Detailed Information

Cited 5 time in webofscience Cited 6 time in scopus
Metadata Downloads

Diphlorethohydroxycamalol isolated from Ishige okamurae prevents H2O2-induced oxidative damage via BMP2/Runx2 signaling in osteoblastic MC3T3-E1 cells

Authors
Lee, Seung-HongKim, MihyangPark, Mi Hwa
Issue Date
Jul-2021
Publisher
Elsevier BV
Keywords
Diphlorethohydroxycarmalol; Oxidative stress; Osteoprotection; Osteoblast differentiation
Citation
Fitoterapia, v.152
Journal Title
Fitoterapia
Volume
152
URI
https://scholarworks.bwise.kr/sch/handle/2021.sw.sch/18745
DOI
10.1016/j.fitote.2021.104921
ISSN
0367-326X
1873-6971
Abstract
Accumulating evidence has shown an association between osteoporosis and oxidative damage. In the present study, the protective effects of diphlorethohydroxycarmalol (DPHC) isolated from the brown algae Ishige okamurae against H2O2-induced oxidative damage via bone morphogenetic protein 2 (BMP2)/ runt-related transcription factor 2 (Runx2) signaling were investigated using MC3T3-E1 osteoblastic cells. DPHC counteracted the reduction in cell viability caused by H2O2 exposure and protected against H2O2-induced dysfunction, demonstrated by improved cellular alkaline phosphatase (ALP) activity and calcium deposition. In addition, treatment with 0.05-0.2 mM DPHC elevated the protein expression of osteoblast differentiation factors type 1 collagen, ALP, p-Smad1/5, Osterix, BMP2, and Runx2, in response to H2O2-induced oxidative damage. Importantly, DPHC decreased the expression levels of receptor activator of nuclear factor kappa-B ligand, which promotes bone resorption, and inhibited the H2O2-induced generation of reactive oxygen species. Taken together, the results suggest that DPHC counteracts the effects of oxidative stress in osteoblastic cells and has the potential to be effective in preventing and alleviating osteoporosis.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Medical Sciences > Department of Pharmaceutical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Seung Hong photo

Lee, Seung Hong
College of Medical Sciences (Department of Pharmaceutical Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE