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A B S T R A C T

As a follow-up to our previous studies aimed at optimizing the use of the 20 kHz probe system in chemical and 
environmental engineering processes, the effects of vessel shape, vessel wall thickness, and probe position on 
sonochemical oxidation activity in circular and rectangular acrylic vessels were investigated. Electrical and 
calorimetric powers were obtained, and the sonochemical oxidation activity was quantified using KI dosimetry 
(pseudo-zero-order reaction kinetics) under 42 geometric conditions. All the geometric conditions of vessel 
shape, wall thickness, and probe position significantly affected the magnitudes and trends of the sonochemical 
activity. The average power conversion efficiencies from electrical to calorimetric power were 47.9 ± 3.0 % and 
50.3 ± 6.1 % for circular and rectangular vessels, respectively. Overall, much higher activity was obtained when 
the probe was placed close to the bottom of the circular and rectangular vessels. Average volume-modified zero- 
order reaction rate constants were 0.20 ± 0.09 and 0.29 ± 0.08 μmol/min for the circular vessels with wall 
thicknesses of 5 and 10 mm and rectangular vessels with wall thicknesses of 5, 10, 15, and 20 mm. However, the 
probe positions for the highest activity moved toward to the liquid surface as the thickness increased in the 
rectangular vessels. The variation in the sonochemical activity was well visualized in the sonochemiluminescence 
(SCL) image (side and bottom views) analysis, and a higher intensity was observed in the SCL images when the 
probe was positioned adjacent to the vessel bottom. Thus, the total intensities of the SCL matched well with those 
of the sonochemical activity using KI dosimetry. Significantly different trends were observed in the BPA 
degradation tests, which may be attributed to the difference between the zero-order and first-order reactions.

1. Introduction

Acoustic cavitation has been widely investigated for the develop
ment of innovative advanced oxidation–reduction processes (AORPs) 
with other novel technologies, including UV, ozone, catalysts, and 
oxidizing agents, for the eco-friendly removal of emerging micro
pollutants in the chemical and environmental engineering fields [1–10]. 
Recently, it has also been reported that per- and polyfluoroalkyl sub
stances (PFAS), also known as forever chemicals, can be effectively 
removed in sonochemical processes [11–13].

The effectiveness of cavitational removal of aqueous pollutants is 
primarily affected by the ultrasonic conditions, including frequency and 
power, solution conditions, including temperature, dissolved gases, and 
pH, and target contaminant conditions, including volatility/solubility 
and initial concentration [14,15]. Several research groups have reported 

that geometric optimization, including that of the reactor shape, size, 
transducer position, liquid height/volume, and mixing/sparging in 
sonoreactors, can significantly enhance sonochemical and sonophysical 
effects under similar input power conditions [16–32]. Slight changes in 
the geometric conditions can result in significant changes in the for
mation of cavitational active zones, leading to remarkable differences in 
the cavitational activity [26]. Recently, AI techniques such as machine 
learning have been used to predict removal efficiencies and reaction 
kinetic constants using accumulated research results in the fields of 
sonochemistry and environmental engineering fields [33–35]. However, 
more research data regarding geometric conditions are required to make 
more accurate predictions using AI techniques.

We have investigated various geometric effects in 20 kHz probe 
systems, one of the most commonly used ultrasonic devices in labora
tories, as basic steps for understanding and designing various 
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cavitational applications: 1) The effects of the probe positions, input 
power, liquid height/volume, and bottom thickness on sonochemical 
oxidation reactions were investigated in glass vessels (100, 250, 500, 
and 1,000 mL), and it was found that the probe positions predominantly 
affected the degree of sonochemical reactions [23,36]. 2) Relatively 
large vessels [0.18 L (D = 5 cm), 0.90 L (D = 10 cm), 3.60 L (D = 20 cm), 
and 8.40 L (D = 30 cm)] were tested for the 20 kHz probe systems to 
evaluate the applicable maximum sizes and the highest sonochemical 
oxidation activities based on the mass of the products were obtained in 
the vessel with the diameter of 20 cm with the strongest sonochemilu
minescence (SCL) intensity [16]. 3) The degassing effect was investi
gated in a 500 mL glass vessel, and it was found that the degassing 
behavior varied depending on the probe position [20]. In addition, a 
significant reduction in dissolved oxygen concentration was observed 
even under continuous O2 and Ar/O2 mixture sparging conditions. 4) 
Ultrasonic desorption was investigated using paint-coated glass beads in 
500 mL glass vessels, and it was found that the degree of ultrasonic 
desorption was also significantly affected by the probe positions [37].

In this study, the effects of probe position, vessel shape, and wall 
thickness on sonochemical oxidation activity were investigated in six 

different acrylic vessels equipped with a 20 kHz probe as a follow-up to 
our previous studies [16,20,23,36,37] to suggest guidelines for the 
appropriate use of 20 kHz probe systems and accumulate experimental 
results for the AI database. Electrical and calorimetric powers were 
obtained under various geometric conditions, and the sonochemical 
oxidation activity was quantified using KI dosimetry. SCL images for all 
cases were captured from the side and bottom views to visualize the 
sonochemically active zone. In addition, BPA degradation was investi
gated under various geometric conditions.

2. Materials and methods

2.1. Chemicals

Potassium iodide (KI) and sodium hydroxide (NaOH) were obtained 
from Junsei Chemical Co., Ltd. (Tokyo, Japan). An iodine (I2) solution 
(0.05 M) was acquired from Merck (Darmstadt, Germany). Luminol (3- 
aminophthalhydrazide, C8H7N3O2) and BPA (C15H16O2) were pur
chased from Sigma–Aldrich (St. Louis, MO, USA). All chemicals were 
used as received.

Fig. 1. (a) Schematic of the experimental setup (tv: vessel wall thickness); (b) Circular and rectangular vessels with different wall thicknesses; (c) Different im
mersion depths.
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2.2. Experimental setup

Fig. 1 shows a schematic of the experimental setup used in this study. 
A 20-kHz horn-type (or probe-type) sonicator (VCX–750, Sonics & Ma
terials Inc., USA), equipped with a threaded-end type probe and a 
replaceable tip of 13 mm diameter, made of a titanium alloy, was used in 
this study. Six geometrically different vessels, including two acrylic 
circular vessels (inner diameter: 10 cm; height: 15 cm; wall thicknesses: 
5 and 10 mm) and four acrylic rectangular vessels (length: 10 cm; width: 
10 cm; height: 15 cm; wall thicknesses: 5, 10, 15, and 20 mm), were 
used, and the probe was submerged in the vessels. In this study, the walls 
include the bottom and cylindrical walls in the circular vessels, and the 
bottom and four sidewalls in the rectangular vessels. To maintain the 
liquid height in the vessels at 12 cm for all cases under different probe 
submerging depths, the liquid volume varied from 0.88 to 0.92 L and 
from 1.14 to 1.19 L for circular and rectangular vessels, respectively.

The temperature of the liquid body was maintained at 25 ± 2 ◦C. The 
probe immersion depth and distance from the probe tip end to the 
bottom surface of the vessel varied from 1 cm to 7 cm [16,23]. The input 
power of the probe was 50 %, which was considered to be the power 
level of the device. The electrical energy consumption of the sonicator, 
referred to as electrical power (Pelec) in this study, was measured using a 
power meter (HPM-300A, ADpower, KOR) equipped with a data logger. 
The ultrasonic energy, termed calorimetric power (Pcal) in this study, 
was calculated using the following equation: 

Pcal =
dT
dt

CP M (1) 

where Pcal is the ultrasonic/calorimetric energy; dT/dt is the rate of in
crease of the liquid temperature; Cp is the specific heat capacity of the 
liquid (4.184 J/(g⋅K) for water); and M is the mass of the liquid 
[16,18,23].

2.3. Quantification of sonochemical oxidation activity

The sonochemical oxidation reactions were quantified using KI 
dosimetry and BPA degradation for zero- and first-order reaction ana
lyses, respectively [9,18]. The initial concentrations of the KI solution 
and BPA were 1 g/L (6.02 mM) and 5 mg/L (0.022 mM), respectively, 
and the irradiation times were 10 min and 60 min, respectively. To 
conduct the KI dosimetry and BPA degradation experiments under the 
same geometric conditions, no additional cooling system was applied. 
The 10-min ultrasound irradiation followed by ice cooling was repeated 
for 60 min to maintain the temperature in the liquid for the BPA 
degradation experiments. The final sonochemical product, triiodide 
(I3− ), was detected using a UV–Vis spectrophotometer (Libra S60; Bio
chrom Ltd., UK), while the BPA was detected using an HPLC system 
(1260 Infinity II LC, Agilent, USA) [18]. To analyze the sonochemical 
oxidation activity under different input power conditions (Pelec and Pcal), 
the input power-normalized reaction kinetic constants were compared.

2.4. Visualization of sonochemical oxidation reactions

The sonochemically active zone was visualized using a luminol so
lution (0.1 g/L luminol and 1 g/L NaOH) in a completely dark room 
[19,23,36,37]. Sonochemiluminescence (SCL) images were captured 
using an exposure-controlled digital camera (-RX100 VII; Sony Corp., 
Japan). The exposure time was set to 10 s. The SCL images were 
analyzed using ImageJ software to obtain the SCL intensity [23,38,39].

3. Results and discussion

3.1. Calorimetric power and KI dosimetry

The sonochemical oxidation activity was quantitatively investigated 

using KI dosimetry in the 20 kHz probe systems under various geometric 
conditions, including reactor shapes (circular and rectangular), probe 
positions (1, 2, 3, 4, 5, 6, and 7 cm from the bottom), and wall thick
nesses (5, 10, 15, and 20 cm). Fig. 2 shows the measured electrical 
power (Pelec) and calorimetric power (Pcal) under all the applied condi
tions. The electrical and calorimetric powers varied significantly from 
98.0 to 145.1 W and from 45.3 to 79.3 W, respectively, depending on the 
geometric conditions applied. Higher electrical and calorimetric powers 
were obtained when the probe was positioned adjacent to the bottom of 
the vessel. Son et al. reported that the electrical and calorimetric powers 
remained constant and then increased as the probe approached the 
bottom of the glass vessel in the 20 kHz probe systems [23]. In this 
study, similar trends in the electrical and calorimetric powers were 
observed for the circular vessels with wall thicknesses of 5 and 10 mm 
and rectangular vessel with a wall thickness of 5 mm, as shown in Fig. 2
(a)–(c). However, significantly different trends were observed for the 
rectangular vessel cases with wall thicknesses of 10, 15, and 20 mm, as 
shown in Fig. 2(d)–(f), where it is observed that the electrical power 
increased relatively linearly and the calorimetric power increased rela
tively nonlinearly as the probe approached the bottom.

Overall, the calorimetric power increased with the electrical power 
(No significant linear relationship was not observed in this study.) [23]. 
The average power conversion efficiency from electrical to calorimetric 
power was 49.6 ± 5.5 % for all cases (circular vessels: 47.9 ± 3.0 %; 
rectangular vessels: 50.3 ± 6.1 %). It should be noted that significantly 
different calorimetric powers were obtained under similar electric 
powers or vice versa for some cases: the calorimetric powers were 51.0 
W and 74.6 W for the circular vessel with tv = 5 mm and probe position 
= 2 cm (Pelec: 120.7 W) and the rectangular vessel with tv = 20 mm and 
probe position = 3 cm (Pelec: 120.2 W), respectively; the electrical 
powers were 127.6 W and 99.9 W for the rectangular vessel with tv = 5 
mm and probe position = 2 cm (Pcal: 52.6 W) and the rectangular vessel 
with tv = 15 mm and probe position = 7 cm (Pelec: 52.6 W), respectively. 
It was reported that the variations in the calorimetric powers under 
similar electrical powers, and vice versa, were attributed to the differ
ences in the impedance of the ultrasonic transducer resulting from 
different geometric conditions [16,40,41]. As the electrical impedance 
of the piezoelectric transducer decreases, the transducer can vibrate 
more easily and generate ultrasonic power with a higher amplitude [42].

It has been reported that a slight change in liquid height can result in 
a significant difference in sonochemical activity [25–28,43–45]. Thus, 
volume-modified zero-order reaction rate constants were obtained using 
the following equation because the liquid height in the vessels was fixed 
at 12 cm in this study and the liquid volume slightly decreased as the 
probe immersion depth increased [circular reactor: 7 cm (0.92 L) → 1 
cm (0.89 L); rectangular reactor: 7 cm (1.19 L) → 1 cm (1.14 L)]: 

dm
dt

= V
dC
dt

= V k0 = kʹ
0 (2) 

where m is the mass of the sonochemical product (I3- ions), V is the liquid 
volume in the vessel, C is the concentration of the sonochemical product 
(I3- ions), k0 is the pseudo-zero-order reaction kinetic constant, and ḱ0 is 
the volume-normalized pseudo-zero-order reaction kinetic constant.

For wall thicknesses of 5 and 10 mm in the circular and rectangular 
vessels, relatively higher sonochemical activities (k0́) were observed at 
probe positions of 1 and 2 cm, as shown in Fig. 2(a)–(d). It should be 
noted that the magnitudes of sonochemical activity at 1 and 2 cm were 
significantly different. It has been reported that a stronger ultrasound 
reflection occurs without significant attenuation as the probe ap
proaches the vessel bottom [16,23]. This could lead to the expansion of 
the cavitational active zone with a strong intensity and enhancement of 
the sonochemical oxidation activity. For all probe positions, similar 
trends in sonochemical activity were observed for the circular vessels 
with thicknesses of 5 and 10 mm, and the rectangular vessel with a 
thickness of 5 mm. However, different trends were observed for the 
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rectangular vessels with thicknesses of 5, 10, 15, and 20 mm, as shown 
in Fig. 2(c)–(f), where relatively high activities were obtained at probe 
positions of 1–5 cm in comparison to those at 1–5 cm in Fig. 2(a)–(c). In 
addition, the probe position for the highest activity moved further from 
the vessel bottom as the wall thickness increased. The highest activities 
were obtained at 2 and 3 cm, and the increases in the highest activities 
were 14.5 % and 40.3 % compared with those at 1 cm for wall thick
nesses of 15 and 20 mm, respectively.

There were no significant differences in the ultrasound reflection 
coefficients (R) obtained using the following equations in the simplified 
three-layered system (water/acrylic wall/air) for wall thicknesses of 
5–100 mm, as shown in Fig. 1S: 

R = R12 +
T12 T21 R23 e2ik2d

1 − R21 R23 e2ik2d (3) 

R12 =
z2 − z 1

z2 + z1
(4) 

R23 =
z3 − z 2

z3 + z2
(5) 

T12 =
2z2

z2 + z1
(6) 

where R12 and T12 are the pressure reflection and transmission co
efficients at the water/acrylic wall interface, respectively; R21 and T21 
are the pressure reflection and transmission coefficients at the acrylic 
wall/water interface; R23 is the pressure reflection coefficient at the 
acrylic wall/air interface; k2 is the wavenumber in the acrylic wall; d is 
the thickness of the acrylic wall; and z1, z2, and z3 are the acoustic im
pedances of water, acrylic wall, and air, respectively [46,47]. The 
reflection coefficients ranged from 0.9990 to 0.9997, indicating that 
almost 100 % ultrasound reflection occurred for wall thicknesses in the 
range of 5–100 mm in the simplified system. However, a large difference 
in sonochemical activity was observed for various wall thicknesses in 
this study. It has been reported that the simulated acoustic pressure 
distributions in 20 kHz probe systems do not correspond to the spatial 
distributions of sonochemical oxidation activity (SCL images) 
[23,48,49].

As shown in Fig. 2S, as the electrical or calorimetric power increases, 
the volume-modified zero-order reaction rate constant (k0́) also in

creases. However, the relationships were not strongly linear: the calo
rimetric power increased by 32.5 % (45.3 W → 60.0 W) and the k0́ value 
increased by 168.4 % (0.014 → 0.306 μmol/min) when the probe moved 
from 3 cm to 1 cm in the circular vessel with the thickness of 5 mm; the 
calorimetric powers were similar (53.9 and 53.0 W) and the ḱ0 value 
increased by 23.7 % (0.296 → 0.366 μmol/min) when the probe moved 
from 6 cm to 3 cm in the rectangular vessel with the thickness of 10 mm; 
the highest k0́ value was obtained at the third highest calorimetric power 
condition in the rectangular vessel with the thickness of 20 mm. 
Therefore, the comparison of volume-modified pseudo-zero-order re
action constants (k0́) under various geometric conditions may be inap
propriate from a scientific and engineering perspective because the 
constants were obtained under different electrical and calorimetric 
power conditions. From a scientific perspective, the mechanisms of 
sonochemical reactions can be understood using calorimetric power, 
and from an engineering perspective, sonochemical reactions can be 
analyzed economically using electrical power [25,26,50]. Thus, energy- 
and volume-modified pseudo-zero-order reaction constants (kʹ́

0), which 
represent the mass of sonochemical products (I3- ions) per unit time and 
unit power and correspond to the cavitation yield in previous studies 
[25,26,28,43], were calculated using the following equation: 

kʹ́
0 =

kʹ
0

Pcal
or

kʹ
0

Pelec
(7) 

As shown in Fig. 3, the relative magnitudes and overall trends of the 
energy- and volume-modified pseudo-zero-order reaction constants (kʹ́

0) 
were similar to those of the volume-modified pseudo-zero-order reaction 
constants (kʹ

0) because of the small difference in the electrical and 
calorimetric powers. For the calorimetric-power-related kʹ́

0 (kʹ
0 /Pcal), the 

average value of kʹ́
0 for all conditions was 0.0045 ± 0.0025 μmol/W/ 

min. Moreover, the average values were 0.0038 ± 0.0013 and 0.0049 ±
0.0012 μmol/W/min for the circular and rectangular vessels, respec
tively. This indicated that more sonochemical reactions could occur 
under the same calorimetric power conditions. For the electrical-power- 
related kʹ́

0 (kʹ
0 /Pelec), the average value of kʹ́

0 for all conditions was 
0.0022 ± 0.0006 μmol/W/min. In addition, the average values were 
0.0018 ± 0.0006 and 0.0024 ± 0.0005 μmol/W/min for the circular 
and rectangular vessels, respectively. This indicates that rectangular 
vessels are more advantageous in terms of energy efficiency.

It was found that the probe positions for the highest activity in terms 

Fig. 2. Volume-modified pseudo zero-order reaction constants (ḱ0), calorimetric powers, and electrical powers under various geometric conditions (all the data 
points include error bars).
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of kʹ́
0 changed in rectangular vessels with thicknesses of 10 and 15 mm 

compared to those in terms of k0́[the probe positions for the highest k0́: 
1 cm for 5 mm tv; 1 cm for 10 mm tv; 2 cm for 15 mm tv; 3 cm for 20 mm 
tv; the probe positions for the highest kʹ́

0: 1 cm for 5 mm tv; 3 cm for 10 
mm tv; 3 cm (Pcal) and 4 cm (Pelec) for 15 mm tv; 3 cm for 20 mm tv]. In 
addition, the highest calorimetric-power-related kʹ́

0 (ḱ0 /Pcal) values for 
each thickness condition decreased significantly, as the wall thickness 
increased because higher calorimetric powers were obtained in the 
rectangular vessel with the thicker wall (the average calorimetric power 
depending on the wall thickness: 5 mm: 52.8 W ± 5.3 W; 10 mm: 57.9 W 

± 5.3 W; 15 mm: 62.1 W ± 2.0 W; 20 mm: 76.6 W ± 2.4 W). The sig
nificant difference in the calorimetric power may be due to the differ
ence in heat loss from the liquid phase to the vessel wall, depending on 
the wall thickness, when the temperature increases in the liquid phase 
by ultrasound irradiation [25]. Toma et al. reported that the consumed 
electrical energy was converted into ultrasonic energy, heat energy in 
the transducer, liquid atomization energy, and energy lost to the sur
rounding environment [51]. No significant decrease in the highest 
electrical-power-related kʹ́

0 (k0́ /Pelec) values was observed. Thus, the 
optimal geometric conditions for sonochemical activity per unit time 
and power can vary depending on the electrical or calorimetric power.

3.2. SCL image analysis

As mentioned above, the relationship between the electrical power 
and calorimetric power and that between the calorimetric power and 
volume-modified pseudo-zero-order reaction constants (k0́) were not 
highly linear. This may be attributed to the complicated characteristics 
of the sound pressure distribution and sonochemical active zone for
mation under different geometric conditions. As shown in Fig. 4, SCL 
images from the side and bottom views were obtained to visually 
investigate the formation of the sonochemically active zone under all the 
applied geometric conditions in this study. Bottom-view images, taken 
to overcome the limitations of two-dimensional images, enable a better 
understanding of the shape, dimensions, and symmetry of the sono
chemically active zone in three dimensions [16,21,23].

SCL images with diverse patterns were obtained depending on the 
vessel shape, probe position, and vessel wall thickness. The active zone 
(bright area) was divided into three regions: 1) region under the probe 

tip, 2) the bottom region, and 3) the region surrounding the immersed 
probe body [23]. As the probe approached the bottom of the vessel, 
brighter light was observed over a wide area in the region under the 
probe tip and surrounding the probe. Consequently, stronger and larger 
sonochemically active zones formed in the three regions, and higher 
sonochemical activity was obtained when the probe was placed adjacent 
to the bottom, as shown in Fig. 2 [16,20,23,36]. As mentioned above, 
this was attributed to the strong reflection of the ultrasound at the 
bottom of the vessel. As the probe moved up to the liquid surface, the 
effects of the vessel shape and wall thickness seemed to be less 
significant.

In the bottom-view SCL images of the circular vessels, concentric 
circles were observed around the center of the vessel, and they were 
considered to be the formation of a standing wave field owing to the 
uniform distance from the center to the sidewall [16,26]. Larger, 
thicker, and more distinct cylindrical zones were observed when the 
probe was placed at the bottom. In addition, very similar SCL images 
were observed at each probe position in the circular vessels with 
thicknesses of 5 and 10 mm, resulting in no significant difference in the 
sonochemical activity, as shown in Fig. 2.

In the SCL images of the rectangular vessels, a more active zone was 
formed, leading to enhanced sonochemical activities and higher average 
values of the reaction constants when the probe was placed at mid- 
height positions (3–5 cm), compared to those of the circular vessels. 
Similar active zones, consisting mainly of regions 1) and 2), were formed 
when the probe was positioned closer to the liquid surface. However, a 
bright light was detected at the four centers when the probe approached 
the bottom. This could be due to the various distances from the center to 
the side wall and the more complicated ultrasound reflection and 
transmission. Yang et al. simulated the acoustic pressure fields in a 
rectangular bath-type sonoreactor equipped with a single 40 kHz 
transducer at the center of the reactor bottom and reported that high- 
pressure regions formed at the center and four corners, especially in 
smaller sonoreactors [52]. Depending on the wall thickness, the SCL 
pattern variation was divided into three categories: 1) 5 mm, 2) 10 mm, 
and 3) 15 and 20 mm. In addition, the active zone expanded toward the 
sidewall as the wall thickness increased. Yasui et al. (2007) reported that 
thicker sonoreactor walls provide more stable boundary conditions for 
ultrasound irradiation [53]. Consequently, these differences may induce 
distinctly different trends in the pseudo-reaction constants shown in 

Fig. 3. Energy-volume-modified pseudo zero-order reaction constants using the electrical and calorimetric powers under various geometric conditions.
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Fig. 4. SCL images from side and bottom view under various geometric conditions. Images from the first and second layers at each thickness condition were captured 
from the side and bottom views, respectively.
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Figs. 2 and 3.
To investigate the correlation between the SCL intensity and the 

volume-modified pseudo-zero-order reaction constant (ḱ0), the SCL in
tensities were quantified using image analysis software and compared 
with the reaction constants, as shown in Fig. 3S [23,38,39,54]. Although 
the SCL images could provide a cross-sectional interpretation of the 
three-dimensional active zone, the trends of the SCL intensities of both 
the side and bottom views relatively matched with those of the constants 
[16,23]. This may be because the KI dosimetry and SCL methods are 
based on cavitation-induced radical oxidation reactions. It should be 
noted that distortion of the SCL images and a decrease in SCL intensity 
could occur as the wall thickness increases. Capturing SCL images from 
more viewpoints and creating three-dimensional structures will allow 
for a better understanding of the formation and optimization of the 
sonochemically active zone and better correlation with target sono
chemical reactions [16].

3.3. BPA degradation

The effect of wall thickness on BPA degradation was investigated in 
rectangular vessels with thicknesses of 5, 10, 15, and 20 mm, as shown 
in Fig. 5. The probe was positioned 1, 2, and 3 cm from the bottom, 
where a higher sonochemical activity (KI dosimetry) was obtained. The 
sonochemical degradation of BPA followed pseudo-first-order kinetics. 
Because the liquid volume changed by a maximum of only 1.72 % with 
applied probe positions [3 cm (1.16 L) → 1 cm (1.14 L)], the pseudo- 
first-order reaction constants (k1) were not modified using the applied 
volume [9,18]. The pseudo-first-order reaction constants remained 
relatively constant under each thickness condition, except for the case of 
5 mm, and these trends were different from those of the volume- 
modified pseudo-zero-order reaction constants (k0́). In addition, the 
average constant for the probe positions of 1, 2, and 3 cm decreased (5 
mm: 0.0062 ± 0.0008 min− 1; 10 mm: 0.0054 ± 0.0002 min− 1; 15 mm: 
0.0044 ± 0.0002 min− 1; 20 mm: 0.0048 ± 0.0001 min− 1) as the 
thickness increased. The pseudo-zero-order reaction constants for the 
probe positions of 1, 2, and 3 cm in the KI dosimetry tests were 0.32 ±
0.08 μmol/min, 0.37 ± 0.01 μmol/min, 0.36 ± 0.02 μmol/min, and 
0.36 ± 0.06 μmol/min for the thickness of 5, 10, 15, and 20 mm, 
respectively. These differences might be due to the difference between 

zero-order reactions, where the reactant concentration was maintained, 
and first-order reactions, where the reactant concentration decreased 
over time. Lee and Son reported that sonochemical reactions for re
movals of aqueous pollutants generally followed first-order reaction 
kinetics and direct comparisons between zero- and first-order reactions 
are difficult [18]. Thus, the optimal conditions under various geometric 
conditions can vary significantly depending on the characteristics of the 
target reactions.

In addition, the average calorimetric and electrical power increased 
as the thickness increased (5 mm: Pcal = 52.4 ± 3.1 W, Pelec = 124.2 ±
8.9 W; 10 mm: Pcal = 55.6 ± 2.2 W, Pelec = 127.7 ± 8.6 W; 15 mm: Pcal =

59.9 ± 6.0 W, Pelec = 134.3 ± 7.9 W; 20 mm: Pcal = 64.4 ± 5.0 W, Pelec =

134.0 ± 12.7 W). Accordingly, the energy-modified pseudo-zero-order 
reaction constants obtained using Eq. (8) decreased as the thickness 
increased, as shown in Fig. 4S. 

kʹ
1 =

k1

Pcal
or

k1

Pelec
(8) 

Consequently, both the energy-modified reaction constants using calo
rimetric and electrical power decreased as the thickness increased. 
Because it is difficult to understand the effect of thickness on the sono
chemical oxidation activity under limited conditions in this study, 
further research is required under more diverse geometric conditions.

4. Conclusions

The effects of vessel shape, vessel wall thickness, and probe position 
on the sonochemical oxidation activity in 20 kHz probe systems were 
investigated. The electrical and calorimetric power and sonochemical 
activity, quantified using KI dosimetry (pseudo-zero-order reaction ki
netics), varied significantly as the geometric conditions changed. The 
trends for sonochemical activity depending on the probe position were 
similar in circular vessels with diameters of 5 and 10 mm and in rect
angular vessel with a thickness of 5 mm. However, large differences in 
the sonochemical activity trends were observed for different wall 
thicknesses in the rectangular vessel. The highest activities were 
observed at probe positions of 2 and 3 cm in the rectangular vessels, 
whereas they were obtained at 1 cm in the circular vessels and rectan
gular vessels with diameters of 5 and 10 mm. Under various geometric 

Fig. 5. Pseudo first-order reaction constants (k1), calorimetric powers, and electrical powers for the BPA degradation under various geometric conditions (all the 
data points include error bars).
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conditions, the SCL images demonstrated variations in the sonochemi
cally active zones, and the hotspot positions and intensities were 
significantly different depending on the probe position, vessel shape, 
and vessel wall thickness. The SCL trends matched those of the sono
chemical activity quantified using KI dosimetry. However, the trends of 
BPA degradation (pseudo-first-order reaction kinetics) did not match 
those of KI dosimetry at probe positions of 1, 2, and 3 cm for wall 
thicknesses of 5, 10, 15, and 20 mm in rectangular vessels. Thus, it was 
revealed that the geometric optimal conditions for sonochemical activ
ity could vary significantly depending on the applied geometric condi
tions, and further research data should be accumulated to suggest 
guidelines for the appropriate use of 20 kHz probe systems.
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