Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Computational simulations of the effects of the G229D KCNQ1 mutation on human atrial fibrillation

Full metadata record
DC Field Value Language
dc.contributor.authorZulfa, Indana-
dc.contributor.authorShim, Eun Bo-
dc.contributor.authorSong, Kwang-Soup-
dc.contributor.authorLim, Ki Moo-
dc.date.available2021-04-29T08:42:42Z-
dc.date.created2020-06-16-
dc.date.issued2016-09-
dc.identifier.issn1880-6546-
dc.identifier.urihttps://scholarworks.bwise.kr/kumoh/handle/2020.sw.kumoh/19147-
dc.description.abstractAtrial fibrillation (AF) is related to mutations at the genetic level. This includes mutations in genes that encode KCNQ1, a subunit of the I (Ks) channel. Here, we investigate the mechanism of gain-of-function in I (Ks) towards the occurrence of AF. We used the Courtemanche-Ramirez-Nattel (CRN) human atrial cell model (Am J Physiol Heart Circ Physiol 275:H301-H321, 1998) and applied the modification proposed by Hasegawa et al. (Heart Rhythm 11:67-75, 2014) to fit the behavior of I (Ks) due to the G229D mutation in KCNQ1 under a heterozygous mutant form. This was incorporated into two-(2D) and three-dimensional (3D) tissue models, where the mutation sustained a reentrant wave. However, under the wild-type condition, the reentrant wave terminated before the end of our simulations (in 2D, the spiral wave terminated before 10 s, while in 3D, the spiral wave terminated before 13 s). Sustained reentry under the mutation conditions also resulted in a spiral wave breakup in the 3D model, which was sustained until the end of the simulation (20 s), indicating AF.-
dc.language영어-
dc.language.isoen-
dc.publisherSPRINGER JAPAN KK-
dc.subjectHUMAN VENTRICULAR TISSUE-
dc.subjectELECTRICAL ALTERNANS-
dc.subjectMODEL-
dc.subjectRESTITUTION-
dc.titleComputational simulations of the effects of the G229D KCNQ1 mutation on human atrial fibrillation-
dc.typeArticle-
dc.contributor.affiliatedAuthorSong, Kwang-Soup-
dc.contributor.affiliatedAuthorLim, Ki Moo-
dc.identifier.doi10.1007/s12576-016-0438-3-
dc.identifier.wosid000381099300007-
dc.identifier.bibliographicCitationJOURNAL OF PHYSIOLOGICAL SCIENCES, v.66, no.5, pp.407 - 415-
dc.relation.isPartOfJOURNAL OF PHYSIOLOGICAL SCIENCES-
dc.citation.titleJOURNAL OF PHYSIOLOGICAL SCIENCES-
dc.citation.volume66-
dc.citation.number5-
dc.citation.startPage407-
dc.citation.endPage415-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaPhysiology-
dc.relation.journalWebOfScienceCategoryPhysiology-
dc.subject.keywordPlusHUMAN VENTRICULAR TISSUE-
dc.subject.keywordPlusELECTRICAL ALTERNANS-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusRESTITUTION-
dc.subject.keywordAuthorAtrial fibrillation-
dc.subject.keywordAuthorArrhythmia-
dc.subject.keywordAuthorGene mutation-
dc.subject.keywordAuthorKCNQ1-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Department of Medical IT Convergence Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Song, Kwang Soup photo

Song, Kwang Soup
College of Engineering (Department of Medical IT Convergence Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE