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A P P L I E D  S C I E N C E S  A N D  E N G I N E E R I N G

Machine reading and recovery of colors for 
hemoglobin-related bioassays and bioimaging
Sang Mok Park1, Semin Kwon1, Yuhyun Ji1, Haripriya Sakthivel1, Jung Woo Leem1, Yunsang Kwak2, 
Jonathan Huang1,3, George T.-C. Chiu4, Andrew R. O’Brien3,5, Raymond L. Konger5,6,7,8,  
Ying Wang3,9, Young L. Kim1,8,10,11*

Despite advances in machine learning and computer vision for biomedical imaging, machine reading and learn-
ing of colors remain underexplored. Color consistency in computer vision, color constancy in human perception, 
and color accuracy in biomedical imaging are intertwined, complicating digital color–based diagnostics. Existing 
color reference charts and correction algorithms are inadequate for mobile health (mHealth) and telemedicine 
in digital health applications where detecting subtle color changes is critical. We present a machine reading and 
learning platform for color recognition and quantification to extract diagnostic information from colors. A unique 
combination of spectroscopic gamut determination, reference color optimization, nonsubjective quantification 
metrics, and neural network–based color recovery retrieves absolute colors of biological tissue. Studies on in-
flammation bioimaging of photocarcinogenesis and mHealth blood hemoglobin assessment demonstrate accuracy 
and precision in color recovery across diverse acquisition scenarios. The reported framework overcomes limitations 
of conventional colorimetric detection, enabling machine-compatible color-based bioassays and bioimaging, 
advancing digital diagnostics.

INTRODUCTION
Recent advances in machine learning for computer vision in bio-
medical imaging have focused on spatial analyses and feature extrac-
tion (1–3), often disregarding the valuable information conveyed by 
intrinsic colors. As a result, there remains a critical need for machine 
learning of colors in biomedical imaging. Color recognition and 
quantification in biomedical imaging including photography are 
complex, involving both acquisition and display (4, 5). As an emerg-
ing bioimaging modality, smartphone imaging using onboard cam-
eras is becoming increasingly important in mobile health (mHealth) 
and telemedicine applications where accurate and precise color de-
tection plays a crucial role (6–9). “Color consistency” in computer 
vision, “color constancy” in human perception, and “color accuracy” 
in biomedical imaging are distinct yet interrelated aspects of color 
science. Specifically, color consistency is crucial for color correction 
and reproduction in computer vision (10). Color constancy is a well-
established field in human color perception that primarily aims to 
achieve identical perceptual responses (11–13). Color accuracy in 
biomedical imaging encompasses both the detection and reproduc-
tion of exact colors with the potential for accurate and precise digital 
diagnostics (4, 5).

To achieve machine-favorable color recognition and quantifica-
tion, it is essential to overcome the limitations associated with con-
ventional colorimetric detection, which are inherently rooted in 
human color perception (14). Machine readability of colors of a 
sample in a photo is influenced by multiple factors, including de-
vices (e.g., sensors and optics), light conditions (e.g., natural or arti-
ficial lighting), image file formats, color balance algorithms (e.g., white 
balancing), and color correction methods. These complexities result 
in substantial color variations in photos despite using an identical 
sample. Metamerism can also occur when two samples with different 
spectral profiles yield identical digital color values under specific 
light conditions. For machine-readable color quantification and recog-
nition, the absolute colors of the sample must be standardized and 
recovered without being affected by physical acquisition conditions. 
Bias introduced by human vision and color perception also needs to 
be factored out to enable automated diagnostics and minimize reli-
ance on healthcare professionals.

For color correction, calibration, or reproduction, several color 
standards or reference charts (e.g., Macbeth ColorChecker, X-Rite 
ColorChecker, Pantone Color Match Card, Spyder Checkr Photo, 
IFRAO, and IT8) have been developed (15). Historically, Chevreul 
Cercle Chromatique, published in 1861, is one of the oldest known 
color charts (16), and Macbeth ColorChecker is currently the most 
commonly used (15, 17). Dating back to the Late Middle Ages (1300 
to 1500), urine wheels and uroscopy charts represent the earliest 
examples of diagnostic color reference charts (18, 19). Conventional 
color charts or a few customized colors are frequently used to im-
prove colorimetric diagnostics (20–28) (table S1), including cancer 
(29–32), wounds (33–35), diabetes (36, 37), erythema (38), skin 
injuries (39), autoimmune diseases (40), and jaundice (41, 42). 
Bioassay-relevant reference colors can enhance paper-based immuno-
assays such as pH strips (43, 44), urinalysis (45), peroxide strips 
(46), and hemoglobin (Hgb) strips (47). Even simple conventional 
color charts can benefit remote patient monitoring and telemedicine 
settings (27, 48, 49).
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However, the existing color correction methods are inadequate 
for machine-readable and nonsubjective diagnostic purposes. First, 
it is theoretically impossible to achieve accurate and precise color 
detection across all diverse colors using a single universal color 
gamut (25, 50–52). Although an application-specific color gamut 
tailored to diagnostic needs is essential, identifying relevant yet 
subtle color derivatives can be challenging, requiring extensive 
spectroscopic measurements and analyses. Second, undersam-
pling the reference colors in conventional color charts fundamentally 
compromises the fidelity of color correction (53–57). Color correc-
tion and calibration computations with a limited number of refer-
ence colors are susceptible to random and systematic errors (e.g., 
Gaussian, impulse, photon, and speckle noise) in various photo acqui-
sitions (58–61). Machine learning approaches leveraging more refer-
ence colors can outperform conventional color correction methods 
(58, 61). Third, typical regression-based color corrections (also known 
as lookup table and interpolation) (62) in computer vision require 
manual and scene/sample-specific fine-tuning, making automated 
color quantification challenging (53, 56, 60, 63).

We introduce machine reading and learning platforms for color 
recognition and quantification, aimed at color-based diagnostic ap-
plications in bioassays and bioimaging to address the inherent limi-
tations of conventional color corrections. Our work consists of four 
main components: designing color reference charts, selecting quan-
tification metrics (both perception-based and objective measures), 
developing neural network–based color recovery algorithms, and 
validating our methods through experimental studies. First, a color 
gamut determined through spectroscopic analyses allows the design 
of reference colors optimized for machine readability of biological 
tissue. Second, the color space, illuminant, and quantification met-
rics are tailored for color-based diagnostic bioimaging and bioassay 
applications. Third, machine learning algorithms (statistical regres-
sion and neural networks) for digital color recovery enable fully auto-
mated and high-fidelity color quantification across diverse photo 
acquisition settings. Last, the proposed platform is demonstrated 
through extensive comparisons with conventional color corrections, 
including experimental animal imaging of skin cancer–related in-
flammation and noninvasive mHealth assessments of blood Hgb 
levels from peripheral tissue. As the recovered color values serve as 
frontend inputs to application-specific models, the experimental 
evaluations focus on comparing model performance among different 
color corrections.

RESULTS
Diverse photo acquisitions related to devices, light 
conditions, and file formats
Diverse photo acquisition scenarios present an inherent challenge 
for accurate and precise color reading and learning in color-based 
diagnostic bioassays and bioimaging (see note S1 and Fig. 1). From 
an illumination standpoint, different types of white light sources have 
distinct spectral profiles despite their grossly white-appearing features 
(Fig. 1, A and B, and fig. S1). Such diverse spectral characteristics of 
light sources fundamentally limit white balancing (also known as 
computational color constancy), making it challenging to achieve 
exposure invariance (Fig. 1C and movie S1) (64). From a device 
standpoint, a digital trichromatic camera (three-color image sensor) 
has unique red-green-blue (RGB) spectral response functions (also 
known as spectral sensitivity) as a function of the wavelength of 

light λ (Fig. 1D). Notably, the RGB spectral responses of smartphone 
cameras exhibit model-specific variations (fig. S2) (65–68), resulting 
in device-dependent RGB color values (Fig. 1E). From a file format 
standpoint, the degree of color compression is substantially influ-
enced by the image file format (Fig. 1F) (64). JPEG, the most common 
8-bit depth format, uses lossy compression to reduce the file size, 
whereas RAW (10-bit depth, also known as DNG) minimizes data 
compression and rendering. Recent high-end smartphones provide 
Pro Mode or ProRAW for 10-bit depth in each RGB channel. In 
telemedicine settings (Fig. 1F), two-way video conferencing be-
tween a health care provider and a patient introduces additional file 
formats (e.g., MP4). When photos of the same sample are captured 
under various photo acquisition scenarios (Fig. 1G), recovered color 
values must converge to the ground truth values, provided that color 
recovery is performed accurately and precisely.

Color gamut of conventional color reference and 
calibration charts
Because of the absence of universal color canonicalization at the device 
level, conventional color corrections rely on physical color standards 
or reference charts. Specifically, a color chart is used to establish a 
mapping between the measured and ground truth color values by 
analyzing how the chart’s colors appear in the captured photo. This 
mapping is then applied to adjust the color values in the area of in-
terest or across the entire photo. The fundamental limitation of the 
conventional color charts is their overly general and nonspecific 
color gamuts; a broad range of reference colors is selected for gen-
eral photography (25, 50, 51, 69). As the most commonly used color 
chart, Macbeth ColorChecker (or X-Rite ColorChecker) consists of 
reference colors that cover the sRGB color space, one of the largest 
color gamuts (Fig. 2A) (15, 17). Figure 2 (B to D) shows the broad 
range of International Commission on Illumination (CIE) XYZ val-
ues of the reference colors in Macbeth ColorChecker, measured us-
ing a scientific laboratory spectrometer (see note S1 and fig. S3). 
Using a diffuse (Lambertian) reflectance standard with 99% reflec-
tivity across the entire visible range, spectral normalization is equiv-
alent to using CIE standard illuminant E (equal energy radiator), 
resulting in a flat spectral profile of illumination (see Materials and 
Methods). In addition, the CIE L* values (lightness) of the reference 
colors are within the broad range of 10 to 100 in the CIE LAB color 
space (Fig. 2D).

Definition of blood Hgb gamut from physiologically 
possible spectra
We identify a physiologically relevant color gamut of biological tissue 
for peripheral perfusion and blood Hgb. Hgb is one of the most 
dominant chromophores in biological tissue including the skin 
(70, 71). It is a vital protein in red blood cells responsible for oxygen 
transport and is associated with various medical conditions, diseases, 
and disorders beyond hematology. A spectral database augmented by 
parametric spectral modeling (see Materials and Methods) allows 
us to define the gamut relevant to blood Hgb and peripheral perfu-
sion, accounting for light scattering (Rayleigh and Mie) and absorp-
tion in biological tissue (Table 1). A physiologically plausible range 
of blood Hgb–related color variations is determined by using 10,000 
spectral data from whole blood and 12,240 spectral data from pe-
ripheral tissue (see Materials and Methods, note S1, and Fig. 2, E to 
I). Figure 2G reveals a unique triangular gamut defined by three pri-
mary points of CIE xy chromaticity: 

(
x, y

)
= (0.30, 0.31) , (0.47, 0.42) , 
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and (0.63, 0.33) . This gamut has CIE L* values (lightness) within a 
range of 40 to 90 (Fig. 2I). The Hgb gamut is much narrower than 
the sRGB color gamut corresponding to Macbeth ColorChecker 
(Fig. 2G). The Hgb gamut encompasses a gamut that captures the 
largest library of human skin colors and tones (i.e., Pantone SkinTone 
Guide), influenced by melanin content (fig. S4). Note that Pantone 
SkinTone Guide includes the widely recognized skin tone scales: 
Fitzpatrick Scale and Monk Skin Tone Scale (72).

Selection of color space, illuminant, and 
quantification metric
Unlike conventional colorimetric diagnostics, the machine read-
ability of colors should not be influenced by human color perception 
or variations in photo acquisition conditions. First, the use of CIE 
illuminant E allows us to define the absolute colors of a sample of 
interest. While CIE illuminant E is regarded as a theoretical refer-
ence, spectral normalization involving a reflectance standard can be 

Fig. 1. Challenges in computer color vision for color-based diagnostic bioassays and bioimaging. (A) Detrimental color variations in digital photos of biological tis-
sue captured under various white-light illumination conditions: light-emitting diodes (LEDs) with color temperature of 3000, 4300, and 5800 K, as well as fluorescent tube 
light. The colors under CIE illuminant E (equal energy radiator or spectrally uniform illumination) can be considered absolute. CIE illuminant E is achieved through spectral 
normalization using a diffuse (Lambertian) reflectance standard (see Materials and Methods). (B) Light conditions having distinct spectral profiles: fluorescent tube, incan-
descent light, white LED, and sunlight (fig. S1). (C) Representative photos of whole blood–mimicking samples in cuvettes at different hemoglobin (Hgb) concentrations, 
acquired under various light conditions. A conventional color chart (Macbeth ColorChecker or X-Rite ColorChecker) is juxtaposed with the samples. (D) Smartphone 
model–dependent RGB spectral response functions (also known as spectral sensitivity): Apple iPhone 12 Pro, Apple iPhone SE, Samsung Galaxy S21, and Samsung Galaxy 
A52 (fig. S2). (E) Representative photos captured using various smartphone models. (F) File formats with different bit depths (color depths) in the R, G, and B color chan-
nels: JPEG (8-bit depth), RAW (10-bit depth), and MP4 (8-bit depth). (G) Representative photo acquisition scenarios based on combinations of light conditions (B), smart-
phone models (D), and file formats (F). When multiple photos of the same sample are captured under varying conditions, accurate and precise color recovery ensures that 
recovered color values converge to the ground truth.
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used to factor out the spectral response of the illumination and system, 
which is equivalent to using CIE illuminant E (see Materials and 
Methods). Second, the CIE XYZ color space is machine-preferred for 
describing the direct relationship between reflectance spectra and 
the three color responses (color matching functions) (73–75). Al-
though the L* component in the CIE LAB color space is beneficial 

for matching the human perception of lightness, this color space 
includes normalization terms for a white reference illuminant and 
uses nonlinear relationships for L*, a*, and b*. Third, the CIE XYZ 
Euclidean distance allows for the nonsubjective, machine-preferred 
quantification of color differences (or distances) between two adja-
cent colors. Although Delta E serves as the conventional metric for 

Fig. 2. Color gamut of blood Hgb and peripheral tissue perfusion and color quantification metrics for machine readability and learning. (A) Macbeth Color-
Checker containing 24 reference colors used for general photography. (B) Corresponding CIE xy chromaticity values under CIE illuminant E, measured using a spectrom-
eter and a reflectance standard. The wide gamut of Macbeth ColorChecker overlaps with the sRGB color space. (C) Corresponding CIE LAB values under CIE illuminant 
E on the a* and b* axes. (D) Corresponding L* values as functions of a* and b* values. (E and F) Parametric spectral modeling of biological tissue (peripheral tissue and 
blood samples). Physiologically possible color variations are captured by 12,240 synthesized spectral data of peripheral tissue (E) and 10,000 synthesized spectral data 
of whole blood (F) (see Materials and Methods). (G) Blood Hgb gamut defined by three primary points of CIE xy chromaticity: (x, y) = (0.30, 0.31) , (0.47, 0.42) , and 
(0.63, 0.33) . (H) Corresponding CIE LAB values on the a* and b* axes. (I) Corresponding L* values as functions of a* and b* values. (J and K) Importance of CIE XYZ 
Euclidean distance metric for machine readability and learning in color-based diagnostics, compared to Delta E values including CIE94 ( ΔE∗

94
 ) and CIEDE2000 ( ΔE∗

00
 ). 

Eleven representative colors are selected from the Hgb gamut, with equal CIE XYZ Euclidean distances between all pairs of adjacent colors. Delta E values incorporate 
human visual judgment and perception.
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color differences, it reflects human visual judgment and color per-
ception (76–79), which introduce unintended weighting effects that 
hinder machine readability.

Figure 2 (J and K) supports the selection of color space, distance, 
and illuminant for calculating color differences between two adjacent 
colors within the Hgb gamut. Eleven Hgb-related colors are generated 
for evaluation with evenly spaced CIE XYZ and CIE xy chromaticity 
values within the Hgb gamut (Fig. 2J). The color differences between 
all pairs of adjacent colors are then calculated by three distinct color 
metrics: CIE XYZ Euclidean distance, CIE94 ( ΔE∗

94
 ), and CIEDE2000 

( ΔE∗
00

 ). Although the combined use of the three metrics provides 
more comprehensive and reliable quantification, the Delta E values 
(CIE94 and CIEDE2000) clearly introduce nonlinearities due to 
perceptual uniformity despite the same CIE XYZ Euclidean distance 
(Fig. 2K). The CIE XYZ Euclidean distance under CIE illuminant 
E is the most suitable metric for quantifying color differences com-
pared to reference colors in color-based diagnostic bioimaging and 
bioassay applications. In other words, colorimetric diagnostics based 
on human perception are fundamentally not applicable to machine-
readable color-based diagnostics.

Design of Hgb gamut–based color charts and neural 
network–based color recovery
On the basis of the defined Hgb gamut (Fig. 2, G to I), we design a 
color chart (hereafter referred to as HemaChrome) for color recov-
ery of blood Hgb and peripheral perfusion (Fig. 3, A to E). Hema-
Chrome includes 116 reference colors: 100 Hgb-related colors, 12 
primary colors, and four grayscale colors (Fig. 3, B to E, and figs. S5 
and S6). The primary colors, along with grayscale colors (fig. S6, A 
to C), are included to stably interpolate color outliers outside the 
Hgb gamut and compute the spectral response functions of the 
smartphone camera (65–68). All Hgb-related reference colors in 
HemaChrome are selected within the Hgb gamut with CIE xy chro-
maticity and CIE L* values (lightness) uniformly distributed inside 
it (fig. S7, A to C). The CIE XYZ values of 116 reference colors in 
HemaChrome are converted to sRGB to ensure accurate color rep-
resentation, resulting in the final chart design in Adobe InDesign 
(Fig. 3B). To ensure the accessibility, practicality, and scalability, He-
maChrome charts are printed using a commercially available inkjet 
printer (imagePROGRAF PRO-1000, Canon) with manufacturer-
recommended printing calibration (see Materials and Methods). 
The printing reproducibility and color fade resistance (minimum 
shelf-life with sunlight exposure) of HemaChrome further support 
its practicality and scalability (see note S2).

On the basis of HemaChrome, we develop a neural network al-
gorithm for fully automated and high-fidelity color recovery under 

diverse acquisition scenarios (see Materials and Methods). The neu-
ral network is designed to overcome the intrinsic limitation of con-
ventional regression-based color corrections (also known as lookup 
table and interpolation). The primary drawback of regression-based 
color corrections using Macbeth ColorChecker (see Materials and 
Methods) is their lack of generalizability. Beyond linear color cor-
rection (Eq. 9), a unique set of higher-degree RGB polynomial (or 
root-polynomial) expansion terms in Eq. 10 is frequently incorpo-
rated (56, 63) but is highly scene- and sample-specific, depending 
on various photo acquisition conditions (53, 56, 60, 62, 63). Conse-
quently, an appropriate set of polynomial expansions (Eq. 10) must 
be selected manually and empirically for each photo acquisition.

Figure 3A illustrates the concept of color recovery using a neural 
network with HemaChrome. The neural network is not pretrained 
on any existing dataset. It is specifically trained for each photo, where 
the HemaChrome chart is juxtaposed with the sample of interest. 
The training dataset consists of the color values of the reference col-
ors in HemaChrome. The input is the acquired RGB values of these 
reference colors in the given photo, while the output is the correspond-
ing CIE XYZ values measured by a spectrometer under CIE illuminant 
E. Once the neural network is trained for a particular photo, the 
RGB values acquired from the sample of interest in the photo are 
input into the trained network, which then outputs the correspond-
ing CIE XYZ values. In this respect, the neural network–based color 
recovery algorithm is referred to as “one-shot transduction” learning 
(as opposed to inductive learning) because the training is scene- and 
sample-specific (80).

The 116 reference colors in HemaChrome represent an optimal 
selection based on physical size constraints and neural network re-
quirements (see note S3, fig. S8, and eqs. S1 to S4), serving as the 
training dataset for the neural network–based color recovery algo-
rithm. Because of the relatively small amount of training data, the 
network is concise with three layers: an input layer, a hidden layer, 
and an output layer. Sigmoid activation functions are used as they 
are highly suitable for shallow networks, supported by the universal 
approximation theory (81, 82). The hidden layer mimics a wide 
range of possible terms of RGB polynomial (root-polynomial) ex-
pansions in Eq. 10, eliminating the need for manual selection of 
appropriate expansion terms. Thus, this color recovery algorithm 
design is analogous to physics-informed deep learning or physics-
driven machine learning (83–85).

Figure 3 (F to J) shows Macbeth ColorChecker and HemaChrome 
(116 reference colors) with regression-based color correction and 
HemaChrome with neural network–based color recovery. The eight 
Hgb scale patches in Tallquist Haemoglobin Scale (equivalent to 
World Health Organization Haemoglobin Colour Scale) are used as 

Table 1. Physiologically relevant ranges of model parameters in spectral modeling of peripheral tissue perfusion and blood Hgb samples for 
tissue colors. 

Parameter Parameter description Relevant range

  a1   Scattering slope −0.5–2

  a2   Optical path length ⋅ blood volume fraction 0.02–0.1 (mm)

  a3   Effective blood vessel diameter 18–70 (μm)

  a4   Blood Hgb level 4–20 (g dl−1)

  a5   Blood oxygen saturation 50–100 (%)
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Fig. 3. Importance of color gamuts and computational algorithms on color correction performance. (A) One-shot transduction learning of neural network–based color 
recovery with HemaChrome. The neural network is trained for each photo without relying on any preexisting training dataset. The training dataset consists of the color values of 
the reference colors in HemaChrome. Once trained on the specific photo, the network processes the RGB values acquired from the sample of interest in the photo to recover the 
corresponding CIE XYZ values. (B) HemaChrome chart with 116 reference colors for neural network–based color recovery. (C) Corresponding CIE xy chromaticity values under 
CIE illuminant E, measured using a spectrometer and a reflectance standard. (D) Corresponding CIE LAB values under CIE illuminant E on the a* and b* axes. (E) Corresponding 
L* values as functions of a* and b* values. (F) Representative photo of blood Hgb–mimicking samples to recover their absolute colors (under CIE illuminant E). (G to J) Average 
color differences between the ground truth and recovered CIE XYZ values for each test sample from photos captured across 36 diverse photo acquisition scenarios (Fig. 1G). The 
root mean square error (RMSE) (G), root mean square relative error (RMSRE) (H), average CIE94 ( ΔE∗

94
 ) (I), and average CIEDE2000 ( ΔE∗

00
 ) (J) are compared (eqs. S1, S2, S6, and S7). 

Among the three color correction methods, neural network color recovery using HemaChrome consistently returns minimal errors across all test samples.
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blood Hgb mimicking test samples. The ground truth CIE XYZ values 
under CIE illuminant E of these patches are calculated from spectral 
measurements (Fig. 3F). We analyze photos of the same samples ac-
quired under 36 photo acquisition scenarios (Fig. 1G and fig. S9) 
and recover the absolute colors of the test samples. The CIE XYZ 
Euclidean distances (eq. S5) between the ground truth and recovered 
CIE XYZ values are calculated for each sample under diverse acqui-
sition scenarios. Regression-based color corrections show high fluc-
tuations in CIE XYZ Euclidean distance, depending on the type of 
polynomial expansions (figs. S10 and S11). For simplicity, linear 
color correction (Eq. 9) is used to ensure fair comparisons between 
Macbeth ColorChecker and HemaChrome. Figure 3 (G to J) shows 
the average color differences (table S2), calculated using four dis-
tinct metrics (eqs. S1, S2, S6, and S7): the root mean square error 
(RMSE), root mean square relative error (RMSRE), average CIE94 
( ΔE∗

94
 ), and average CIEDE2000 ( ΔE∗

00
 ). HemaChrome using the 

neural network algorithm consistently returns the lowest color dif-
ferences across all four metrics (Fig. 3, G to J, and fig. S12), outper-
forming the regression-based color corrections. In addition, the 
reported color recovery is relatively unaffected by smartphone camera 
imperfections (e.g., out-of-focusing, lens contamination, and vignett-
ing) (fig. S13) due to the analyses in the color domain rather than the 
spatial domain.

Machine readability using self-test samples in Tallquist 
Haemoglobin Scale
We evaluate the machine color readability and quantification using 
the reference Hgb scale patches in Tallquist Haemoglobin Scale 
(47, 86–88). The original intended use of Tallquist Haemoglobin 
Scale involves juxtaposing a drop of blood smeared onto filter paper 
for diagnosing anemia. However, it has inherent limitations; the color 
of the capillary blood sample on the filter paper is influenced by the 
blood sample volume, the filter paper properties, and the subjective 
nature of color comparisons (87). In our study, Tallquist Haemoglo-
bin Scale serves as an excellent test sample due to its numerical Hgb 
values. The scale consists of eight Hgb patches ranging from lighter 
to darker shades, corresponding to blood Hgb levels of 4.7, 6.3, 7.8, 
9.4, 10.9, 12.5, 14.1, and 15.6 g dl−1 (Fig. 4, A to D). For direct nu-
merical machine readings of Hgb values, a blood Hgb level is modeled 
as a univariate polynomial function of the CIE X, Y, and Z values 
under CIE illuminant E: γ0 + γ1X + γ2Y + γ3Z + ⋯ + γ3nZ

n , where 
γ0 to γ3n are the coefficients and the polynomial order n is up to six 
(see note S4). In other words, the recovered CIE XYZ values of the 
eight Hgb scale patches under specific photo acquisition conditions 
serve as the frontend input to return blood Hgb levels. The machine 
readability of the eight Hgb scale patches is then compared between 
neural network color recovery (HemaChrome) and adaptive regres-
sion color correction (Macbeth ColorChecker equivalent; fig. S6, A 
to C). Adaptive regression color correction involves selecting a specific 
set of polynomial expansions that returns the smallest error among the 
five types of expansion terms (Eq. 10) for a particular sample under a 
specific acquisition scenario (see note S3).

We calculate the color differences between the Hgb scale patch of 
9.4 g dl−1 (used as a representative self-test sample) and other Hgb 
scale patches (Fig. 4, E and F), following color corrections with He-
maChrome and Macbeth ColorChecker. HemaChrome consistently 
identifies the correct and closest Hgb scale patch (Fig. 4E), whereas 
Macbeth ColorChecker fails to detect subtle color differences (Fig. 4F). 
In Fig. 4G, the blood Hgb levels computed using HemaChrome 

closely match the actual Hgb values of the eight Hgb scale patches, 
as recovered from photos captured across diverse photo acquisition 
scenarios (Fig. 1G). This consistency is further demonstrated by 
minimal standard deviations (SDs) (table S3). In contrast, the blood 
Hgb levels computed using Macbeth ColorChecker show notable 
variations (Fig. 4H and table S4) despite adaptive regression color 
correction selecting the optimal set of polynomial expansion terms 
in Eq. 10 to minimize error. Notably, HemaChrome exhibits lower 
coefficients of variation than Macbeth ColorChecker across all Hgb 
scale patches (Fig. 4I and eqs. S8 and S9). This result highlights the 
critical role of the Hgb gamut in improving the accuracy and preci-
sion of blood Hgb–related color recovery because the absolute color 
values of the eight Hgb scale patches fall within the Hgb gamut used 
by HemaChrome (Fig. 4B).

Inflammation bioimaging of experimental 
cutaneous photocarcinogenesis
We examine the machine color readability and learning for bioim-
aging of inflammatory skin lesions associated with nonmelanoma 
skin cancer. As key components of the tissue microenvironment, 
chronic inflammatory hyperemia and angiogenesis substantially 
contribute to cutaneous photocarcinogenesis and skin cancer (89–
93). Hyperspectral (or multispectral) imaging modalities are exten-
sively used to detect such inflammatory changes by quantifying Hgb 
content and hemodynamics (94–97). However, conventional hyper-
spectral imaging systems face inherent limitations, including bulky 
equipment, slow data acquisition, low signal-to-noise ratio, and sus-
ceptibility to motion artifacts (94–97). As an alternative for bioim-
aging, HemaChrome with neural network color recovery can serve 
as the frontend input to reliably image inflammation foci and quantify 
Hgb content from a photo captured by a smartphone camera.

To investigate inflammatory hyperemia on animal skin in an 
experimental photocarcinogenesis study, we analyze hyperspectral 
image data and photos of hairless albino mice (C57BL/6) imaged at 
multiple time points after ultraviolet B (UVB) irradiation (98, 99). As 
the primary environmental risk factor for nonmelanoma skin cancer, 
UVB irradiation is administered at a carcinogenic dose (2240 J m−2 
three times per week for 10 weeks) to mimic the carcinogenic effects 
of sunlight (100, 101). A pushbroom-type hyperspectral imaging 
system (94–97) provides reference measurements on the same mice 
immediately before or after smartphone photography (see note S4). 
The hyperspectral image data are analyzed using parametric spec-
tral modeling of biological tissue to extract Hgb content on a pixel-
by-pixel basis, serving as the ground truth (see Materials and 
Methods); Figure 5 (A and B) presents dorsal photos and the corre-
sponding ground truth Hgb images of the same mouse at weeks 10 
and 14 after the cessation of the carcinogenic dose of UVB irradia-
tion (fig. S14, A and B).

We evaluate machine-readable Hgb quantification using a deep 
learning inflammation model that takes the recovered color values 
from a photo of mouse skin and outputs the corresponding tissue 
Hgb level (see note S4 and Fig. 5C) (96). In Fig. 5 (D and E) (fig. S14, 
C and D), Hgb images of the same mouse at weeks 10 and 14 are 
computed from photos acquired by Samsung Galaxy S21 and Apple 
iPhone 12 Pro, processed using neural network color recovery 
(HemaChrome) and adaptive regression color correction (Macbeth 
ColorChecker equivalent; fig. S6, A to C). Notably, the color correc-
tion using Macbeth ColorChecker overestimates Hgb content across 
both smartphone models, whereas the Hgb images recovered using 
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Fig. 4. Machine readability and quantification of blood Hgb colors with self-testing of Tallquist Haemoglobin Scale. (A) Representative photo of Tallquist Haemo-
globin (Hgb) Scale (equivalent to WHO Haemoglobin Colour Scale) used as self-test samples, providing numerical readings of 4.7, 6.3, 7.8, 9.4, 10.9, 12.5, 14.1, and 15.6 g dl−1. 
(B) CIE xy chromaticity values of Tallquist Hgb Scale under CIE illuminant E. (C) Corresponding CIE LAB values under CIE illuminant E on the a* and b* axes. (D) Correspond-
ing L* values as functions of a* and b* values. (E and F) Color differences after color correction using HemaChrome (E) and Macbeth ColorChecker (F) for the Hgb scale 
patch of 9.4 g dl−1. Three color metrics are calculated: CIE XYZ Euclidean distance, CIE94 ( ΔE∗

94
 ), and CIEDE2000 ( ΔE∗

00
 ). (G) Recovered Hgb levels using HemaChrome 

(neural network color recovery) and the actual Hgb levels (ground truth). Blood Hgb levels are directly computed from recovered color values under CIE illuminant E of 
Tallquist Hgb Scale, acquired under 36 various photo acquisition scenarios (Fig. 1G). Hgb levels are modeled as a univariate polynomial function of CIE X, Y, and Z values 
(see note S4). The scatter plot and the error bar represent the mean and the standard deviation (SD), respectively. The black line denotes the identity line. (H) Recovered 
Hgb levels using a Macbeth ColorChecker equivalent (adaptive regression color correction) and the actual Hgb levels. (I) Coefficients of variation for the blood Hgb levels 
recovered by HemaChrome and Macbeth ColorChecker from photos captured across 36 acquisition scenarios.
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HemaChrome better match the spectrally measured Hgb images 
(ground truth). Figure 5 (F and G) (fig. S14, E and F) reveals the 
total Hgb values averaged over the entire dorsal area, as recovered 
from photos captured using the two smartphone models and two file 
formats (RAW and JPEG). The averaged Hgb values recovered using 
HemaChrome closely follow the spectrally computed Hgb values with 
small SDs at each time point (Fig. 5F, fig. S14E, and table S5). In 
contrast to HemaChrome, the conventional color correction (Macbeth 
ColorChecker) generates considerably larger variations of Hgb values 
(Fig. 5G, fig. S14F, and table S6). HemaChrome also exhibits lower 

coefficients of variation than Macbeth ColorChecker (Fig. 5H, fig. S14G, 
and eqs. S8 and S9).

Noninvasive mHealth blood Hgb assessment from 
peripheral tissue
We assess the machine color readability and learning of peripheral 
perfusion for an mHealth application designed for noninvasive 
blood Hgb assessment, compared with clinical laboratory testing. 
Blood Hgb testing is one of the most common clinical laboratory 
tests for various cases, including detecting anemia, blood disorders, 

Fig. 5. Machine readability and learning of blood Hgb colors in inflammation bioimaging of experimental photocarcinogenesis. (A and B) Dorsal photos (left) and 
Hgb images (right) measured from conventional hyperspectral imaging (ground truth) of the same hairless albino mouse (C57BL/6) at weeks 10 (A) and 14 (B) after the 
cessation of a carcinogenic dose of ultraviolet B (UVB) irradiation. (C) Deep neural network model that estimates Hgb content using recovered color values under CIE il-
luminant E as input (see note S4). (D and E) Representative recovered Hgb images of the same mouse at weeks 10 (D) and 14 (E) from single-shot photos. Four distinct 
photo acquisitions, captured using Samsung Galaxy S21 and Apple iPhone 12 Pro and saved in RAW (i.e., DNG) and JPEG formats, are analyzed using HemaChrome (neu-
ral network color recovery) and a Macbeth ColorChecker equivalent (adaptive regression color correction). (F) Recovered Hgb values using HemaChrome and the spec-
trally computed Hgb values (ground truth). The recovered Hgb values are averaged over the entire dorsal area for each photo. The scatter plot and the error bar represent 
the mean and the SD, respectively. The black line denotes the identity line. (G) Recovered Hgb values using Macbeth ColorChecker and the spectrally computed Hgb 
values. (H) Coefficients of variation for the recovered Hgb values using HemaChrome and Macbeth ColorChecker from photos captured across four acquisition scenarios, 
calculated separately for each time point.
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transfusion, hemorrhage, and acute kidney injury. Ongoing efforts 
focus on developing noninvasive point-of-care (POC) technologies 
using smartphones (102–108). The intrinsic challenge lies in ensur-
ing accurate and precise color readings of the sensing site, unaffected 
by ambient light conditions or variations in smartphone/device 
models. We leverage a clinical study aimed at improving the quality 
of care for patients with sickle cell disease (SCD) by minimizing iat-
rogenic blood loss from frequent blood draws; blood Hgb levels are 
noninvasively estimated from photos of the palpebral conjunctiva 
(i.e., inner eyelid). The palpebral conjunctiva is an easily accessible 
peripheral tissue site that directly exposes surface microvasculature 
and lacks skin pigmentation (96, 105, 108–110), enabling reliable 
noninvasive blood Hgb assessment unaffected by skin color and 
tone variability.

Clinical data include photos of the palpebral conjunctiva cap-
tured immediately before or after clinical laboratory Hgb tests via 
venous blood draws, which serve as the gold standard, from 15 pa-
tients with SCD aged 14 to 73 years (Fig. 6A). This study focuses on 
reproducibility (inter-measurement reliability) by assessing the same 
patient with multiple smartphone photos acquired under diverse light 
conditions of sunlight, fluorescent tube, and white light-emitting 
diode (LED) in indoor settings (Fig. 6A). For inter-blood Hgb as-
sessments, we use a substantial dataset of 156 photos from both the 
left and right eyelids in RAW (i.e., DNG) and JPEG formats captured 
with Samsung Galaxy S21 and Apple iPhone 12 Pro. For side-by-side 
comparisons, two sets of CIE XYZ values are recovered from the 
same photos (Fig. 6B) by separately applying neural network color 
recovery (HemaChrome) and adaptive regression color correction 
(Macbeth ColorChecker equivalent; fig. S6, A to C). The recovered 
color values of the palpebral conjunctiva under CIE illuminant E 
serve as the frontend input in the mHealth application (see note S4 
and Fig. 6C).

Figure  6D presents the computed blood Hgb levels using 
HemaChrome across multiple photo acquisitions (table S7). The lin-
ear correlation between the recovered blood Hgb levels and clinical 
laboratory results shows a high correlation coefficient of 0.87 with 
narrow 95% limits of agreement (95% LOA) of (−2.51, 2.30 g dl−1) 
and a bias of −0.11 g dl−1 in the Bland-Altman plot (Fig. 6D) (111). 
Notably, the range of the 95% LOA is highly comparable to that of 
capillary blood sampling (e.g., finger prick) tests (47, 106). The pooled 
SD of the computed blood Hgb levels, capturing the reproducibility 
(table S7), returns a value of 1.26 g dl−1 (eq. S10). On the other hand, 
Fig. 6E shows the blood Hgb levels recovered using Macbeth Color-
Checker across multiple photo acquisitions (table S8). The computed 
blood Hgb levels exhibit an underperforming correlation coefficient 
of 0.75, resulting in wide 95% LOA of (−3.88, 2.53 g dl−1) and a bias 
of −0.67 g dl−1 in the Bland-Altman plot (Fig. 6E). The pooled SD of 
the computed blood Hgb levels (table S8) is higher at 6.26 g dl−1. 
HemaChrome also reveals lower coefficients of variation compared 
to Macbeth ColorChecker across all patients (Fig. 6F and eqs. S8 
and S9). Consequently, the color recovery using HemaChrome 
outperforms that of Macbeth ColorChecker for noninvasive blood 
Hgb assessments.

DISCUSSION
Device-, light-, and format-agnostic machine readability and learn-
ing of colors can open possibilities for digital health applications 
(112, 113). First, remote POC diagnostics can be facilitated in at-home 

settings, where a telemedicine professional, interacting with the pa-
tient in their home environment, can remotely capture the patient’s 
photos by taking screenshots on the health care professional’s de-
vice. Traditionally, POC testing requires a health care professional to 
be physically close to the patient, whereas home tests are conducted 
by the patient or a guardian without professional oversight. The 
Food and Drug Administration has different regulatory pathways 
for POC and home tests (114). In this respect, machine readability 
and learning of colors may help bridge the regulatory gap between 
these two testing types. Second, commercially available off-the-shelf 
mobile devices, such as smartphones or laptops with onboard cam-
eras, can be easily used without modifications or additional attach-
ments, allowing patients to receive diagnostic services using their 
own devices. Third, existing picture archiving and communication 
systems (PACS) can be standardized and canonicalized to support 
multiple devices, image file formats, and clinical sites.

Machine readability and learning of colors in color-based diag-
nostic bioassays and bioimaging can further be enhanced using state-
of-the-art three-color image sensors, advanced image file formats, 
and cutting-edge printing technologies. Advanced three-color image 
sensors can eliminate the need for demosaicing, which is a digital im-
age processing technique used in conventional sensors (with a Bayer 
filter) to interpolate missing color information from neighboring pixels. 
For example, Foveon X3 sensors capture all three color values within 
the same pixel (115). Color routers can detect the entire color content 
without using a Bayer filter (116, 117). An increase in color depth (or 
bit depth) in the R, G, and B channels can mitigate the possibility of 
metamerism, where different spectral profiles result in the same RGB 
values (118–120). File formats with higher color depth (e.g., RAW and 
High Efficiency Image File Format) can enable finer color distinctions, 
improving machine-readable color quantification. For example, a 
10-bit color depth format consists of 210 × 3 combinations of RGB values 
(≈1.07 billion colors), while an 8-bit color depth format only gener-
ates 28 × 3 (≈16.77 million) colors. While pigment-based printing inks 
are constrained by their color fading, plasmonic structural paints can 
offer a promising solution for developing color reference charts with 
long-lasting durability and photostability (121).

In conclusion, the reported machine readability and learning 
platform of tissue colors can be applied to a wide range of color-
based digital diagnostic applications. This platform leverages the 
reference color information physically present in samples to recover 
the absolute colors, regardless of photo acquisition settings. Reliably 
recovered color values of a sample of interest provide a foundation 
for advanced spectral analyses, including hyperspectral reconstruction 
(also known as spectral super-resolution, spectral reflectance estima-
tion, spectral learning, or hypercolorization). The reported platform 
will also enhance color standardization and canonicalization, con-
tributing to the evolving field of digital health alongside advances in 
computer color vision for biomedical imaging.

MATERIALS AND METHODS
Approximating CIE standard illuminant E using 
spectral normalization
Among CIE standard illuminants (also known as reference illumi-
nants), CIE illuminant E stands out as a theoretical reference with 
a 100% uniform spectral power distribution across the entire wave-
length range (equal energy radiator or spectrally uniform illumi-
nation) (122). Although CIE illuminant E is regarded as purely 
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Fig. 6. Machine color readability and learning of peripheral tissue perfusion for noninvasive mHealth blood Hgb assessment. (A) Representative unprocessed 
smartphone photos of the palpebral conjunctiva (inner eyelid) juxtaposed with a HemaChrome chart captured under various light conditions. (B) CIE RGB images com-
puted from recovered color values using HemaChrome (neural network color recovery). (C) mHealth application that estimates blood Hgb levels from single-shot photos 
using recovered color values under CIE illuminant E as input (see note S4). (D) Scatter plot between the recovered blood Hgb levels using HemaChrome and the clinical 
laboratory blood Hgb tests obtained from venous blood draws analyzed by a hematology analyzer (gold standard) and Bland-Altman analyses. For inter-blood Hgb as-
sessments (reproducibility), 156 photos of both the left and right eyelids from 15 patients, acquired using Samsung Galaxy S21 and Apple iPhone 12 Pro and saved in RAW 
(i.e., DNG) and JPEG formats, are analyzed. The scatter plot and the error bar represent the mean and the SD, respectively. The black line denotes the identity line. (E) Scat-
ter plot between the recovered blood Hgb levels using a Macbeth ColorChecker equivalent (adaptive regression color correction) and the clinical laboratory blood Hgb 
tests and Bland-Altman analyses. (F) Coefficients of variation for the recovered blood Hgb values computed for each patient using HemaChrome and Macbeth Color-
Checker from photos captured across multiple photo acquisitions.
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theoretical, spectral normalization using a reflectance standard ef-
fectively eliminates the spectral response of the illumination and 
system, making it equivalent to using CIE illuminant E. This approx-
imation is made possible by the use of a white diffuse (Lambertian) 
reflectance standard having a reflectivity of >99% in the visible range. 
We obtained the spectral intensity O(λ) reflected from a sample of 
interest under CIE illuminant E as follows: The spectral intensity 
Im(λ) reflected from the sample under an arbitrary light illumination, 
measured by a scientific laboratory spectrometer (VS140 VIS-NIR, 
Horiba Jobin Yvon, and SR-6VIS400-25, Ocean Optics), can be ex-
pressed as a function of the wavelength of light λ

where L(λ) is the spectral profile of the illumination light source, 
C(λ) is the spectral response of all optical components in the system, 
and D(λ) is the spectral response function (also known as spectral 
sensitivity) of the image sensor. Using a white diffuse reflectance 
standard (SRT-99-050, Labsphere), the spectral intensity Iref(λ) re-
flected from the white reflectance standard under the identical im-
aging setting as the sample can be obtained

Then, O(λ) is calculated by normalizing Im(λ) with respect to Iref(λ)

CIE illuminant E, through spectral normalization, allows for the 
definition of the absolute colors of a sample, as the spectral intensity 
is not influenced by the physical illumination source or acquisition 
conditions. This spectral normalization using a diffuse reflectance 
standard is commonly used in tissue optics and spectroscopy.

Gamut determination via parametric spectral modeling of 
biological tissue
To identify a physiologically relevant color gamut (Hgb gamut), we 
augmented physiologically relevant spectra of peripheral perfusion 
and blood microcirculation in the visible range (380 to 720 nm) by 
synthesizing data using parametric spectral modeling. The spectral 
intensity reflected from biological tissue can be expressed as a func-
tion of λ (123, 124)

where 
[
λ∕λ0

]a1 with λ0 = 500 nm represents the tissue light scattering 
contribution, a1 is the tissue (Rayleigh or Mie) scattering slope, a2 is 
the blood volume fraction multiplied by the optical path length, and 
a3 is the effective blood vessel diameter in tissue originating from the 
pigment packaging effect of red blood cells in microvessels, which is 
well-established in tissue optics (123, 125). μTotal

a
(λ) is the total ab-

sorption coefficient including oxygenated and deoxygenated Hgb 
(123, 125)

where a4 is the blood Hgb content, a5 is the blood oxygen saturation, 
εHgbO2

(λ) is the extinction coefficient of oxygenated Hgb, and εHgb(λ) 
is the extinction coefficient of deoxygenated Hgb.

First, we synthesized 12,240 spectral data of peripheral tissue in 
the visible range (Fig. 2E), using the physiologically relevant ranges 
of the model parameters (Table 1). We determined the ranges of pa-
rameters a1 … a5 by analyzing spectral data from peripheral tissue in 
the existing clinical data (figs. S15 and S16). To solve the nonlinear 
optimization problem in  Eqs.  4 and 5, the Nelder-Mead simplex 
method was used to obtain the model parameters (126)

where Im =
[
Im
(
λ1
)
, Im

(
λ2
)
, … , Im

(
λN

)]T is the measured spectral 
intensity, and I =

[
I
(
λ1
)
, I
(
λ2
)
, … , I

(
λN

)]T is the model-generated 
spectral intensity with N = 341 discrete wavelengths where λ ranges 
from 380 to 720 nm with a spectral interval of 1 nm. Then, we varied 
one parameter, while all other parameters were fixed at their average 
values in a step-by-step manner (Table 1). Second, we synthesized 
10,000 spectral data of whole blood in the visible range (Fig.  2F) 
based on the physiological parameter ranges of blood Hgb levels a4 = 
4 to 20 g dl−1 and blood oxygen saturation a5 = 50 to 100% (Table 1). 
To determine the color range of human blood Hgb samples, we mod-
eled the spectral intensity based on the Beer-Lambert law using the 
total absorption coefficient of blood (Eq. 5)

where L is the optical path length set to 0.1 mm, following the standard 
used by typical microcuvettes in commercial POC blood Hgb analyz-
ers (e.g., HemoCue). Last, the Hgb gamut was defined using all of CIE 
XYZ and CIE LAB values derived from 10,000 spectral data of whole 
blood and 12,240 spectral data of peripheral tissue (see note S1).

Printing, reproducibility, and photostability 
(fade resistance)
To ensure the accessibility, practicality, and scalability of HemaChrome 
production, we used a commercially available inkjet printer (image-
PROGRAF PRO-1000, Canon) equipped with 11 ink cartridges and 
a chroma optimizer (PFI-1000 LUCIA PRO Ink, Canon). We also 
implemented a printing calibration process to produce the desired 
colors for the color charts. The actual printed colors (output) ex-
hibited variations from the intended colors (input), which were 
particularly influenced by the type of paper (print sheet) used. The 
CIE XYZ values of 116 reference colors designed for HemaChrome 
were used as input for printing (figs. S6, A to C, and S7). To ensure 
accurate color representation, the CIE XYZ values were converted to 
sRGB, and the final chart layout was completed in Adobe InDesign 
(Fig. 3B). For the printing calibration from input to output (print-
out), we applied the International Color Consortium (ICC) profile 
and used the manufacturer-recommended genuine paper (Photo 
Paper Premium Fine Art Smooth, Canon). After printing, we mea-
sured the reflectance spectra of all reference colors in the printed 
HemaChrome charts (fig. S5) using a spectrometer and a reflectance 
standard (equivalent to using CIE illuminant E). We confirmed that 
the resulting CIE xy chromaticity and CIE L* values (lightness) ob-
tained from the measured spectra were within the Hgb gamut and 
the Hgb-related lightness range of 40 to 90 (Fig. 3, B to E). In addi-
tion, we assessed the printing reproducibility and the shelf-life of 
HemaChrome (see note S2).

Im(λ) = L(λ) ⋅ C(λ) ⋅ D(λ) ⋅ O(λ) (1)

Iref(λ) = L(λ) ⋅ C(λ) ⋅ D(λ) (2)

O(λ) =
Im(λ)

Iref(λ)
(3)

I(λ)=

[
λ

λ0

]a1
exp

{
−a2μ

Total
a

(λ)×

[
1−exp

[
−a3μ

Total
a

(λ)
]

a3μ
Total
a

(λ)

]}

(4)

μTotal
a

(λ) = a4
[
a5εHgbO2

(λ)+
(
1−a5

)
εHgb(λ)

]
(5)

minimize ‖‖Im− I‖‖
2

2
(6)

I(λ)= exp
{
−a4

[
a5εHgbO2

(λ)+
(
1−a5

)
εHgb(λ)

]
×L

}
(7)
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Regression-based color corrections for conventional 
color charts
As the most commonly used color correction method using conven-
tional color standards or reference charts (Macbeth ColorChecker 
or X-Rite ColorChecker), we applied regression-based color correc-
tions (also known as lookup table and interpolation). For the sim-
plest linear color correction, the mathematical relationship between 
the CIE XYZ under CIE illuminant E and the acquired RGB can be 
expressed (53, 56, 60, 62, 63)

where x is a 3 × 1 vector corresponding to the three color values measured 
in the R, G, and B channels { x3×1 = [R,G,B]T = [I(R), I(G), I(B)]T }, y 
is a 3 × 1 vector of the CIE XYZ tristimulus values ( y3×1 = [X,Y ,Z]T ), 
and T is a 3 × 3 matrix that converts the acquired RGB values to the 
corresponding CIE XYZ values under CIE illuminant E. In general, 
the number of reference colors (e.g., k = 24) in the conventional 
color charts was greater than the number of the unknowns (i.e., 
three color values). The incorporation of k different reference colors 
into Eq. 8 changes the underdetermined problem into an overdeter-
mined problem

where T3×3 can easily be solved using least-squares regression. We 
used fixed-design linear regression, including polynomial (or root-
polynomial) expansion terms of R, G, and B values with appropriate 
powers (i.e., polynomial color correction) (53, 56, 60, 62, 63). Spe-
cifically, we included five typical types of higher-degree RGB poly-
nomial or root-polynomial expansions. The acquired RGB vector 
x3×1 was expanded to xj

p×1
 , where xj

p×1
 denotes the jth type of polyno-

mial expansions with a total of p terms

Then, Eq. 9 can be rewritten

Eq. 11 can be solved using the Moore-Penrose pseudoinverse

where + denotes the pseudoinverse. The matrix T3×p computed the 
CIE XYZ values under CIE illuminant E from the RGB values ac-
quired in a specific acquisition setting. A suitable set of polyno-
mial expansions (Eq. 10) must be manually selected for each photo 
acquisition, highly depending on devices, light conditions, and file 
formats (53, 56, 60, 62, 63).

Neural network–based color recovery for HemaChrome
We designed a fully connected neural network algorithm that accu-
rately and precisely recovers CIE XYZ values under CIE illuminant 

E of a sample or scene in a fully automated manner. This neural 
network for color recovery is analogous to transduction learning 
(Fig.  3A) as opposed to inductive learning. For each photo, the 
known CIE XYZ under CIE illuminant E and acquired RGB values 
of the reference colors in HemaChrome served as the training data-
set for the neural network. The weights of the connections between 
nodes across layers were specifically computed for a given scene or 
sample. Because of the small dataset size of 100 to 500 reference 
colors in HemaChrome (Fig. 3B and fig. S8, A and C), we intention-
ally used a concise neural network consisting of three layers: an in-
put layer, a hidden layer, and an output layer (fig. S8B). The input 
layer had three nodes representing the RGB values acquired using a 
smartphone camera ( x3×1 = [R,G,B]T ), whereas the output layer 
with three nodes returned the recovered CIE XYZ values under CIE 
illuminant E ( y3×1 = [X,Y ,Z]T ). A large number of 29 nodes in the 
hidden layer captured the nonlinearity between the recovered and 
acquired color values, which is conventionally modeled using differ-
ent types of polynomial expansions in a manual manner (Eq. 10). 
The specifications of the neural network algorithm can be summa-
rized as follows: For efficient training with a limited training dataset, 
the weights of network connections were initialized by sampling 
from a normal distribution with a mean of 0 and an SD of 0.01. 
Batch normalization was applied to the hidden layer. Sigmoid acti-
vation functions were used after batch normalization, as sigmoid 
functions outperform other activation functions in shallow neural 
networks, supported by the universal approximation theory (81, 82). 
The neural network was trained using RMSEs over a maximum of 
500 epochs. The Adam optimizer with an initial learning rate of 
5 × 10−4 and a mini-batch size of 30 was used.

Ethics approval
The animal study was approved by the Institutional Animal Care and 
Use Committee at the Richard L. Roudebush Veterans’ Administra-
tion Medical Center (protocol # VA 23028). The clinical human study 
was approved by the Institutional Review Board at Indiana University 
(protocol # 10056) and Purdue University (protocol # 2021-1225). In-
formed consent was obtained from all participants before enrollment.

Software for signal processing and statistical analyses
For data processing and algorithm developments, we analyzed the 
data using MATLAB (MATLAB R2021b, MathWorks) and PyTorch 
2.0.1 in Python 3.9. For statistical analyses, we evaluated linear re-
gression, correlations, t tests, and one-way analysis of variance 
(ANOVA), using STATA (STATA 18.0, StataCorp).

Supplementary Materials
The PDF file includes:
Supplementary Glossary Equations
Notes S1 to S4
Figs. S1 to S17
Tables S1 to S10
Legend for movie S1

Other Supplementary Material for this manuscript includes the following:
Movie S1
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