Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Expiratory Flow and Volume Estimation Through Thermal-<inline-formula><tex-math notation=$CO_{2}$ Imaging" data-sr-only="">

Full metadata record
DC Field Value Language
dc.contributor.authorTransue, Shane-
dc.contributor.authorMin, Se Dong-
dc.contributor.authorChoi, Min-Hyung-
dc.date.accessioned2023-03-09T07:40:55Z-
dc.date.available2023-03-09T07:40:55Z-
dc.date.issued2023-07-
dc.identifier.issn0018-9294-
dc.identifier.issn1558-2531-
dc.identifier.urihttps://scholarworks.bwise.kr/sch/handle/2021.sw.sch/22165-
dc.description.abstractObjective: In this work, we introduce a quantitative non-contact respiratory evaluation method for finegrain exhale flow and volume estimation through Thermal-CO2 imaging. This provides a form of respiratory analysis that is driven by visual analytics of exhale behaviors, creating quantitative metrics for exhale flow and volume modeled as open-air turbulent flows. This approach introduces a novel form of effort-independent pulmonary evaluation enabling behavioral analysis of natural exhale behaviors. Methods: CO2 filtered infrared visualizations of exhale behaviors are used to obtain breathing rate, volumetric flow estimations (L/s) and per-exhale volume (L) estimations. We conduct experiments validating visual flow analysis to formulate two behavioral Long-Short-Term-Memory (LSTM) estimation models generated from visualized exhale flows targeting per-subject and cross-subject training datasets. Results: Experimental model data generated for training on our per-individual recurrent estimation model provide an overall flow correlation estimate correlation of R-2 = 0.912 and volume in-the-wild accuracy of 75.65-94.44%. Our cross-patient model extends generality to unseen exhale behaviors, obtaining an overall correlation of R-2 = 0.804 and in-the-wild volume accuracy of 62.32-94.22%. Conclusion: This method provides non-contact flow and volume estimation through filtered CO2 imaging, enabling effort-independent analysis of natural breathing behaviors. Significance: Effort-independent evaluation of exhale flow and volume broadens capabilities in pulmonological assessment and long-term non-contact respiratory analysis.-
dc.format.extent11-
dc.publisherInstitute of Electrical and Electronics Engineers-
dc.titleExpiratory Flow and Volume Estimation Through Thermal-&lt;inline-formula&gt;&lt;tex-math notation=$CO_{2}$ Imaging&quot; data-sr-only=&quot;&quot;&gt;-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TBME.2023.3236597-
dc.identifier.scopusid2-s2.0-85147259904-
dc.identifier.wosid001016857400012-
dc.identifier.bibliographicCitationIEEE Transactions on Biomedical Engineering, v.70, no.7, pp 2111 - 2121-
dc.citation.titleIEEE Transactions on Biomedical Engineering-
dc.citation.volume70-
dc.citation.number7-
dc.citation.startPage2111-
dc.citation.endPage2121-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.subject.keywordAuthorExhale visualization-
dc.subject.keywordAuthorCO2 exhale flow-
dc.subject.keywordAuthornon-contact exhale analysis-
dc.subject.keywordAuthorquantitative exhale analysis-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Medical Sciences > Department of Medical IT Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Min, Se Dong photo

Min, Se Dong
College of Software Convergence (의료IT공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE