Detailed Information

Cited 0 time in webofscience Cited 25 time in scopus
Metadata Downloads

Perovskite-Based Artificial Multiple Quantum Wells

Authors
Lee, Kwang JaeTuredi, BekirSinatra, LutfanZhumekenov, Ayan A.Maity, ParthaDursun, IbrahimNaphade, RounakMerdad, NoorAlsalloum, AbdullahOh, SemiWehbe, NimerHedhili, Mohamed N.Kang, Chun HongSubedi, Ram ChandraCho, NamchulKim, Jin SooOoi, Boon S.Mohammed, Omar F.Bakr, Osman M.
Issue Date
Jun-2019
Publisher
American Chemical Society
Keywords
Perovskite; quantum well; bandgap engineering; CsPbBr3; hot carrier; femtosecond spectroscopy
Citation
Nano Letters, v.19, no.6, pp 3535 - 3542
Pages
8
Journal Title
Nano Letters
Volume
19
Number
6
Start Page
3535
End Page
3542
URI
https://scholarworks.bwise.kr/sch/handle/2021.sw.sch/4499
DOI
10.1021/acs.nanolett.9b00384
ISSN
1530-6984
1530-6992
Abstract
Semiconductor quantum well structures have been critical to the development of modern photonics and solid-state optoelectronics. Quantum level tunable structures have introduced new transformative device applications and afforded a myriad of groundbreaking studies of fundamental quantum phenomena. However, noncolloidal, III-V compound quantum well structures are limited to traditional semiconductor materials fabricated by stringent epitaxial growth processes. This report introduces artificial multiple quantum wells (MQWs) built from CsPbBr3 perovskite materials using commonly available thermal evaporator systems. These perovskite-based MQWs are spatially aligned on a large-area substrate with multiple stacking and systematic control over well/barrier thicknesses, resulting in tunable optical properties and a carrier confinement effect. The fabricated CsPbBr3 artificial MQWs can be designed to display a variety of photoluminescence (PL) characteristics, such as a PL peak shift commensurate with the well/barrier thickness, multiwavelength emissions from asymmetric quantum wells, the quantum tunneling effect, and long-lived hot-carrier states. These new artificial MQWs pave the way toward widely available semiconductor heterostructures for light-conversion applications that are not restricted by periodicity or a narrow set of dimensions.
Files in This Item
There are no files associated with this item.
Appears in
Collections
SCH Media Labs > Department of Energy Systems Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, nam chul photo

Cho, nam chul
SCH Media Labs (에너지공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE