Detailed Information

Cited 13 time in webofscience Cited 15 time in scopus
Metadata Downloads

Engineering CO2-philic pathway via grafting poly(ethylene glycol) on graphene oxide for mixed matrix membranes with high CO2 permeance

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Chang Soo-
dc.contributor.authorMoon, Juyoung-
dc.contributor.authorPark, Jung Tae-
dc.contributor.authorKim, Jong Hak-
dc.date.accessioned2023-03-20T03:40:08Z-
dc.date.available2023-03-20T03:40:08Z-
dc.date.issued2023-02-
dc.identifier.issn1385-8947-
dc.identifier.issn1873-3212-
dc.identifier.urihttps://scholarworks.bwise.kr/kumoh/handle/2020.sw.kumoh/21533-
dc.description.abstractThe introduction of two-dimensional (2D) nanofillers into thin-film (<1 mu m thickness) mixed-matrix membranes (MMMs) remains challenging because of the interfacial issues that lead to Knudsen diffusion, thereby causing a loss of selectivity. Herein, we describe a surface modification technique that involves the application of an epoxy group ring opening process and free-radical polymerization to the graphene oxide (GO) surface to enable the grafting of CO2-philic poly(ethylene glycol) (PEG) chains. The use of functional groups to achieve the PEG modification of GO increases the interlayer spacing between the 2D GO layers. Specifically, the abundant PEG domain between the layers provides an effective CO2-philic pathway and minimizes the occurrence of polymer matrix/GO filler interfacial defects, resulting in excellent CO2 permeance and selectivity. The MMM consisting of GO-glycidyl methacrylate grafted with poly(oxyethylene methacrylate) achieved the highest performance, with a CO2 permeance of 3169 GPU, CO2/N2 selectivity of 37.4, and CO2/CH4 selectivity of 15.8. These results indicate the suitability of the as-prepared materials for commercial applications.-
dc.language영어-
dc.language.isoENG-
dc.publisherELSEVIER SCIENCE SA-
dc.titleEngineering CO2-philic pathway via grafting poly(ethylene glycol) on graphene oxide for mixed matrix membranes with high CO2 permeance-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.1016/j.cej.2022.139818-
dc.identifier.scopusid2-s2.0-85140044838-
dc.identifier.wosid000875817200001-
dc.identifier.bibliographicCitationCHEMICAL ENGINEERING JOURNAL, v.453-
dc.citation.titleCHEMICAL ENGINEERING JOURNAL-
dc.citation.volume453-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.subject.keywordPlusCOMPOSITE MEMBRANES-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusULTRATHIN-
dc.subject.keywordPlusGAS-
dc.subject.keywordPlusSEPARATION-
dc.subject.keywordAuthorMixed-matrix membrane (MMM)-
dc.subject.keywordAuthorThin-film-
dc.subject.keywordAuthorCarbon dioxide(CO2)-
dc.subject.keywordAuthorSeparation-
dc.subject.keywordAuthorGraphene oxide-
dc.subject.keywordAuthorGrafting-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE