Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Promoting bone regeneration by 3D-printed poly(glycolic acid)/hydroxyapatite composite scaffolds

Full metadata record
DC Field Value Language
dc.contributor.authorYeo, Taegyun-
dc.contributor.authorKo, Young-Gwang-
dc.contributor.authorKim, Eun Jin-
dc.contributor.authorKwon, Oh Kyoung-
dc.contributor.authorChung, Ho Yun-
dc.contributor.authorKwon, Oh Hyeong-
dc.date.accessioned2022-04-15T02:02:33Z-
dc.date.available2022-04-15T02:02:33Z-
dc.date.created2021-03-09-
dc.date.issued2021-02-25-
dc.identifier.issn1226-086X-
dc.identifier.urihttps://scholarworks.bwise.kr/kumoh/handle/2020.sw.kumoh/20824-
dc.description.abstractHydroxyapatite (HAp) is a major bone graft component for hard tissue regeneration. However, sintered HAp has poor formability and mechanical properties. Porous 3D scaffolds for bone tissue regeneration were printed with computer-aided modeling using poly(glycolic acid) (PGA) and HAp. PGA scaffolds containing HAp nanoparticles were fabricated with a 400 mu m pore size. PGA/HAp scaffolds containing 12.5 wt% HAp showed considerable compressive strength, osteogenesis, mineralization, and biodegradation. In in vivo animal experiments, the PGA/HAp group exhibited 47% bone regeneration, with superior bone mineral density 8 weeks after surgery. 3D-printed PGA/HAp scaffolds could provide a feasible option to promote patient-specific bone regeneration. (C) 2020 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.-
dc.language영어-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE INC-
dc.titlePromoting bone regeneration by 3D-printed poly(glycolic acid)/hydroxyapatite composite scaffolds-
dc.typeArticle-
dc.contributor.affiliatedAuthorYeo, Taegyun-
dc.contributor.affiliatedAuthorKo, Young-Gwang-
dc.contributor.affiliatedAuthorKwon, Oh Hyeong-
dc.identifier.doi10.1016/j.jiec.2020.11.004-
dc.identifier.wosid000609243700009-
dc.identifier.bibliographicCitationJOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, v.94, pp.343 - 351-
dc.relation.isPartOfJOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY-
dc.citation.titleJOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY-
dc.citation.volume94-
dc.citation.startPage343-
dc.citation.endPage351-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.identifier.kciidART002686587-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.subject.keywordAuthorHydroxyapatite-
dc.subject.keywordAuthorPoly(glycolic acid)-
dc.subject.keywordAuthor3D printing-
dc.subject.keywordAuthorScaffold-
dc.subject.keywordAuthorTissue engineering-
Files in This Item
There are no files associated with this item.
Appears in
Collections
School of Science and Engineering of chemical Materials > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kwon, Oh Hyeong photo

Kwon, Oh Hyeong
College of Engineering (Department of Polymer Science and Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE