Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Performance Evaluation of Buried Concrete Pipe Considering Soil Pressure and Crack Propagation Using 3D Finite Element Analysis

Full metadata record
DC Field Value Language
dc.contributor.authorBan, Hoki-
dc.contributor.authorRoh, Seungjun-
dc.contributor.authorPark, Won-Jun-
dc.date.accessioned2021-05-10T07:40:12Z-
dc.date.available2021-05-10T07:40:12Z-
dc.date.created2021-05-10-
dc.date.issued2021-04-
dc.identifier.issn2076-3417-
dc.identifier.urihttps://scholarworks.bwise.kr/kumoh/handle/2020.sw.kumoh/19306-
dc.description.abstractNumerous factors affect the soil pressure distributions around buried pipes, including the shape, size, and stiffness of the pipe, burial depth, and the stiffness of the surrounding soil. Additionally, to some extent, a pipe can benefit from the soil arching effect, where the overburden and surcharge pressure at the crown can be supported by the adjacent soil. As a result, a buried pipe only needs to support the portion of the load that is not transferred to the adjacent soil. This paper presents numerical investigations of the soil pressure distributions around buried concrete pipes and crack propagation under different environmental conditions, such as loading, saturation level, and the presence of voids. To this end, a nonlinear elastoplastic model for backfill materials was implemented using finite element software and a user-defined subroutine. Three different backfill materials and two different native soils were selected to examine the material-specific behaviors of concrete pipes, including soil pressure distributions and crack propagation. For each backfill material, the effects of the loading type, groundwater, and voids were investigated. These simulation results provide helpful information regarding pressure redistribution and buried concrete pipe behavior under various environmental conditions.-
dc.language영어-
dc.language.isoen-
dc.publisherMDPI-
dc.titlePerformance Evaluation of Buried Concrete Pipe Considering Soil Pressure and Crack Propagation Using 3D Finite Element Analysis-
dc.typeArticle-
dc.contributor.affiliatedAuthorRoh, Seungjun-
dc.identifier.doi10.3390/app11073292-
dc.identifier.wosid000638346900001-
dc.identifier.bibliographicCitationAPPLIED SCIENCES-BASEL, v.11, no.7-
dc.relation.isPartOfAPPLIED SCIENCES-BASEL-
dc.citation.titleAPPLIED SCIENCES-BASEL-
dc.citation.volume11-
dc.citation.number7-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryEngineering, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordAuthorburied concrete pipe-
dc.subject.keywordAuthorsoil pressure distribution-
dc.subject.keywordAuthorcrack propagation-
dc.subject.keywordAuthordamage model-
Files in This Item
There are no files associated with this item.
Appears in
Collections
School of Architecture > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Roh, Seungjun photo

Roh, Seungjun
College of Engineering (School of Architecture)
Read more

Altmetrics

Total Views & Downloads

BROWSE