Detailed Information

Cited 0 time in webofscience Cited 11 time in scopus
Metadata Downloads

Toward explainable electrical load forecasting of buildings: A comparative study of tree-based ensemble methods with Shapley values

Full metadata record
DC Field Value Language
dc.contributor.authorMoon, Jihoon-
dc.contributor.authorRho, Seungmin-
dc.contributor.authorBaik, Sung Wook-
dc.date.accessioned2023-03-09T02:41:36Z-
dc.date.available2023-03-09T02:41:36Z-
dc.date.issued2022-12-
dc.identifier.issn2213-1388-
dc.identifier.issn2213-1396-
dc.identifier.urihttps://scholarworks.bwise.kr/sch/handle/2021.sw.sch/22062-
dc.description.abstractElectrical load forecasting of buildings is crucial in designing an energy operation strategy for smart city realization. Although artificial intelligence techniques have demonstrated excellent energy forecasting performance, explaining how outcomes are obtained when they are inaccurate is challenging. Explainable artificial intelligence (XAI) has recently received considerable attention in addressing this issue. This study proposes an explainable electrical load forecasting (XELF) methodology. We first preprocess data for input variable configuration and build the following tree-based ensemble models that produce outstanding results in tabular data: random forest, gradient boosting machine (GBM), extreme gradient boosting, light GBM (LightGBM), and categorical boosting. We evaluate performance in terms of the mean absolute percentage error, coefficient of variation of the root mean square error, and normalized mean absolute error. Finally, we provide the rationale for interpreting the influence of the input variables and decision-making process via Shapley additive explanations (SHAP), an XAI technique, on the best model. The experiments were conducted with an electrical load dataset from educational buildings to validate the practicality and validity of this methodology. We applied the SHAP to the LightGBM model and performed its respective analyses and visualizations for XELF.-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier Limited-
dc.titleToward explainable electrical load forecasting of buildings: A comparative study of tree-based ensemble methods with Shapley values-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1016/j.seta.2022.102888-
dc.identifier.scopusid2-s2.0-85144347386-
dc.identifier.wosid000898685900007-
dc.identifier.bibliographicCitationSustainable Energy Technologies and Assessments, v.54-
dc.citation.titleSustainable Energy Technologies and Assessments-
dc.citation.volume54-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryGreen & Sustainable Science & Technology-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.subject.keywordPlusDEMAND RESPONSE-
dc.subject.keywordPlusCUSTOMERS-
dc.subject.keywordAuthorExplainable electrical load forecasting-
dc.subject.keywordAuthorShort-term load forecasting-
dc.subject.keywordAuthorBuilding energy data analytics-
dc.subject.keywordAuthorExplainable artificial intelligence-
dc.subject.keywordAuthorEnsemble learning-
dc.subject.keywordAuthorShapley additive explanations-
Files in This Item
There are no files associated with this item.
Appears in
Collections
SCH Media Labs > Department of Big Data Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE