Detailed Information

Cited 0 time in webofscience Cited 1 time in scopus
Metadata Downloads

Ni2P/Fe2P encapsulated in N, P co-doped carbon shell as overall water splitting catalyst for wide pH range electrochemical applications

Full metadata record
DC Field Value Language
dc.contributor.authorJeong, Dong In-
dc.contributor.authorChoi, Hyung Wook-
dc.contributor.authorKim, Jiwon-
dc.contributor.authorLee, Ui Young-
dc.contributor.authorKoo, Bon Keup-
dc.contributor.authorKang, Bong Kyun-
dc.contributor.authorYoon, Dae Ho-
dc.date.accessioned2023-03-09T05:40:08Z-
dc.date.available2023-03-09T05:40:08Z-
dc.date.issued2023-03-
dc.identifier.issn0169-4332-
dc.identifier.issn1873-5584-
dc.identifier.urihttps://scholarworks.bwise.kr/sch/handle/2021.sw.sch/22142-
dc.description.abstractIt is necessary to fabricate an oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) catalyst that can be used in the electrolyte (alkaline, acidic) using earth abundant resources. Herein, we fabricated Ni2P/ Fe2P@NPC catalyst using hydrothermal synthesis and phosphide process. Phosphorus can be combined with a transition metal to improve catalytic performance and electrical conductivity. In addition, forming a carbon shell on the surface of the transition metal and doping the carbon shell with phosphorus can contribute to the improvement of electrochemical catalyst stability. N and P are co-doped in the carbon shell to provide more active sites. Therefore, improved catalytic performance can be expected for Ni2P/Fe2P @NPC. Overpotential of the synthesized Ni2P/Fe2P@NPC for OER in alkaline, HER in alkaline, and HER in acidic were confirmed to be 237.8 mV, 208.2 mV and 155.3 mV (at 10 mA cm(-2) in 1 M KOH, 0.5 M H2SO4), respectively. In addition, enhanced stability results were confirmed with 24 hr and 3000 cycle tests.-
dc.publisherElsevier BV-
dc.titleNi2P/Fe2P encapsulated in N, P co-doped carbon shell as overall water splitting catalyst for wide pH range electrochemical applications-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1016/j.apsusc.2022.156189-
dc.identifier.scopusid2-s2.0-85145775113-
dc.identifier.wosid000915616900001-
dc.identifier.bibliographicCitationApplied Surface Science, v.614-
dc.citation.titleApplied Surface Science-
dc.citation.volume614-
dc.type.docTypeArticle; Early Access-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusHYDROGEN EVOLUTION ELECTROCATALYST-
dc.subject.keywordPlusNICKEL PHOSPHIDE-
dc.subject.keywordPlusEFFICIENT CATALYST-
dc.subject.keywordPlusHIGHLY EFFICIENT-
dc.subject.keywordPlusFACILE SYNTHESIS-
dc.subject.keywordPlusRECENT PROGRESS-
dc.subject.keywordPlusNITROGEN-
dc.subject.keywordPlusIDENTIFICATION-
dc.subject.keywordPlusFRAMEWORKS-
dc.subject.keywordPlusINSIGHT-
dc.subject.keywordAuthorAcidic electrolyte-
dc.subject.keywordAuthorAlkaline electrolyte-
dc.subject.keywordAuthorOxygen evolution reaction-
dc.subject.keywordAuthorHydrogen evolution reaction-
dc.subject.keywordAuthorP co-doped carbon shell-
dc.subject.keywordAuthorTransition metal phosphide-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Display Materials Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE