Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Revealing defect-mode-enabled energy localization mechanisms of a one-dimensional phononic crystal

Authors
Jo, Soo-HoYoon, HeonjunShin, Yong ChangYoun, Byeng D.
Issue Date
Feb-2022
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
Phononic crystal; Defect-band formation; Defect-band splitting; Asymptotic analysis; Evanescent wave; Mechanical resonance
Citation
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, v.215
Journal Title
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES
Volume
215
URI
http://scholarworks.bwise.kr/ssu/handle/2018.sw.ssu/41877
DOI
10.1016/j.ijmecsci.2021.106950
ISSN
0020-7403
Abstract
Phononic crystals (PnCs) have received growing attention in recent years, due to their ability to manipulate elastic waves, such as in the case of defect-mode-enabled energy localization. Although previous studies have explored defect modes of PnCs - from phenomenon observations to their potential applications - little effort has been made to date to reveal fundamental mechanisms of defect-mode-enabled energy localization. Thus, this study proposes a lumped-parameter analytical model to reveal the underlying principles of the formation of defect bands of a one-dimensional PnC when a single defect is introduced, or the splitting of defect bands when double defects are introduced. Through the investigation of 1) evanescent wave characteristics in the defect mode shapes, and 2) the asymptotically equivalent behaviors of defect bands and defect-mode shapes with limiting behavior approaches, this study demonstrates a new aspect of why a band gap should be the prerequisite for achieving defect-mode-enabled energy localization. It is confirmed that defect-mode shapes are normal modes, rather than propagating wave modes. The key findings of this study are as follows: 1) the exponentially attenuating characteristics of evanescent waves in a band gap generate a fixed-like boundary condition, which surrounds single or double defects, and 2) mechanical resonance, attributed to the fixed-like boundary condition, leads to the formation and splitting of defect bands.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yoon, Heonjun photo

Yoon, Heonjun
College of Engineering (School of Mechanical Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE