Detailed Information

Cited 5 time in webofscience Cited 0 time in scopus
Metadata Downloads

Entropy-Driven Assembly of Nanoparticles within Emulsion-Evaporative Block Copolymer Particles: Crusted, Seeded, and Alternate-Layered Onions

Authors
Xu, MengKu, Kang HeeLee, Young JunShin, Jaeman J.Kim, Eun JiJang, Se GyuYun, HongseokKim, Bumjoon J.
Issue Date
Aug-2020
Publisher
AMER CHEMICAL SOC
Citation
CHEMISTRY OF MATERIALS, v.32, no.16, pp.7036 - 7043
Journal Title
CHEMISTRY OF MATERIALS
Volume
32
Number
16
Start Page
7036
End Page
7043
URI
http://scholarworks.bwise.kr/ssu/handle/2018.sw.ssu/40508
DOI
10.1021/acs.chemmater.0c02459
ISSN
0897-4756
Abstract
Hybrid organic/inorganic systems with modulated nanostructures and well-defined morphologies are of great importance to develop novel nanomaterials with tailored functionalities. Herein, we report the tunable assemblies of polystyrene-grafted Au nanoparticles (Au@PS NPs) within onion-like particles of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP), controlled by the molecular weight (M-n) of PS ligands. Coassembly of Au@PS and PS-b-P4VP through solvent-evaporative emulsions exhibits dramatic morphological changes in the NP assemblies depending on the M-n of PS ligands: (1) addition of low M-n (1.8 kg mol(-1)) Au@PS creates crusted onion-like hybrid particles with well-ordered hexagonal NP superlattices covering their surface; (2) in contrast, high M-n (6.4 kg mol(-1)) Au@PS segregate at PS domains of the block copolymer particles. Interestingly, these NPs form a hexagonal packing structure at the center of the PS domains, producing concentric lamellar particles with hierarchically stacked Au@PS in an alternate-layered onion-like structure. Finally, cryogenic electron microscopy analysis is conducted to probe the entropy-driven mechanism of the formation of these hybrid particles. These initial demonstrations of multicomponent hybrid particles with targeted spatial alignments offer new strategies to design complex nanomaterials with tailorable properties for potential technological applications.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Shin, Jae Man photo

Shin, Jae Man
College of Engineering (Department of Materials Science and Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE