Detailed Information

Cited 4 time in webofscience Cited 5 time in scopus
Metadata Downloads

Automatic Classification of GI Organs in Wireless Capsule Endoscopy Using a No-Code Platform-Based Deep Learning Modelopen access

Authors
Chung, JoowonOh, Dong JunPark, JunseokKim, Su HwanLim, Yun Jeong
Issue Date
Apr-2023
Publisher
MDPI AG
Keywords
capsule endoscopy; artificial intelligence; automatic organ classification; automated machine learning
Citation
Diagnostics, v.13, no.8
Journal Title
Diagnostics
Volume
13
Number
8
URI
https://scholarworks.bwise.kr/sch/handle/2021.sw.sch/22520
DOI
10.3390/diagnostics13081389
ISSN
2075-4418
Abstract
The first step in reading a capsule endoscopy (CE) is determining the gastrointestinal (GI) organ. Because CE produces too many inappropriate and repetitive images, automatic organ classification cannot be directly applied to CE videos. In this study, we developed a deep learning algorithm to classify GI organs (the esophagus, stomach, small bowel, and colon) using a no-code platform, applied it to CE videos, and proposed a novel method to visualize the transitional area of each GI organ. We used training data (37,307 images from 24 CE videos) and test data (39,781 images from 30 CE videos) for model development. This model was validated using 100 CE videos that included "normal", "blood", "inflamed", "vascular", and "polypoid" lesions. Our model achieved an overall accuracy of 0.98, precision of 0.89, recall of 0.97, and F1 score of 0.92. When we validated this model relative to the 100 CE videos, it produced average accuracies for the esophagus, stomach, small bowel, and colon of 0.98, 0.96, 0.87, and 0.87, respectively. Increasing the AI score's cut-off improved most performance metrics in each organ (p < 0.05). To locate a transitional area, we visualized the predicted results over time, and setting the cut-off of the AI score to 99.9% resulted in a better intuitive presentation than the baseline. In conclusion, the GI organ classification AI model demonstrated high accuracy on CE videos. The transitional area could be more easily located by adjusting the cut-off of the AI score and visualization of its result over time.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Division of Information Technology Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE