Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A Cost-Aware DNN-Based FDI Technology for Solenoid Pumps

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Suju-
dc.contributor.authorAkpudo, Ugochukwu Ejike-
dc.contributor.authorHur, Jang-Wook-
dc.date.accessioned2021-12-21T08:40:12Z-
dc.date.available2021-12-21T08:40:12Z-
dc.date.created2021-12-21-
dc.date.issued2021-10-
dc.identifier.issn2079-9292-
dc.identifier.urihttps://scholarworks.bwise.kr/kumoh/handle/2020.sw.kumoh/20317-
dc.description.abstractFluid Pumps serve a critical function in hydraulic and thermodynamic systems, and this often exposes them to prolonged use, leading to fatigue, stress, contamination, filter clogging, etc. On one hand, vibration monitoring for hydraulic components has shown reliable efficiencies in fault detection and isolation (FDI) practices. On the other hand, signal processing techniques provide reliable FDI parameters for artificial intelligence (AI)-based data-driven diagnostics (and prognostics) and have recently attracted global interest across different disciplines and applications. Particularly for cost-aware systems, the choice of diagnostic parameters determines the reliability of an FDI/diagnostic model. By extracting (and selecting) discriminative spectral and transient features from solenoid pump vibration signals, accurate diagnostics across operating conditions can be achieved using AI-based FDI algorithms. This study employs a deep neural network (DNN) for fault diagnosis after a correlation-based selection of discriminative spectral and transient features. To solve the problem of hyperparameter selection for the proposed model, a grid search technique was employed for optimal search for parameters (number of layers, neurons, activation function, weight optimizer, etc.) on different network architectures.The results reveal the high accuracy of a three-layer DNN with ReLU activation function, with a test accuracy of 99.23% and a minimal false alarm rate on a case study.-
dc.language영어-
dc.language.isoen-
dc.publisherMDPI-
dc.titleA Cost-Aware DNN-Based FDI Technology for Solenoid Pumps-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Suju-
dc.contributor.affiliatedAuthorAkpudo, Ugochukwu Ejike-
dc.contributor.affiliatedAuthorHur, Jang-Wook-
dc.identifier.doi10.3390/electronics10192323-
dc.identifier.wosid000725603400001-
dc.identifier.bibliographicCitationELECTRONICS, v.10, no.19-
dc.relation.isPartOfELECTRONICS-
dc.citation.titleELECTRONICS-
dc.citation.volume10-
dc.citation.number19-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordAuthorcondition monitoring-
dc.subject.keywordAuthorfault diagnosis-
dc.subject.keywordAuthorfeature extraction-
dc.subject.keywordAuthorfeature selection-
dc.subject.keywordAuthordeep neural network-
Files in This Item
There are no files associated with this item.
Appears in
Collections
School of Mechanical System Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hur, Jang Wook photo

Hur, Jang Wook
College of Engineering (School of Mechanical System Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE