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 a b s t r a c t

The increasing prevalence of cancer necessitates advanced methodologies for early detection and 
diagnosis. Early intervention is crucial for improving patient outcomes and reducing the overall burden 
on healthcare systems. Traditional centralized methods of medical image analysis pose significant risks 
to patient privacy and data security, as they require the aggregation of sensitive information in a 
single location. Furthermore, these methods often suffer from limitations related to data diversity and 
scalability, hindering the development of universally robust diagnostic models. Recent advancements 
in machine learning, particularly deep learning, have shown promise in enhancing medical image 
analysis. However, the need to access large and diverse datasets for training these models introduces 
challenges in maintaining patient confidentiality and adhering to strict data protection regulations. 
This paper introduces FedViTBloc, a secure and privacy-enhanced framework for medical image 
analysis utilizing Federated Learning (FL) combined with Vision Transformers (ViT) and blockchain 
technology. The proposed system ensures patient data privacy and security through fully homomorphic 
encryption and differential privacy techniques. By employing a decentralized FL approach, multiple 
medical institutions can collaboratively train a robust deep-learning model without sharing raw 
data. Blockchain integration further enhances the security and trustworthiness of the FL process by 
managing client registration and ensuring secure onboarding of participants. Experimental results 
demonstrate the effectiveness of FedViTBloc in medical image analysis while maintaining stringent 
privacy standards, achieving 67% accuracy and reducing loss below 2 across 10 clients, ensuring 
scalability and robustness.
© 2025 The Author(s). Published by Elsevier B.V. on behalf of Shandong University. This is an open access 

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

According to the World Health Organization (WHO), cancer is 
a broad collection of diseases that can begin in practically any 
organ or tissue of the body. These diseases are brought on when 
abnormal cells grow out of control, cross their normal boundaries 
to infect nearby body parts, and/or spread to other organs [1]. 
Cancer was responsible for almost 22% of deaths from noncom-
municable diseases (NCDs) between 2000 and 2016, and it has 
become the leading cause of premature death in high-income 
countries [2].

Cancer of the skin is by far the most common of all cancers. 
Some major types of sin cancer include melanoma, squamous cell 
carcinoma, basal cell carcinoma, Merkel cell carcinoma, and seba-
ceous carcinoma [3]. Melanoma accounts for only about 1% of skin 
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cancers but causes a large majority of skin cancer-related deaths. 
Moreover, it is estimated that about 28,120 men and 39,490 
women in the United States will be diagnosed with melanoma in 
2023 of which 5,420 men and 2570 women of those diagnosed 
are expected to die [4]. Skin cancer is one of the leading types of 
cancer in terms of new cases and mortality for both males and 
females of the 20 world regions surveyed in 2020 [5].

Due to the steady and continuous depletion of the ozone layer, 
the amount of hazardous ultraviolet (UV) radiation making its 
way to the earth’s surface is on the rise. These UV rays are one 
major cause of melanoma as they can cause enormous damage 
to the DNA on skin cells and cause those cells to not function 
effectively leading to them becoming cancerous cells [6]. This 
phenomenon is referred to as acquired gene mutations, where 
the gene changes occur over a person’s lifetime as opposed to 
inherited gene mutation where the affected cells are passed from 
parent to offspring [4].
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Experts have come to the conclusion that the early detec-
tion of cancer often opens the door to more treatment options. 
Moreover, it can help prevent the further spread of cancer and 
thus reduce the mortality rate associated with cancers [7]. How-
ever, the traditional means of cancer detection involving lesion 
inspections by physicians using their naked eyes followed by 
dermoscopy for skin lesion pattern analysis solely depends on the 
physician’s skills, and often lesions on the skin look similar, thus 
it is hard to detect cancers early using this technique.

In recent analyses by medical experts, it has been unequivo-
cally established that timely cancer detection significantly
broadens the scope of available therapeutic interventions. Ad-
ditionally, early detection plays a crucial role in curbing the 
progression of cancer, thereby mitigating mortality rates as-
sociated with malignancies [7]. Nevertheless, the conventional 
approach to cancer detection, reliant on visual inspection of 
lesions by physicians, followed by dermoscopy for skin lesion 
pattern analysis, heavily relies on the skill and expertise of the 
medical practitioner. Given the inherent resemblance of certain 
skin lesions, this method proves inadequate for achieving early 
cancer detection [7,8]. Moreover, the manual procedure for skin 
cancer inspection is prone to time consumption and susceptible 
to potential human errors during the diagnostic process.

While medical imaging advancements have improved can-
cer detection, they have also raised significant privacy concerns. 
Medical images often contain sensitive patient information, and 
centralized storage or sharing can risk data breaches and unau-
thorized access. Ensuring privacy and security in medical image 
analysis is vital to maintaining patient trust and complying with 
government regulations [9].

1.1. Research motivations

1. Preserving Patient Privacy: The primary motivation is to 
address the critical concern of preserving patient privacy in 
medical image analysis.

2. Enhancing Data Security: Another key motivation is to 
enhance the security of sensitive medical data.

3. Enabling Collaborative Research: The paper seeks to facil-
itate collaborative medical research while respecting data 
privacy.

4. Early Skin Cancer Detection: One of the specific applica-
tion areas and motivations for the paper is to improve early 
skin cancer detection through medical image analysis.

1.2. Research contributions

The major contributions of this work include:

1. The use of Vision Transformer models in a federated learn-
ing setting for medical image analysis. This integration 
allows multiple clients (medical institutions) to collabora-
tively train a powerful deep-learning model without shar-
ing raw data, thus preserving data privacy.

2. Proposed a hybrid privacy-preserving technique that in-
volves fully homomorphic encryption (FHE) and differen-
tial privacy. FHE encrypts the model updates sent from 
clients to the server. This ensures that the updates are 
kept confidential during transmission. At the server, a dif-
ferential privacy mechanism is applied to aggregate the 
encrypted model updates. This technique involves the ad-
dition of noise to the aggregated updates, preserving the 
privacy of individual client contributions.
2

3. This paper implements blockchain technology for client 
registration, ensuring secure and trusted onboarding of 
participants in the federated learning process. Each client’s 
identity and credentials are securely recorded on the
blockchain, preventing unauthorized access and ensuring 
that only trusted and authenticated clients can participate 
in the collaborative training. This blockchain-based client 
management enhances the overall security and trustwor-
thiness of the federated learning system for medical image 
analysis.

The organization of the paper is as follows: Section 2 reviews 
related works and background studies. Section 3 outlines the pro-
posed system model. Section 4 details the experimental setup and 
analyzes the results of the proposed scheme. Finally some future 
research directions were introduced in Section 5, and Section 6 
concludes the paper.

2. Related works & background study

Over the years, a wide array of technologies and approaches 
have been employed for the diagnosis of skin lesions. However, 
it is worth noting that many of these approaches have prioritized 
achieving accurate diagnoses without adequate consideration for 
client privacy. Conversely, some methodologies have taken into 
account the critical aspect of client privacy alongside diagnostic 
accuracy. In the following section, we provide an overview of 
select technologies and methodologies utilized in the detection 
of skin cancer.

2.1. Federated learning in medical images

The escalating generation of data across diverse sources has 
prompted the emergence of Federated Learning, a novel approach 
to machine learning. Unlike traditional centralized methods, Fed-
erated Learning enables collaborative model training without 
centralizing raw data. It leverages local data storage and pro-
cessing, allowing individual entities to refine a shared model 
through iterative updates while safeguarding data privacy [10]. 
Federated Learning has notably surged in popularity within the 
health sector. The sensitive nature of patient data and the demand 
for advanced machine learning models have driven its adoption. 
This approach addresses challenges in sharing medical data due 
to privacy and regulatory concerns, offering collaborative model 
training while ensuring data security [11–13]. Authors in [14] 
presented a comprehensive review of FL approaches used in 
medical image analysis.

An intelligent federated ML-based dermoscopy was proposed 
in [15]. The authors built a dermoscopic device that would enable 
clinicians to better diagnose skin tumors. It was named adap-
tive because the authors claimed it was capable of classifying 
new skin tumors even after deployment through its continuous 
learning process. The FL consisted of a previously proposed cloud-
based ensemble CNN. Experimental results show a skin lesion 
classification accuracy of 95% using the ISIC dataset. In [16], 
privacy-preserving FL for skin cancer diagnosis was proposed. The 
authors aimed to break down data silos and demonstrate the 
collaborative nature of AI. They used a CNN model of two blocks 
with each block consisting of a convolutional layer, a ReLU layer, 
and a max pooling layer. Moreover, 5 edge devices were used 
for experimental, and the model trained for 50 epochs showed 
an accuracy of 90% which was lower than the 95% recorded 
without using FL. However, the drop in loss was justified by the 
improvement in data privacy. Custom FL is introduced in [17], 
with the aim of client models in FL to better avoid the negative 
influence introduced in the global model by other clients. In this 
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approach, each client trains its own model while the FL model 
is mainly used as a feature extractor that guides the training 
of each client model. Each client node first splits its network 
into a feature extractor and a task-specific head, then trains and 
updates its personalized network iteratively prior to sending the 
update to the server for aggregation. Experiments were carried 
out using the HAM10000 dataset with varying numbers of clients 
and results compared with other methods. AN accuracy of 79% 
was the highest recorded for this scheme.

While FL has shown great improvements in the classification 
of skin cancer, it is still plaque with some challenges such as 
poisoning and byzantine attacks. A poisoning attack occurs when 
a client’s local training data or model is tampered with or pol-
luted thereby affecting the security of the FL system. Whereas a 
byzantine attack occurs when multiple clients collude to attack a 
distributed learning environment [18].

2.2. Vision transformers in medical images

The Vision Transformer (ViT) stands as a revolutionary neural 
architecture that has transformed computer vision by leverag-
ing self-attention mechanisms from natural language process-
ing and applying them to image data. ViT deconstructs images 
into fixed-size patches, embedding them linearly before direct-
ing them through a transformer encoder [19,20]. This innova-
tive approach eliminates the necessity for manually designed 
convolutional neural networks and instead allows for end-to-
end learning of image features. By enabling interactions among 
patches in both directions, ViT captures extensive dependencies, 
enhancing its ability to model the broader context of images. 
ViT’s remarkable success has not only expanded the frontiers 
of image classification but has also sparked progress in diverse 
computer vision tasks, ushering in fresh prospects for AI research 
and practical applications [21,22].

Authors in [23] proposed a two-tier architecture for the ef-
fective classification of skin cancer. The first tier consists of data 
augmentation methods aimed at increasing the number of sam-
ples in the HAM10000 dataset. Whereas in the second tier, the 
authors leveraged the prowess of medical vision transformers 
(MVT) used in medical image analysis to develop an MVT-based 
model for skin cancer classification. A large ViT model was used 
with an MLP head attached to the ViT output. An accuracy of 
96%, sensitivity of 96%, f1-measure of 97%, and precision of 96% 
were recorded. A novel ViT model for skin cancer classification 
was presented in [24]. The approach relied on transfer learning 
by using a pre-trained ViT model and fine-tuning it with the 
HAM10000 dataset. Fine-tuning was done by adding at the end 
of the transformer encoder block, a classification block consisting 
of a flattened layer, and two batch normalizations separated by a 
dense layer with GeLU activation. The experiment achieved a 94% 
accuracy, outperforming all compared methods. Similarly in [25], 
a pre-trained ViT fine-tuned with an MLP on the HAM10000 was 
used. However, a contrastive learning approach was introduced. 
Contrastive learning uses a contrastive loss function to reduce the 
similarity of samples belonging to the same class and maximize 
the similarity of samples in different classes. This model had an 
accuracy of 94%.

2.3. Blockchain & FHE in medical images

Blockchain is a distributed ledger system and has seen rapid 
adoption since the release of the Bitcoin white paper in 2012. 
It is a chain of blocks that holds data as digital signatures in a 
decentralized and distributed manner. The major features and 
strengths of blockchain are its immutability, transparency, and 
decentralized nature [26]. In the health sector, blockchain has 
3

been deployed for medical data access [27], and drug tracing 
among others [28]. Using FHEs, blockchain networks, when de-
ployed in the health sector, help to provide an additional layer of 
data security.

Authors in [29] proposed a framework that used blockchain 
and DL for skin cancer classification. Blockchain was used in 
storing the medical images of patients while an optimal DL 
model was used for the training and classification of the im-
ages. Although blockchain and AI have consistently been used 
together [30], there exists very little attention paid to using them 
for the classification of skin cancer.

3. System model

This section introduces a novel framework for classifying skin 
lesions. The proposed framework proficiently distinguishes be-
tween cancerous and non-cancerous lesions. Moreover, it is de-
signed to mitigate the risk of private or sensitive client data 
leakage. The system protects sensitive medical images and meta-
data, including patient identifiers and diagnostic information. 
A compromise in this data could lead to unauthorized access, 
misuse, or breaches of patient confidentiality, resulting in legal, 
ethical, and operational repercussions for healthcare providers.

The process begins with each client (hospital institution) sub-
mitting a request to join the blockchain network, referred to 
as the registration stage. Upon completion of client registration, 
the client receives the global model and commences training 
with its local data. Local training utilizes a pre-trained ViT model 
that has been adapted for classification tasks. Following a few 
training epochs, the client is prepared to transmit its updates to 
the server. By employing FHE, the model updates are encrypted 
to ensure confidentiality before transmission to the server. To 
safeguard the client’s identity, differential privacy is employed by 
introducing a level of noise during the aggregation of encrypted 
model updates on the server. While FHE secures the transmission 
of model updates, Differential Privacy (DP) obfuscates individual 
contributions during aggregation by introducing controlled noise. 
For instance, updates from a hospital’s local model are encrypted, 
ensuring unreadability during transmission. At the server, DP 
adds small random noise (e.g., ±0.01) to aggregated updates, 
such as modifying a value of 0.65 to 0.64 or 0.66. This dual-
layer approach ensures end-to-end privacy, addressing potential 
inference attacks while enabling collaborative model training.

Fig.  1 presents a visual representation of the proposed scheme, 
which consists of eight (8) distinct steps, each of which is elabo-
rated upon below:

1. The client initiates the process by sending a join request to 
the blockchain network.

2. The network evaluates the request, accepting it only if the 
specified conditions are satisfied.

3. Subsequently, the server dispatches a global model to the 
registered client.

4. The client commences its training procedure, utilizing its 
local data in conjunction with the modified ViT model.

5. Upon completion of training, the model updates are sub-
jected to encryption.

6. The encrypted updates are transmitted to the server.
7. An algorithm for differential privacy (DP) is established.
8. The model aggregation process is executed using the DP 

mechanism defined in step 7.
9. Steps 3 through 8 are iteratively repeated as needed.

This schematic representation delineates the core sequence of 
actions within the proposed scheme. The algorithm and symbolic 
notations for the proposed scheme are both given in Algorithm 1 
and Table  1 respectively.
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Fig. 1. Architecture of the FedViTBloc framework.
Table 1
Notation summary.
 Symbol Description  
 C Number of clients  
 T Number of training rounds  
 w(t) Global model weights at round t  
 w

(t)
i Local model weights of client i at round t  

 w̃
(t)
i Encrypted local model weights of client i at round t  

 Enc() Encryption operation  
 ⊕, ⊗ Homomorphic addition and scalar multiplication operations 
 N (0, σ 2) Gaussian noise for Differential Privacy  
 η̃ Encrypted noise for DP  

3.1. Federated learning architecture

This paper employs a Federated Learning (FL) architecture, 
wherein multiple clients contribute to the training of a model. In 
FL, clients collaboratively train a model under the coordination 
of a central server while maintaining decentralized control over 
their training data. FL typically encompasses three (3) key steps: 
(1) The server dispatches the initial model to each client device. 
(2) Each device trains its model using its local data, without shar-
ing it with other devices. (3) The server collects and aggregates 
the locally trained models from all participating clients using Fed-
erated Averaging (FedAvg). FedAvg computes a weighted average 
of the model parameters based on the size of the local datasets 
at each client, ensuring efficient and accurate aggregation across 
heterogeneous data distributions [10].

Despite the absence of direct data exchange between the 
server and clients, there is a potential risk posed by malicious 
actors who could analyze the parameters trained and uploaded 
by clients, potentially revealing sensitive client information and 
data [31]. Additionally, there is the concern that these updates 
from clients could be intercepted and tampered with before 
4

reaching the server [18]. Hence, it is evident that data security 
and client privacy remain significant challenges within the FL 
framework. These issues will be addressed in subsequent subsec-
tions. In this paper, each client represents a hospital institution, 
and the FL system can accommodate any number of clients 
meeting specific minimum requirements.

3.2. Blockchain

In federated learning, participants may include organizations, 
individuals, or devices, each with specific access requirements 
and permissions. Smart contracts, as self-executing agreements 
on a blockchain, provide an automated and tamper-resistant 
means of enforcing access control. When a participant seeks 
to join a federated learning network or contribute data to the 
collaborative model, a smart contract deployed on the blockchain 
can facilitate access control checks. Although all clients can use 
the global model for inference, not all clients can be allowed to 
contribute to the global model training. The smart contract can 
verify the eligibility of a participant based on predefined rules 
and conditions encoded within the contract.

This paper introduces the utilization of a smart contract for 
access control by defining a function for client registration. To 
participate in training, a client must initially invoke the ‘‘register’’ 
method on the smart contract and possess a specified minimum 
amount of training data before being granted access. Addition-
ally, the smart contract defines a reward distribution model, 
automatically computing and disbursing rewards to participants 
based on the size of their contributed data. Participants who 
contribute a substantial volume of data are eligible for rewards. 
To facilitate a client’s participation, they must provide their name 
(hospital name) during the registration process. Upon approval, a 
unique blockchain address is allocated to the client. Subsequently, 
this assigned address serves as the client’s means of interaction 
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Algorithm 1 Privacy-Preserving Federated Learning
1: Input:

• C: Number of participating clients
• Di: Local dataset of client i (i ∈ {1, 2, . . . , C})
• T : Number of training rounds
• w0: Initial global model weights
• ϵ: Privacy budget for Differential Privacy
• E: Homomorphic encryption scheme (encryption Enc(), 

homomorphic operations ⊕, ⊗)

2: Initialization: Server initializes global model weights w0.
3: Server shares Enc(w0) (encrypted global model) with all 

clients {C1, C2, . . . , CC }.
4: for t = 1 to T  do
5:  for each client i in parallel do
6:  Model Training: Client i decrypts Enc(w(t)) to obtain 

w(t).
7:  Train local model using dataset Di, resulting in updated 

weights w(t)
i .

8:  Encryption: Client encrypts local weights: w̃
(t)
i =

Enc(w(t)
i ).

9:  Client sends w̃(t)
i  to the server.

10:  end for
11:  Aggregation at Server:
12:  Perform homomorphic aggregation:

w̃(t+1)
=

1
C

C⨁
i=1

w̃
(t)
i

13:  Add Differential Privacy:
14:  Server adds noise calibrated to the privacy budget ϵ:

η̃ = Enc(η), η ∼ N (0, σ 2), σ = ∆f /ϵ

where ∆f  is the sensitivity of the aggregation function.
w̃(t+1)

= w̃(t+1)
⊕ η̃

15:  Server shares w̃(t+1) with all clients.
16: end for
17: Output: Final encrypted global model w̃T .

with the Federated Learning (FL) architecture on all future oc-
casions as no two clients can have the same address. The use 
of smart contracts ensures fairness, transparency, and immediate 
compensation, reducing the need for centralized intervention.

3.3. Modified vision transformer

Transformers, originally rooted in self-attention mechanisms 
and initially applied in natural language processing, have found 
extensive utility in various computer vision tasks, consistently 
outperforming other deep neural networks such as Convolu-
tional Neural Networks (CNN) and Recurrent Neural Networks 
(RNN) [21]. A key concept underlying Vision Transformer (ViT) 
models involves segmenting input images into fixed-size patches, 
which are then processed through a transformer-based archi-
tecture. This approach enables the extraction of comprehensive 
global and intricate local features from the image [20].

In this study, we incorporate a pre-trained vit model, notable 
for its moderate layer count, attention heads, and associated 
parameters. With a patch size of 16 and the ability to handle 
224 × 224 images, this model has exhibited proficiency on the 
ImageNet dataset. Therefore, we perform fine-tuning to adapt 
5

it for skin lesion classification. To achieve this, we introduce a 
custom classification head, which is connected to the end of 
the ViT model. This classification head consists of a series of 
connected layers. A pictorial structure of the ViT model can be 
seen in Fig.  2.

The initial layer unflattens the 1D array inherited from the pre-
vious layer, resulting in a 4D array, which is then passed through 
a convolutional layer. The output from the convolutional layer 
undergoes max-pooling before being flattened and subsequently 
passed through a fully connected layer that includes two hidden 
layers. Finally, the output layer is responsible for categorizing 
the input into one of seven distinct classes of skin lesions. This 
custom classifier effectively processes the ViT model outputs, 
ultimately providing predictions for skin lesion types.

3.4. Security & privacy-preserving techniques

As mentioned earlier, Federated Learning (FL) is susceptible 
to security and privacy vulnerabilities, particularly during the 
upload of model updates from clients to the server and during 
the aggregation of these updates on the server [31]. In this paper, 
we present methods to enhance the security of model updates 
before they are uploaded to the server. Additionally, we employ 
a privacy-preserving aggregation technique to safeguard client 
privacy during the aggregation process.

3.4.1. Secure model updates
In contrast to conventional encryption methods, which rely 

on the exchange of public or private keys for decryption prior to 
computation, FHE enables computations to be performed directly 
on encrypted data without the need for decryption. This paper 
incorporates FHE in FL to ensure secure transfer and processing of 
model updates from clients to the server. Using PySyft, a Python 
library for privacy-preserving machine learning, each client’s lo-
cal model parameters are encrypted before being transmitted. 
Once the encrypted updates reach the server, operations such as 
aggregation and global model updates are executed directly on 
the encrypted data, maintaining data confidentiality throughout 
the federated learning process. This ensures that sensitive client 
information remains secure while enabling collaborative training.

3.4.2. Differential privacy aggregation
During FL training, it is important to preserve the privacy 

of individual client and their contributions. FL inherently aims 
to protect the privacy of individual participants’ data. However, 
even in FL, there can be risks of information leakage or inference 
attacks. Differential Privacy (DP) adds an additional layer of pri-
vacy protection by making it mathematically challenging for an 
attacker to determine whether a specific individual’s data was 
used in the model training or to extract sensitive information 
about an individual from the model’s output [32,33]. Moreover, 
medical institutions will be more willing to participate in FL 
collaborations if they know their data will be treated with strong 
privacy guarantees.

One approach to enhancing utility while maintaining privacy 
is through the management of a privacy budget. The privacy 
budget is a finite and predetermined amount of privacy pro-
tection, typically denoted as epsilon (ϵ). The selection of ϵ is a 
pivotal decision in the context of DP. A smaller ϵ corresponds to 
a more stringent privacy guarantee, signifying stronger privacy 
protection. Conversely, a larger ϵ implies a weaker privacy guar-
antee, allowing for a higher potential for information leakage [34]. 
Following the application of DP, model aggregation takes place 
on the server before the aggregated model is transmitted to the 
participating clients.
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Fig. 2. Modified vision transformer.
 

In this work, we have incorporated Opacus, a library designed 
for integrating Differential Privacy (DP) into PyTorch models [35]. 
Furthermore, we have explored various noise levels to strike a 
balance between achieving better privacy and maintaining ac-
ceptable data utility.

3.5. System complexity

The complexity of FedVitBloc algorithm can be analyzed in 
three primary aspects, client-side computation, server-side com-
putation, and communication overhead.

3.5.1. Client-side computation complexity
The training complexity depends on the size of the local 

dataset (|Di|), the model architecture, and the number of epochs 
(E). If the model has M parameters, the training complexity 
is approximately O(E · |Di| · M). FHE is applied to the model 
updates after training. Encrypting each parameter incurs a cost of 
O(logM), so for M parameters, the total complexity of encryption 
is: O(M · logM). Each client sends its encrypted model updates 
to the server. If the model has M parameters, the communication 
cost per client is O(M).

3.5.2. Server-side computation complexity
Aggregating the encrypted updates from C clients involves ho-

momorphic addition and scalar multiplication. For M parameters 
per client, the aggregation complexity is O(C · M). The server 
adds noise calibrated to the privacy budget ϵ. Noise generation 
is typically independent of M , so this operation has negligible 
complexity compared to aggregation O(1).

3.5.3. Communication overhead
Communication overhead is incurred during the exchange of 

model updates between clients and the server. Each client sends 
its encrypted model updates of size M to the server. For C clients, 
the total communication cost is O(C · M). The server sends the 
aggregated encrypted global model of size M back to all clients, 
adding another O(C · M). The total communication overhead per 
round is: O(C · M).

3.5.4. Total complexity per round
Combining all components, the total complexity per round (T

rounds) is:
O (T · (E · |Di| · M + M · logM + 2C · M))
6

4. Experiments

This section encompasses a comprehensive account of the 
experimental procedures conducted in this research, the tech-
nologies employed, and a subsequent discussion of the obtained 
results.

4.1. Experimental setup

The experimental setup employed an Ubuntu operating sys-
tem equipped with three NVIDIA GeForce RTX 3090 GPUs. For the 
different components of the proposed scheme, three distinct files 
were utilized:

1. server.py: This file is responsible for defining the server 
configuration and handling model aggregation.

2. client.py: Within this file, functionalities for client training 
and testing are implemented. Additionally, it contains func-
tions for communicating with the smart contract to verify 
client registration and manage reward assignments.

3. client_registration.sol: This smart contract is a prereq-
uisite for clients to register before participating in the 
training process. It maintains a record of client addresses 
and enforces the reward system.

As previously mentioned, our implementation leveraged PySyft
for FHE and Opacus for Differential Privacy (DP) on model pa-
rameters, primarily within the client.py component. In the con-
text of blockchain implementation, we utilized Ganache, a local 
blockchain network, to facilitate our experiments. Ganache sets 
up a private blockchain network that runs on a local machine, 
allowing one to create and manipulate accounts, mine blocks, and 
deploy smart contracts in a controlled environment. It generates 
a set of test accounts with predefined addresses and private 
keys. These accounts were used as client accounts for testing 
the proposed scheme. The federated learning architecture is built 
using the Flower [36] framework.

4.2. Dataset

The ‘‘HAM10000’’ dataset is a collection of dermatoscopic im-
ages of common pigmented skin lesions, designed for use in 
machine learning and artificial intelligence research, particularly 
in the field of dermatology and medical image analysis. It consists 
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Fig. 3. Insight into the HAM10000 dataset. (a) Distribution of skin lesion type. (b) Distribution of lesion localization. (c) Diagnosis type distribution. (d) Age distribution 
across skin lesion types. (e) Gender-based distribution of skin lesion types. (f) Age distribution.
of 10,015 clinical images of pigmented lesions, which include var-
ious types of skin conditions such as melanoma, nevus, seborrheic 
keratosis, and more. These images are accompanied by metadata, 
including diagnostic information and patient details, making it 
a valuable resource for training and testing machine learning 
models to detect skin cancer and other skin disorders [37]. An 
insight into the dataset is presented in Fig.  3.

In Fig.  3a, it is evident that Melanocytic nevi constitute the 
majority of samples, with approximately 6700 instances, followed 
by benign keratosis-like lesions with around 1000 samples. Fig. 
3b highlights that skin lesions are primarily localized on the 
back (approximately 2100 samples), trunk (approximately 2000 
samples), and lower extremities (approximately 1200 samples). 
The dataset predominantly uses histopathology as the diagnostic 
method, with nearly 5000 cases, followed by medical follow-
ups at approximately 4000 cases, as shown in Fig.  3c. Fig.  3d 
illustrates that Melanocytic nevi span all age groups, while basal 
cell carcinoma predominantly affects patients aged 60 and above. 
Gender-wise, as depicted in Fig.  3e, most lesion types are evenly 
distributed, with actinic keratoses showing a higher prevalence 
in males. Finally, Fig.  3f reveals that the majority of skin lesions 
occur in adults aged 30 to 80, with density peaks around ages 20 
and 60.
7

4.3. Experimental results

4.3.1. Accuracy & loss
The efficacy of the proposed approach is meticulously scruti-

nized through a comprehensive analysis of accuracy, defined as 
the proportion of correct predictions made by the model out of 
the total number of examples. Fig.  4 vividly illustrates the accu-
racy trends for five distinct clients (Clients 1 to 5) as the number 
of epochs increases. Initially, the accuracy for all clients starts 
at approximately 50% but experiences consistent improvements 
as training progresses. By epoch 20, the accuracy for all clients 
shows a significant jump, with Client 1 achieving approximately 
67%, Client 2 reaching 65%, and Client 3, Client 4, and Client 5 
stabilizing around 62%–64%. Despite some fluctuations in earlier 
epochs, the accuracy converges for all clients between 65% and 
67% by epoch 50, showcasing uniform performance across the 
client spectrum. This exponential growth in accuracy underscores 
the robustness and effectiveness of the proposed approach across 
multiple clients. The observations substantiate the approach’s po-
tential to consistently enhance accuracy metrics with prolonged 
training, reinforcing its impact and suitability for diverse client 
scenarios.

Likewise, a parallel behavior is discerned among Clients 6 to 
10, as elucidated in Fig.  5. The accuracy for these clients starts at 
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Fig. 4. Accuracy trends for clients 1 to 5 over increasing epochs.

Fig. 5. Accuracy trends for clients 6 to 10 over increasing epochs.

approximately 50% in the initial epochs, with some variability. A 
notable improvement is observed around epoch 20, where Client 
6 achieves an accuracy of approximately 67%, while Clients 7, 8, 
9, and 10 reach accuracies between 64% and 66%. By epoch 50, 
all clients converge with accuracies stabilizing between 65% and 
67%, mirroring the trend observed in Clients 1 to 5. This consistent 
pattern of accuracy improvement with an increasing number of 
epochs underscores the robust and generalizable nature of the 
proposed approach. The uniformity in accuracy trends across 
multiple client groups highlights the adaptability and scalabil-
ity of the approach, substantiating its efficacy in diverse client 
scenarios. This further reaffirms the reliability and broad appli-
cability of the proposed method in optimizing accuracy across a 
wide client spectrum.

Loss refers to the measure of error between the predicted 
class probabilities and the actual class labels. The behavior of 
the proposed approach is also analyzed for Clients 1 to 5 for 
loss, as depicted in Fig.  6. Initially, the loss for all clients is high, 
with values exceeding 20, and Client 2 peaking at over 30 within 
the first few epochs. However, a significant reduction in loss 
is observed around epoch 10, where all clients show a sharp 
decrease, with loss values dropping below 5. By epoch 20, the 
loss values for all clients converge, stabilizing between 0 and 
2, and remain consistent through to epoch 50. This consistent 
trend highlights the effectiveness of the proposed approach in 
minimizing loss over successive epochs across various clients. 
The substantial reduction in loss signifies the approach’s ability 
8

Fig. 6. Loss reduction for clients 1–5 over training epochs.

Fig. 7. Loss reduction for clients 6–10 over training epochs.

to refine and optimize model parameters, contributing to en-
hanced performance and convergence. The observed uniformity 
in loss reduction across multiple clients underscores the relia-
bility and versatility of the proposed approach, substantiating its 
applicability and effectiveness in diverse client scenarios.

Similarly, the behavior is observed for Clients 6 to 10 in terms 
of loss, as illustrated in Fig.  7. Initially, the loss for all clients 
is high, exceeding 20 for most clients and peaking at over 35 
for Client 7 within the first few epochs. A sharp reduction in 
loss occurs around epoch 10, where all clients drop their loss 
values below 5. By epoch 20, the loss for all clients stabilizes, 
with values consistently falling between 0 and 2, and this trend 
persists through to epoch 50.

This consistent and noticeable exponential decrease in loss 
emphasizes the robustness and effectiveness of the proposed 
approach in minimizing loss across a diverse range of clients. 
The substantial reduction in loss signifies the approach’s ability 
to adapt and optimize model parameters for improved conver-
gence and overall performance. This consistent behavior further 
supports the generalizability and reliability of the proposed ap-
proach, indicating its potential to yield favorable outcomes across 
different sets of clients.

Likewise, we observe a consistent trend in the accuracy of 
the proposed approach concerning epsilon, as illustrated in Fig. 
8. At lower epsilon values (e.g. ϵ = 20), accuracy starts at 
approximately 50%. As epsilon increases, a notable improvement 
in accuracy is observed, with accuracy reaching around 60% at 
ϵ = 30 Beyond this, the accuracy continues to improve steadily, 
peaking at approximately 67% when ϵ exceeds 40. This observa-
tion emphasizes the positive association between epsilon values 
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Fig. 8. Relationship between epsilon values and model accuracy.

Fig. 9. Relationship between epsilon values and model loss.

and the accuracy attained by the proposed approach. The trend 
highlights the adaptability and responsiveness of the approach 
to variations in epsilon, demonstrating its capacity to optimize 
accuracy in accordance with the specified constraints. This stead-
fast and positive connection between epsilon and accuracy serves 
to underscore the effectiveness and versatility of the proposed 
approach across diverse epsilon scenarios.

In a parallel manner, the trend is evident for the loss incurred 
by the proposed approach concerning epsilon, as illustrated in Fig. 
9. At lower epsilon values (e.g. ϵ = 20), the loss is initially high, 
exceeding 20 and peaking at nearly 30. As epsilon increases, a 
significant reduction in loss is observed. Around ϵ = 30, the loss 
decreases sharply to values below 5. Beyond ϵ = 35, the loss 
stabilizes, maintaining consistent values close to 2 across higher 
epsilon values.

This observation emphasizes the inverse correlation between 
epsilon values and the incurred loss by the proposed approach. 
The trend underscores the adaptability and responsiveness of the 
approach to variations in epsilon, demonstrating its capacity to 
optimize loss based on the specified constraints. This consistent 
and negative relationship between epsilon and loss further high-
lights the efficacy and versatility of the proposed approach across 
different epsilon scenarios, providing valuable insights into its 
performance under varying privacy considerations.

The Table  2 encapsulates crucial metrics across multiple eval-
uation rounds for the proposed approach. Each row corresponds 
to a distinct round, providing insights into the model’s evolving 
performance. The ‘‘Accuracy (%)’’ column reveals the percentage 
of correct predictions, showcasing a modest improvement from 
69.0602% in Round 1 to 70.357% in Round 2. The ‘‘Loss’’ met-
ric, reflecting the disparity between predicted and actual values, 
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Table 2
Evaluation metrics across multiple rounds. This table provides a comprehensive 
overview of key performance metrics (accuracy, loss, and epsilon) for the 
proposed FedViTBloc approach over different evaluation rounds.
 Round Accuracy (%) Loss Epsilon (ϵ) 
 1 69.0602 1.29843 28.1379  
 2 70.3570 1.29780 40.1070  

slightly decreases from 1.29843 to 1.2978, indicating improved 
model precision. Epsilon (ϵ), a parameter influencing privacy lev-
els in federated learning, is highlighted in the table. In Round 1, an 
epsilon value of 28.1379 is employed, and it increases to 40.1070 
in Round 2. The chosen epsilon values signify the delicate balance 
between privacy preservation and model accuracy, where higher 
epsilon values prioritize enhanced privacy at the potential ex-
pense of accuracy. This table provides a comprehensive snapshot 
of the model’s performance dynamics, privacy considerations, and 
the nuanced trade-offs inherent in federated learning evaluations.

4.4. Smart contract

Blockchain is leveraged in this work to enhance security
through its decentralized architecture, effectively eliminating a 
single point of failure. Nonetheless, smart contracts are rec-
ognized as potential sources of security vulnerabilities within 
the blockchain ecosystem. To mitigate such vulnerabilities and 
safeguard user data and privacy, we have rigorously examined 
our smart contract using SOlidCheck [38]. The analysis yielded 
an impeccable result, with a security score of 100%, as depicted 
in Fig.  10. This outcome underscores the robustness of our system 
against vulnerabilities, ensuring data privacy.

The deployment details of the smart contract are presented in 
Fig.  11. The deployment cost and gas cost amounted to
0.002280652875 ETH and 675749 units, respectively.

Additionally, Fig.  12 provides a limited screenshot of the 
server.py and client.py terminal outputs. In the server.py com-
mand line output (the first terminal in the figure), it is evident 
that two out of five clients were sampled in the first round, with 
the results successfully received, indicating no failures. In the 
client.py output (the remaining five terminals), client training is 
initiated only when the isRegistered flag is set to True. Initially, 
the flag is False; upon invocation of the smart contract, the client 
is registered, and training commences.

5. Future work

While the proposed FedViTBloc framework demonstrates sig-
nificant advancements in privacy-preserving medical image anal-
ysis, there are several directions for future research to enhance its 
capabilities.FHE introduces computational overhead that can limit 
scalability in real-world applications. Future work will explore 
optimizing FHE implementations to improve efficiency while 
maintaining strong privacy guarantees.

Also, the increased complexity introduced by privacy-
preserving techniques, such as FHE and DP, can negatively impact 
model accuracy. Future work will focus on optimizing the trade-
off between system complexity and model performance by fine-
tuning hyperparameters, improving aggregation methods, and 
exploring privacy-enhancing algorithms with lower computa-
tional overhead. The blockchain component ensures secure client 
registration and participation. However, the scalability and en-
ergy consumption of the blockchain need to be optimized. Future 
work will explore energy-efficient consensus mechanisms and 
sharding techniques to enhance the blockchain’s performance.
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Fig. 10. Security evaluation of the smart contract using SolidCheck.
Fig. 11. Console output showing the deployment of the ClientRegistration smart contract on the blockchain network using the Truffle framework. Key details include 
the transaction hash, contract address, block number, gas used, and the total deployment cost in Ethereum, indicating a successful setup for secure client registration.
6. Conclusion

The rising incidence of cancer calls for advanced techniques 
for early detection and diagnosis. Early intervention is essen-
tial for improving patient outcomes and alleviating the overall 
strain on healthcare systems. Traditional centralized approaches 
to medical image analysis pose significant risks to patient privacy 
and data security, as they necessitate the collection of sensi-
tive information in a single location. Additionally, these methods 
often face challenges related to data diversity and scalability, 
which impede the development of universally robust diagnostic 
models. Recent advancements in machine learning, particularly 
deep learning, have shown potential in enhancing medical image 
analysis. However, the requirement to access large and diverse 
datasets for training these models presents challenges in pre-
serving patient confidentiality and complying with strict data 
protection regulations. In this study, we proposed FedViTBloc, 
a novel framework that integrates Federated Learning, Vision 
10
Transformers, and blockchain technology to enhance the security 
and privacy of medical image analysis. Our approach addresses 
critical issues related to patient data privacy and security while 
enabling collaborative research among medical institutions. The 
experimental results on the HAM10000 dataset validate the ef-
ficacy of our framework in accurately classifying skin lesions, 
showcasing its potential for early cancer detection. The incor-
poration of FHE and differential privacy ensures that sensitive 
data remains secure throughout the training process. Addition-
ally, blockchain technology provides a secure mechanism for 
client registration and participation, further strengthening the 
trustworthiness of the system. FedViTBloc represents a significant 
advancement in the field of medical image analysis, offering a 
scalable and secure solution for real-world applications. Future 
work will focus on optimizing the framework and exploring ad-
ditional privacy-preserving techniques to further enhance data 
security.
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Fig. 12. Terminal Outputs of server.py and client.py Scripts. This screenshot captures the terminal outputs during the federated learning process, demonstrating 
successful client registration and training, with details on the interactions between the server and clients.
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