Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Charge state modulation in metal-organic framework-based porous cobalt-incorporated nickel sulfide for efficient hydrogen evolution in anion exchange membrane water electrolyzer

Full metadata record
DC Field Value Language
dc.contributor.authorChoi, Hyeonggeun-
dc.contributor.authorJo, Seunghwan-
dc.contributor.authorLim, Heeyoung-
dc.contributor.authorLee, Young-Woo-
dc.contributor.authorSohn, Jung Inn-
dc.date.accessioned2024-06-11T08:30:33Z-
dc.date.available2024-06-11T08:30:33Z-
dc.date.issued2024-03-
dc.identifier.issn2468-0230-
dc.identifier.urihttps://scholarworks.bwise.kr/sch/handle/2021.sw.sch/26237-
dc.description.abstractFor practical water electrolysis-based hydrogen production, the development of efficient electrocatalysts based on earth-abundant materials is highly desirable. Herein, metal-organic framework (MOF) derived Coincorporated nickel sulfide (MD-Co/NiS2) is demonstrated as a promising hydrogen evolution reaction (HER) electrocatalyst in an anion exchange membrane water electrolyzer (AEMWE). The MD-Co/NiS2 exhibits a porous structure packed with numerous nanoparticles while maintaining the primary spherical morphology of the MOF, resulting in a large surface area with enhanced porosity. Furthermore, the reaction kinetics is enhanced by alleviating the charge polarization of Ni and S after Co incorporation. Owing to the integrated benefits of the geometrical and chemical structures, MD-Co/NiS2 requires a low overpotential of 117 mV with long-term stability for 50 h at a current density of 10 mA cm-2 in 1 M KOH. Moreover, AEMWE using MD-Co/NiS2 as a cathode catalyst requires a low cell voltage of 1.97 V at a high current density of 1 A cm � 2, comparable to that of commercial Pt/C (2.01 V) and maintains cell performance for 50 h with a small potential increase of 55 mV.-
dc.language영어-
dc.language.isoENG-
dc.publisherELSEVIER-
dc.titleCharge state modulation in metal-organic framework-based porous cobalt-incorporated nickel sulfide for efficient hydrogen evolution in anion exchange membrane water electrolyzer-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1016/j.surfin.2024.103987-
dc.identifier.scopusid2-s2.0-85184018449-
dc.identifier.wosid001178345700001-
dc.identifier.bibliographicCitationSURFACES AND INTERFACES, v.46-
dc.citation.titleSURFACES AND INTERFACES-
dc.citation.volume46-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusELECTROCATALYSTS-
dc.subject.keywordAuthorMetal-organic framework-
dc.subject.keywordAuthorTransition metal chalcogenides-
dc.subject.keywordAuthorCharge delocalization-
dc.subject.keywordAuthorHydrogen evolution reaction-
dc.subject.keywordAuthorAnion exchange membrane water electrolyzer-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, YOUNG WOO photo

Lee, YOUNG WOO
SCH Media Labs (에너지공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE