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Abstract
Background  As the global population ages, the decline in cognitive and physical functions presents significant 
challenges for individuals and healthcare systems. In older adults, conventional assessment methods are often 
subjective, time-consuming, and influenced by external factors, highlighting the need for objective and efficient 
evaluation tools. Neuroimaging biomarkers, particularly diffusion tensor imaging (DTI) metrics, offer promising 
insights into brain structure and function, potentially serving as reliable indicators of functional decline.

Methods  This study examines the relationship between DTI-derived metrics and cognitive and physical functions 
in older adults (n = 106). Four primary diffusion metrics, such as fractional anisotropy, mean diffusivity, axial diffusivity, 
and radial diffusivity, were analyzed to assess their strength of association with functional decline. To enhance this 
association, principal component analysis (PCA) was applied, integrating multiple diffusion features. Age, sex, and 
educational level were included as covariates to control for their potential confounding effects.

Results  Neuroimaging biomarkers were significantly associated with both cognitive and physical functions in older 
adults. Key neural pathways, including the corpus callosum, anterior and retrolenticular internal capsule, fornix, and 
superior fronto-occipital fasciculus, showed strong associations across domains. PCA combining metrics enhanced 
these associations, highlighting integrated patterns of white matter contributions. Models selecting multiple neural 
tracts demonstrated increased predictive accuracy, especially when adjusting for age, sex, and education. Distinct 
tract-function relationships were observed across physical and cognitive subdomains, emphasizing the complex and 
domain-specific roles of white matter in functional outcomes.

Conclusions  The findings highlight the potential of neuroimaging biomarkers as objective tools for evaluating 
functional decline in aging. Identifying key neural pathways linked to cognitive and physical functions may contribute 
to early diagnosis and targeted interventions. The integration of multiple neuroimaging features enhances the 
strength of associations, suggesting that advanced neuroimaging techniques could play a crucial role in aging 
research and clinical applications.
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Introduction
With the global trend of an aging population, the decline 
in cognitive and physical functions among the elderly has 
become a critical issue. When such deterioration reaches 
severe levels, it affects individuals and creates significant 
societal challenges, increasing the burden on healthcare 
systems and caregivers [1]. As aging progresses, the prev-
alence of degenerative and vascular brain diseases rises, 
making early diagnosis and accurate assessment crucial 
for timely intervention and management [2, 3].

However, accurately assessing and tracking changes in 
physical and cognitive functions in the elderly presents 
substantial challenges. Conventional evaluation meth-
ods are often time-consuming, require active partici-
pation, and may be hindered by physical limitations or 
fluctuating health conditions. Additionally, motivation 
and environmental factors play a role in the variability of 
assessment outcomes, reducing the reliability of longitu-
dinal tracking [4]. Thus, the need for objective, efficient, 
and reproducible assessment tools has become increas-
ingly evident.

Neuroimaging biomarkers have demonstrated signifi-
cant potential in providing objective insights into brain 
function and pathology. Previous studies have established 
significant correlations between neuroimaging features—
such as cortical atrophy, white matter hyperintensities, 
and functional connectivity alterations—and aging [5–7]. 
If neuroimaging biomarkers can reliably reflect cogni-
tive and physical function, they could serve as valuable 
tools for assessment. Moreover, neuroimaging is crucial 
in identifying pathological functional decline caused by 
brain diseases. Distinct neuroimaging patterns have been 
found to differentiate Alzheimer’s disease from vascular 
dementia, helping clinicians determine the underlying 
causes of cognitive impairment and design targeted treat-
ment strategies [8]. These findings highlight the impor-
tance of advancing neuroimaging-based assessments, 
which could improve diagnostic accuracy and facilitate 
personalized therapeutic interventions for the aging 
population.

Among the various neuroimaging techniques, diffusion 
tensor imaging (DTI) has emerged as a powerful tool for 
investigating white matter integrity and microstructural 
changes in the aging brain. DTI enables the extraction of 
key diffusion metrics such as fractional anisotropy (FA), 
mean diffusivity (MD), axial diffusivity (AD), and radial 
diffusivity (RD), each of which provides critical insights 
into white matter properties. FA reflects the directional 
coherence of water diffusion and is associated with white 
matter integrity, while MD represents the overall magni-
tude of diffusion and is often linked to neurodegenerative 
changes. AD quantifies diffusion along the principal axis 
of white matter tracts, whereas RD measures diffusion 
perpendicular to this axis, offering valuable information 

about axonal damage and demyelination [9]. By utilizing 
these DTI-derived metrics, researchers can better under-
stand how white matter status relates to cognitive and 
physical function in the elderly.

In this study, we aim to investigate the associations 
between neuroimaging biomarkers, particularly DTI-
derived metrics, and cognitive and physical functions in 
older adults. By extracting and analyzing key diffusion 
metrics, we will assess their associations with functional 
decline and propose methods to enhance their explana-
tory capability. Additionally, we will identify key neu-
roimaging indicators relevant to specific cognitive and 
physical functions, facilitating more precise evaluations 
and interventions. Through this research, we expect 
to provide valuable insights that can help researchers 
and clinicians better understand age-related functional 
decline, ultimately contributing to the advancement 
of diagnostic and therapeutic strategies for aging 
populations.

Methods
Participants and experiment design
One hundred and twenty elderly persons participated in 
this prospective cohort study. This study was designed 
to predict functional decline due to aging and establish 
strategies for functional improvement by longitudinally 
collecting multimodal data, including physical and cog-
nitive function levels, and brain imaging, from commu-
nity-dwelling older adults with physical or cognitive 
impairments. The inclusion criteria for this study were as 
follows: (1) community-dwelling older adults aged 55 to 
84 years and (2) individuals with mild cognitive impair-
ment, defined as a score of 6 or higher on the Korean 
Dementia Screening Questionnaire-Cognition (KDSQ-
C), or those with physical impairment, defined as a score 
of 9 or lower on the Short Physical Performance Battery 
(SPPB). The exclusion criteria were as follows: (1) indi-
viduals with severe visual field defects, fractures, or brain 
diseases that prevent independent walking; (2) those with 
a history of musculoskeletal disorders, such as fractures, 
that could affect physical function within six months 
prior to recruitment; (3) individuals with severe cognitive 
impairment who were unable to understand the study 
and provide voluntary consent; (4) those with a history 
of major psychiatric disorders, such as schizophrenia 
or bipolar disorder; and (5) individuals for whom MRI 
was contraindicated due to the presence of a pacemaker, 
claustrophobia, or metallic implants in the skull.

This study’s ethical approval (202306-HR-004) was 
obtained from the Institutional Review Board (IRB) of 
Kumoh National Institute of Technology, Gumi, Repub-
lic of Korea. This study was registered with the Clinical 
Research Information Service (CRIS, Korea, ​h​t​t​p​s​:​/​/​c​r​i​s​.​n​
i​h​.​g​o​.​k​r​​​​​; registration number: KCT0008569). Participant 
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recruitment began in September 2023. All participants 
provided written informed consent prior to their enroll-
ment in the study, and all procedures were conducted in 
compliance with the approved study protocol.

One hundred and six participants’ physical and cogni-
tive function data and DTI data were analyzed for this 
study. The participants ranged in age from 57 to 84 years 
(mean age: 72.63 years), and the sample included 40 
males and 66 females. In accordance with the purpose of 
this study, 14 participants were excluded due to a diag-
nosis of neurological disorders such as stroke, Parkinson’s 
disease, or unstable conditions during the MRI scanning 
process. Table  1 shows the baseline characteristics of 
participants.

Physical and cognitive function assessments
A battery of standardized tests was employed to assess 
physical function. The 10-Meter Walk Test (10MWT) 
was conducted at both comfortable and fast walking 
speeds to evaluate gait speed and walking ability, with 
shorter completion times indicating better performance 
[10]. The Timed Up and Go (TUG) Test measured func-
tional mobility by recording the time taken for partici-
pants to stand up from a chair, walk 3  m, turn around, 
walk back, and sit down, with shorter times reflecting 
better mobility [11]. The Four Square Step Test (FSST) 
assessed dynamic balance and agility by measuring 
the time taken to step in four quadrants in a specific 
sequence, where shorter completion times indicated bet-
ter balance and coordination [12]. The Six-Minute Walk 
Test (6MWT) evaluated aerobic endurance and func-
tional exercise capacity by measuring the total distance 
walked in six minutes, with longer distances indicating 
better physical endurance [13]. Finally, the Nine-Hole 
Peg Test (9HPT) assessed fine motor coordination and 
dexterity of the upper extremities by recording the time 
taken to place and remove nine pegs from holes, with 
shorter completion times indicating better manual dex-
terity [14].

Cognitive function was assessed across various sub-
domains using standardized tests. For the attention 
function, the Digit Span Test (DST) Forward and Back-
ward was used. The DST forward assessed attention and 
short-term memory by requiring participants to repeat a 
sequence of digits in the same order, while the DST back-
ward evaluated attention and working memory by having 
participants repeat the sequence in reverse order [15]. 
To evaluate language function, the Seoul-Korean Bos-
ton Naming Test (S-K-BNT) was administered, which 
involved naming visually presented objects, with a higher 
number of correct responses indicating better language 
function [16]. Additionally, a Repetition Task was used 
to assess verbal fluency and language processing by ask-
ing participants to repeat a series of sentences [17]. 
The visuospatial function was assessed using the Rey 
Complex Figure Test (RCFT), where participants were 
required to copy and later recall a complex figure from 
memory [18]. For the assessment of memory function, 

Table 1  Baseline characteristics in participants
Characteristics Participants

(n = 106)
Demographic information
  Age (years) 72.63 (5.69)
  Sex (male / female) 40 / 66
  Educational level (years) 8.35 (3.73)
Screening test
  SPPB (pt) 11.53 (1.09)
  KDSQ-C (pt) 6.95 (1.47)
Physical function
  10MWT_comfort (m/s) 1.25 (0.20)
  10MWT_fast (m/s) 1.55 (0.28)
  TUG (sec) 7.91 (2.02)
  FSST (sec) 8.05 (1.76)
  6MWT (meter) 412.50 (78.00)
  9HPT Rt. (sec) 18.52 (2.19)
  9HPT Lt. (sec) 19.93 (2.82)
Cognitive function
Attention
  DST forward (n) 6.75 (1.60)
  DST backward (n) 3.30 (1.35)
Language
  S-K-BNT (n) 11.42 (2.44)
  Repetition (n) 14.17 (1.28)
Visuospatial
  RCFT copy (pt) 25.28 (6.97)
  RCFT time (sec) 170.03 (83.65)
Memory
  SVLT-E IR (n) 17.28 (4.63)
  SVLT-E DR (n) 5.16 (2.45)
  SVLT-E recognition (pt) 20.85 (2.07)
Executive
  Go-no go (n) 38.18 (3.87)
  DSC (n) 41.80 (17.68)
  COWAT semantic (n) 14.75 (4.48)
  COWAT phonemic (n) 6.14 (3.82)
  K-TMT-E part A (sec) 31.86 (19.05)
  K-TMT-E part B (sec) 95.79 (96.15)
  K-CWST WR (n) 82.22 (24.81)
  K-CWST CR (n) 33.06 (13.92)
Continuous values are presented as means (standard deviation)

SPPB, Short Physical Performance Battery (physical impairment defined as 
a score of 9 or lower); KDSQ-C, Korean Dementia Screening Questionnaire-
Cognition (mild cognitive impairment defined as a score of 6 or higher); 10MWT, 
10-Meter Walk Test; TUG, Timed Up and Go Test; FSST, Four-Square Step Test; 
6MWT, 6-Minute Walk Test; 9HPT Lt., Nine-Hole Peg Test (Left); 9HPT Rt., Nine-
Hole Peg Test (Right); DST, Digit Span Test; S-K-BNT, Seoul-Korean Boston 
Naming Test; RCFT, Rey Complex Figure Test; SVLT-E, Seoul Verbal Learning Test 
- Episodic; IR, Immediate Recall; DR, Delayed Recall; DSC, Digit Symbol Coding; 
COWAT, Controlled Oral Word Association Test; K-TMT-E, Korean Trail Making 
Test - Executive; K-CWST, Korean Color Word Stroop Test; pt, point
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the Seoul Verbal Learning Test - E (SVLT-E) was used, 
which measured participants’ ability to learn and recall a 
list of words after multiple trials [19]. Lastly, the execu-
tive function was assessed using several tasks, including 
the Go-No-Go Task to measure inhibitory control and 
impulsivity [20], the Digit Symbol Coding (DSC) task to 
evaluate processing speed and working memory capac-
ity [15], and the Controlled Oral Word Association Test 
(COWAT) to assess verbal fluency by asking participants 
to generate as many words as possible beginning with a 
specific letter in one minute [21]. The Korean Trail Mak-
ing Test– E (K-TMT-E) was used to evaluate cognitive 
flexibility and executive function, with participants con-
necting a series of numbers and letters alternately [22], 
and the Korean Color Word Stroop Test (K-CWST) was 
used to assess cognitive inhibition and processing speed 
by asking participants to name the color of words that 
were either congruent or incongruent with the meaning 
of the word [23].

Diffusion tensor imaging data acquisition and processing
DTI data were acquired using a Siemens MAGNETOM 
Skyra 3T MR scanner (Siemens Healthcare, Erlan-
gen, Germany) of the K-MEDI hub. The DTI data were 
acquired with the following settings: b = 1000  s/mm2, 
64 non-colinear gradient directions, 80 axial slices, slice 
thickness = 2  mm (no gap), matrix size = 232 × 232, rep-
etition time = 9600 ms, echo time = 82 ms, and field of 
view = 230 × 230 mm.

To extract the status of major neural pathways through-
out the brain, DTI data were preprocessed using FMRIB’s 
Diffusion Toolbox (FDT) from the FSL software pack-
age (version 6.0.7.9, FMRIB Software Library, FMRIB, 
Oxford, UK, ​h​t​t​p​:​​​/​​/​w​w​​w​.​f​​m​r​i​​​b​.​​o​​x​.​​a​​c​​​.​u​k​/​f​s​l). Corrections 
for eddy currents, head motion, and skull stripping were 
applied. The DTIfit algorithm, commonly used to quan-
tify white matter integrity, was employed to fit a tensor 
model and reconstruct maps of FA and MD. AD and RD 
maps were generated by calculating the eigenvalues of 
the diffusion tensor. FA maps were spatially normalized 
by registering individual FA maps to the Montreal Neu-
rological Institute (MNI) standard space (FMRIB58_FA 
standard space image) using nonlinear registration algo-
rithms from the Tract-Based Spatial Statistics (TBSS) 
technique. Additionally, MD, AD, and RD maps were 
warped to the standard space using the registration infor-
mation from the native FA map to the standard FA map.

The 50 tracts derived from the Johns Hopkins Univer-
sity White Matter Atlas (JHU ICBM-DTI-81) [24] were 
utilized to assess the status of major neural pathway. All 
tracts were binarized and masked onto the spatially nor-
malized FA, MD, AD, and RD maps. The FA, MD, AD, 
and RD values were calculated by averaging within the 
regions corresponding to the 50 tracts.

Statistical analysis
In this study, linear regression was employed to examine 
the strength of association between neuroimaging met-
rics (FA, MD, AD, and RD) and physical and cognitive 
functions, with the coefficient of determination (R²) used 
to quantify effect size. Additionally, to incorporate all 
four neuroimaging metrics, principal component analy-
sis (PCA) was applied, and linear regression assessed the 
association of each function with the principal compo-
nents. “PCA1” represents the model using only the first 
principal component, whereas “PCA2” includes both the 
first and second principal components. To account for 
multiple comparisons, the false discovery rate (FDR) cor-
rection was applied with a threshold of q < 0.05. Finally, 
multiple linear regression was then conducted to develop 
predictive models, incorporating age, sex, and educa-
tional level as covariates alongside neuroimaging metrics. 
Neuroimaging metrics were used to select between one 
and five tracts in order of their strength of association 
for each function, with the models designated as “Model 
1” through “Model 5” based on the number of tracts 
included. In this selection process based on the strength 
of association, the “without covariance” condition mea-
sured the coefficient of determination using only neuro-
imaging metrics as variables, while the “with covariance” 
condition included age, sex, and educational level as 
covariates when measuring the coefficient of determina-
tion of the neuroimaging metrics. To validate the models, 
10-fold cross-validation was performed.

Results
The strength of association between the four DTI met-
rics and physical and cognitive functions was examined 
(Fig.  1). Overall, neuroimaging metrics showed sig-
nificant associations with both domains, with functions 
strongly associated in one domain tending to show stron-
ger associations in the other. Across all metrics, asso-
ciations with cognitive functions were generally slightly 
stronger than those with physical functions. Within 
physical functions, lower-limb measures showed higher 
effect sizes than upper-limb measures, while executive 
function exhibited the strongest associations among cog-
nitive subdomains.

More specifically, the four neuroimaging metrics 
exhibited distinct patterns of association strength across 
the white matter tracts. In the case of FA, anterior tracts 
generally showed stronger associations than other tracts. 
The genu of the corpus callosum (CC) showed the 
strongest association with both physical and cognitive 
functions, followed by the anterior limb of the internal 
capsule (ALIC), fornix, and the splenium and body of the 
CC. For MD, compared to the FA pattern, the role of the 
cerebellar peduncle (CbP) was reduced, while the contri-
butions of the retrolenticular part of the internal capsule 

http://www.fmrib.ox.ac.uk/fsl


Page 5 of 11Lee et al. Journal of NeuroEngineering and Rehabilitation          (2025) 22:157 

Fig. 1 (See legend on next page.)
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(RLIC) and the superior longitudinal fasciculus (SLF) 
increased. RLIC showed the strongest association with 
physical and cognitive functions, followed by ALIC, for-
nix, the body of the CC, and the superior fronto-occipital 
fasciculus (SFO). For AD, relative to the FA pattern, the 
contributions of the medial lemniscus (ML), CbP, cere-
bral peduncle (CP), inferior fronto-occipital fasciculus 
(IFO), and uncinate fasciculus (UF) were reduced. Simi-
lar to MD, RLIC showed the strongest association with 
both physical and cognitive functions, followed by SFO, 
ALIC, sagittal stratum (SS), and fornix. For RD, the over-
all pattern was similar to that of MD, with ALIC showing 
the strongest association for both physical and cognitive 
functions. This was followed by the body of the CC, for-
nix, the splenium of the CC, and RLIC.

Additionally, PCA was applied to incorporate the char-
acteristics of all four neuroimaging metrics, and linear 
regression was used to assess the strength of association 
for each function (Fig. 2). The first principal component 
(PCA1) accounted for 81.0% of the variance. In this case, 
the strength of association was generally higher than 
when using the four individual DTI metrics separately. 
PCA1 captured a pattern that integrated the varying 
association strengths of the individual metrics. For PCA2, 
which incorporated both the first and second princi-
pal components, the variance accounted for increased 
to 99.6%. This approach effectively captured the distinct 
association strength distributions of the four DTI met-
rics in a more comprehensive manner. PCA2 integrated 
the strengths of different metrics while compensating for 
areas where certain metrics had low or no association 
strength, resulting in an overall higher strength of asso-
ciation compared to using individual metrics. The genu 
of the CC was the neural pathway most strongly associ-
ated with both physical and cognitive functions, followed 
by the ALIC, RLIC, fornix, the splenium and body of the 
CC, and the SFO.

To develop models that effectively explain functional 
outcomes using neuroimaging metrics, neural pathways 
with high association strength were selected in order, 
ranging from one to five tracts, and their effect size and 
cross-validation performance were assessed (Fig. 3). The 
overall strength of association of the models tended to 
increase with the number of neural pathways included. 
Additionally, PCA2 showed greater effect size than 
PCA1, and selecting tracts while controlling for covari-
ates (age, sex, and educational level) resulted in higher 

association strength compared to models without covari-
ate control (Fig. 3A). Since this trend may be influenced 
by the increased number of variables, cross-validation 
was conducted for confirmation (Fig.  3B and C). The 
results indicated that controlling for covariates improved 
the strength of association, with the optimal model con-
sisting of two selected neural pathways for PCA1 and one 
selected tract for PCA2.

Neural pathways with high association strength for 
each function were examined (Fig.  4). Regardless of 
covariate control, the fornix, ALIC, CC, and SFO exhib-
ited strong associations with functional outcomes. When 
association strength was assessed using only neuroim-
aging metrics without controlling for covariates, the top 
two tracts for lower-limb function were the fornix and 
ALIC, while the same tracts also showed the strongest 
associations for upper-limb function. Among cognitive 
functions, the top two tracts were as follows: attention—
SFO and RLIC; language—ALIC and external capsule 
(EC); visuospatial function—IFO and fornix; memory—
fornix and ALIC; and executive function—CC and ALIC. 
When association strength was analyzed while control-
ling for covariates, different patterns emerged. For physi-
cal function, the lower-limb function was best explained 
by the fornix and cingulum, while the upper-limb func-
tion was best explained by the ML and fornix. Among 
cognitive functions, the top two tracts were attention—
SFO and fornix; language—inferior cerebellar peduncle 
(ICP) and fornix; visuospatial function—IFO and fornix; 
memory—IFO and posterior thalamic radiation (PTR); 
and executive function—SFO and middle cerebellar 
peduncle (MCP).

Discussion
The present study examined the strength of association 
of DTI-derived metrics in relation to cognitive and physi-
cal functions in the elderly. Our findings demonstrated 
that neuroimaging biomarkers were significantly associ-
ated with both cognitive and physical functions in this 
population. Among the individual DTI metrics, FA, MD, 
AD, and RD showed distinct patterns in their association 
strength. The PCA-based approaches proposed in this 
study further enhanced the overall strength of association 
for both cognitive and physical functions by integrating 
complementary information from multiple DTI-derived 
metrics.

(See figure on previous page.)
Fig. 1  The strength of association of four DTI metrics for physical and cognitive functions. Statistically significant results are highlighted in color, and the 
colorbar represents the coefficient of determination (R²). The vertical and horizontal bar graphs are drawn to relatively compare the sum of the coefficients 
of determination for the corresponding columns and rows. An asterisk indicates statistical significance after FDR correction. FA, fractional anisotropy; MD, 
mean diffusivity; AD, axial diffusivity; RD, radial diffusivity; 10MWT, 10-meter walk test; TUG, timed up and go; FSST, four square step test; 6MWT, 6-minute 
walk test; 9HPT, 9-hole peg test; DST, digit span test; S-K-BNT, Seoul-Korean Boston naming test; RCFT, Rey complex figure test; SVLT, Seoul verbal learning 
test; DSC, digit symbol coding; COWAT, controlled oral word association test; K-TMT-E, Korean trail making test– E; K-CWST, Korean color word Stroop test
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While previous research has demonstrated significant 
associations between a specific DTI metric and cogni-
tive or physical functions, our study provides a more 
comprehensive analysis by systematically examining all 
four primary DTI metrics and their relationships with 
both cognitive and physical domains. This study extends 
previous work by systematically comparing multiple 

DTI metrics and employing PCA to enhance the overall 
strength of association, offering a broader understanding 
of white matter contributions to aging-related functional 
decline.

Previous studies have reported associations between 
FA reductions in motor-related tracts, such as the cor-
ticospinal tract, and declines in motor performance or 

Fig. 2  The strength of association of four DTI metrics using PCA. PCA1 represents the model using only the first principal component, whereas PCA2 
includes both the first and second principal components. Statistically significant results are highlighted in color, and the colorbar represents the coef-
ficient of determination (R²). The vertical and horizontal bar graphs are drawn to relatively compare the sum of the coefficients of determination for the 
corresponding columns and rows. An asterisk indicates statistical significance after FDR correction. 10MWT, 10-meter walk test; TUG, timed up and go; 
FSST, four square step test; 6MWT, 6-minute walk test; 9HPT, 9-hole peg test; DST, digit span test; S-K-BNT, Seoul-Korean Boston naming test; RCFT, Rey 
complex figure test; SVLT, Seoul verbal learning test; DSC, digit symbol coding; COWAT, controlled oral word association test; K-TMT-E, Korean trail making 
test– E; K-CWST, Korean color word Stroop test
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gait stability in older adults [25, 26]. Other studies have 
reported that frontal white matter tracts, including the 
SLF and cingulum, are critical for executive function 
and attention [27, 28]. In our study, DTI metrics were 
associated with cognitive and physical functions. The 
trend among the four DTI metrics was that they tended 
to explain cognitive function slightly better than physi-
cal function. This is likely because cognitive assessments 
typically capture integrated neural network functions, 
whereas physical function measures often reflect com-
posite outcomes influenced by both neural and periph-
eral physiological factors.

Within the physical function, the strength of asso-
ciation for the lower-limb function was higher than for 
the upper-limb function, whereas within the cognitive 
function, the executive function showed the strongest 
association among the cognitive subdomains. Lower-
limb function depends on coordinated activity across 
widespread brain regions involved in balance, proprio-
ception, and gait control—processes heavily reliant on 
white matter integrity in sensorimotor and cerebellar-
thalamic pathways [29]. In contrast, upper-limb tasks 
may involve more localized cortical representations that 
are less dependent on long-range white matter connec-
tivity. Executive function is primarily governed by the 
dorsolateral prefrontal cortex and anterior cingulate cor-
tex, which are key hubs in large-scale neural networks 
responsible for cognitive control, decision-making, and 
working memory. These regions rely heavily on white 
matter tracts to facilitate efficient communication with 
other cortical and subcortical structures [30].

The integration of DTI metrics through PCA provided 
a more comprehensive representation of white matter 
integrity. PCA integrated the strengths of different met-
rics while compensating for areas where certain metrics 
had low or no association strength, resulting in an overall 
stronger association compared to using individual met-
rics. This approach not only improved the strength of 
association but also revealed that specific tracts, such as 
the CC, ALIC, fornix, RLIC, and SFO, play pivotal roles 
in both cognitive and physical domains. The CC facili-
tates interhemispheric integration crucial for executive 
functions and coordinated movement, and the ALIC sup-
ports error-monitoring and decision-making processes 
through its role in the fronto-cingulo-parietal cognitive 
control network [31]. The fornix, a key component of the 
limbic system, is essential for memory consolidation and 
emotional processing, with its integrity closely linked to 
cognitive function in conditions like Alzheimer’s disease 
[32]. The RLIC plays a crucial role in visual and auditory 
processing, containing fibers of the optic radiation and 
auditory pathways, and its damage can result in specific 
sensory deficits [33]. The SFO is thought to facilitate 
visuospatial attention and cognitive flexibility by con-
necting frontal and parietal regions [34]. These tracts are 
primarily associated with cognitive and sensory func-
tions, but they have also been found to relate to physical 
functions.

The findings of this study have important implica-
tions for both research and clinical applications. First, 
the identification of specific neural pathways associated 
with cognitive and physical functions, including various 

Fig. 3  (A) The strength of association (R²) of the PCA-based model. (B) The cross-validation results (R²). (C) The cross-validation results (1/RMSE). Model 
1–5 represent regression models constructed by selecting one to five tracts in order of highest strength of association for each function. The process of 
selecting tracts in order of highest strength of association was examined both with and without the application of covariates. The vertical bar graphs pro-
vide a relative comparison of the summed cross-validation results for each column. An asterisk indicates the tallest vertical bar. RMSE, root mean square 
deviation; 10MWT, 10-meter walk test; TUG, timed up and go; FSST, four square step test; 6MWT, 6-minute walk test; 9HPT, 9-hole peg test; DST, digit 
span test; S-K-BNT, Seoul-Korean Boston naming test; RCFT, Rey complex figure test; SVLT, Seoul verbal learning test; DSC, digit symbol coding; COWAT, 
controlled oral word association test; K-TMT-E, Korean trail making test– E; K-CWST, Korean color word Stroop test
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cognitive and physical subdomains, suggests that tar-
geted interventions could be developed to preserve or 
enhance functional abilities in aging individuals. Sec-
ond, our results highlight the potential of neuroimaging 

biomarkers as objective tools for tracking functional 
decline, which could improve early diagnosis and moni-
toring of age-related disorders. Additionally, the inte-
gration of PCA-based approaches demonstrates the 

Fig. 4  Top five tracts with the highest strength of association for each function. 10MWT, 10-meter walk test; TUG, timed up and go; FSST, four square step 
test; 6MWT, 6-minute walk test; 9HPT, 9-hole peg test; DST, digit span test; S-K-BNT, Seoul-Korean Boston naming test; RCFT, Rey complex figure test; SVLT, 
Seoul verbal learning test; DSC, digit symbol coding; COWAT, controlled oral word association test; K-TMT-E, Korean trail making test– E; K-CWST, Korean 
color word Stroop test
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advantage of combining multiple neuroimaging metrics 
to improve the overall strength of association, which 
could lead to the development of more precise predictive 
models in future studies.

Despite its strengths, this study has several limitations. 
First, its cross-sectional design precludes causal infer-
ences about the relationship between DTI metrics and 
functional outcomes. Longitudinal studies are needed 
to confirm these associations and explore their predic-
tive value over time. Second, this study did not account 
for potential confounding factors such as comorbidities 
or lifestyle variables, which could influence both white 
matter integrity and functional outcomes. Although 
covariate control was applied for age, sex, and education 
level, further research should include a broader range of 
covariates to enhance generalizability.

In conclusion, this study provides compelling evidence 
that neuroimaging biomarkers, particularly DTI-derived 
metrics, are valuable tools for explaining variations in 
cognitive and physical functions in the elderly. The iden-
tification of key neural pathways associated with different 
functional domains underscores the potential of neuro-
imaging-based assessments for evaluating age-related 
decline. The integration of multiple neuroimaging met-
rics through PCA further enhances the overall strength 
of association, offering a promising avenue for future 
research and clinical applications. These findings high-
light the potential of neuroimaging as an efficient and 
objective method for monitoring functional changes in 
aging populations, paving the way for more precise and 
personalized interventions.
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