencies and hy
drodynamic complexities inherent in physically modeled data. Spe
cifically, when compared to bicubic interpolation, FLO-SR showed 
performance reductions characterized by a 7.13–27.50 % decrease in 
PSNR, a 0.14–16.13 % decrease in C, and a 25.0–66.67 % increase in 

RMSE, reflecting greater reconstruction error. Nevertheless, FLO-SR 
still significantly enhanced coarse resolution simulations, demon
strating its capability to effectively capture key flood patterns and 
improve flood depth reconstruction accuracy. These results empha
size both the computational efficiency benefits and the practical 
limitations of applying SR to physically modeled flood simulations, 
highlighting its potential for enhancing real-time flood modeling 
applications.

2. Performance of FLO-SR at different resolutions: FLO-SR exhibited the 
highest accuracy at lower scale factors (2 and 4 ×), with substantial 
improvements in PSNR, SSIM, RMSE, and flood extent classification 
metrics (H, F, and C). At higher magnifications (8 ×), performance 
declined due to the increased difficulty in reconstructing fine-scale 
flood dynamics, particularly for physics-based input data. These re
sults suggest that FLO-SR is most effective when applied at moderate 
scale factors to balance resolution enhancement and accuracy.

3. Balance between computational efficiency and accuracy: Compared 
to conventional physics-based hydrodynamic models, FLO-SR 
significantly reduced computation time by up to 63 % when down
scaling from 4 to 2 m resolution and 45.7 % when downscaling from 
8 to 4 m resolution. This efficiency makes FLO-SR a viable tool for 
large-scale urban flood modeling and real-time applications. How
ever, the model’s dependence on input data quality highlights the 
need for further optimization, particularly when working with 
physics-based low-resolution inputs.

These findings demonstrate that FLO-SR effectively enhances urban 
flood simulations while maintaining computational efficiency. Future 
research should focus on improving its transferability by integrating 
additional hydrodynamic constraints and exploring adaptive learning 
techniques for varying flood conditions.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jhydrol.2025.133529.

Data availability

The Hurricane Harvey flood simulation datasets used in this study 
are available in the ’data’ folder (Houston.zip) of the FLO-SR GitHub 
repository (https://github.com/cyber-hydrology/FLO-SR-flood-super- 
resolution-model/tree/main). This includes the Houston HR data at 10 
m resolution and LR data at 20 m, 40 m, and 80 m resolutions. The 
Portland urban flood datasets, including HR data at 1 m resolution and 
LR data at 2 m, 4 m, and 8 m resolutions, are available upon request to 
the corresponding author. The source code for implementing the FLO-SR 
model is available in the ’code’ folder of the FLO-SR GitHub repository 
(https://github.com/cyber-hydrology/FLO-SR-flood-super-resolution- 
model/tree/main).
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