Detailed Information

Cited 28 time in webofscience Cited 28 time in scopus
Metadata Downloads

Co-delivery of Cbfa-1-targeting siRNA and SOX9 protein using PLGA nanoparticles to induce chondrogenesis of human mesenchymal stem cells

Full metadata record
DC Field Value Language
dc.contributor.authorJeon, Su Yeon-
dc.contributor.authorPark, Ji Sun-
dc.contributor.authorYang, Han Na-
dc.contributor.authorLim, Hye Jin-
dc.contributor.authorYi, Se Won-
dc.contributor.authorPark, Hansoo-
dc.contributor.authorPark, Keun-Hong-
dc.date.available2019-03-08T21:01:24Z-
dc.date.issued2014-09-
dc.identifier.issn0142-9612-
dc.identifier.issn1878-5905-
dc.identifier.urihttps://scholarworks.bwise.kr/cau/handle/2019.sw.cau/11832-
dc.description.abstractDuring stem cell differentiation, various cellular responses occur that are mediated by transcription factors and proteins. This study evaluated the abilities of SOX9, a crucial protein during the early stage of chondrogenesis, and siRNA targeting Cbfa-1, a transcription factor that promotes osteogenesis, to stimulate chondrogenesis. Non-toxic poly-(D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) were coated with Cbfa-1-targeting siRNA and loaded with SOX9 protein. Coomassie blue staining and circular dichroism revealed that the loaded SOX9 protein maintained its stability and bioactivity. These NPs easily entered human mesenchymal stem cells (hMSCs) in vitro and caused them to differentiate into chondrocytes. Markers that are typically expressed in mature chondrocytes were examined. These markers were highly expressed at the mRNA and protein levels in hMSCs treated with PLGA NPs coated with Cbfa-1-targeting siRNA and loaded with SOX9 protein. By contrast, these cells did not express osteogenesis-related markers. hMSCs were injected into mice following internalization of PLGA NPs coated with Cbfa-1-targeting siRNA and loaded with SOX9 protein. When the injection site was excised, markers of chondrogenesis were found to be highly expressed at the mRNA and protein levels, similar to the in vitro results. When hMSCs internalized these NPs and were then cultured in vitro or injected into mice, chondrogenesis-related extracellular matrix components were highly expressed. (C) 2014 Elsevier Ltd. All rights reserved.-
dc.format.extent13-
dc.language영어-
dc.language.isoENG-
dc.publisherELSEVIER SCI LTD-
dc.titleCo-delivery of Cbfa-1-targeting siRNA and SOX9 protein using PLGA nanoparticles to induce chondrogenesis of human mesenchymal stem cells-
dc.typeArticle-
dc.identifier.doi10.1016/j.biomaterials.2014.05.092-
dc.identifier.bibliographicCitationBIOMATERIALS, v.35, no.28, pp 8236 - 8248-
dc.description.isOpenAccessN-
dc.identifier.wosid000339774700018-
dc.identifier.scopusid2-s2.0-84903696216-
dc.citation.endPage8248-
dc.citation.number28-
dc.citation.startPage8236-
dc.citation.titleBIOMATERIALS-
dc.citation.volume35-
dc.type.docTypeArticle-
dc.publisher.location영국-
dc.subject.keywordAuthorSOX9-
dc.subject.keywordAuthorProtein-
dc.subject.keywordAuthorPLGA-
dc.subject.keywordAuthorCbfa-1-
dc.subject.keywordAuthorsiRNA-
dc.subject.keywordPlusIN-VITRO-
dc.subject.keywordPlusII COLLAGEN-
dc.subject.keywordPlusMSC CHONDROGENESIS-
dc.subject.keywordPlusPROGENITOR CELLS-
dc.subject.keywordPlusGENE DELIVERY-
dc.subject.keywordPlusBONE-MARROW-
dc.subject.keywordPlusDIFFERENTIATION-
dc.subject.keywordPlusSCAFFOLDS-
dc.subject.keywordPlusCARTILAGE-
dc.subject.keywordPlusMATRIX-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Biomaterials-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of ICT Engineering > School of Integrative Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Hansoo photo

Park, Hansoo
창의ICT공과대학 (융합공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE