Detailed Information

Cited 14 time in webofscience Cited 15 time in scopus
Metadata Downloads

A nano-frost array technique to prepare nanoporous PVDF membranes

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Min Kyung-
dc.contributor.authorLee, Jonghwi-
dc.date.available2019-03-08T21:37:24Z-
dc.date.issued2014-08-07-
dc.identifier.issn2040-3364-
dc.identifier.issn2040-3372-
dc.identifier.urihttps://scholarworks.bwise.kr/cau/handle/2019.sw.cau/11929-
dc.description.abstractFrost, the solid deposition of water vapor from humid air, forms on the surface of a solid substrate when its temperature drops below the freezing point of water. In this study, we demonstrate how this natural phenomenon can be applied to develop novel nanoporous materials. The solvent annealing of polyvinylidene fluoride (PVDF) infiltrated into nanopores induced template-directed dewetting thus preparing nanoembossing films. Then, water nanodroplets formed on the cold polymer nanopatterned surfaces following the embossing patterns, similar to dew formation on the ground. Subsequently, the nanodroplets were frozen and then removed by freeze-drying. This nano-frost array technique produced nanoporous PVDF membranes with an average thickness of 250 (+/- 48) nm. It was revealed that the nanopatterned surface formed by solvent annealing played an important role in achieving a nano-frost array with an adjustable size. Additionally, the freezing process led to significant changes of the PVDF crystallinity and polymorphism. Our results prove that the nano-frost array technique can be broadly used to design ordered nanoporous structures and provide new prospects in nanomaterial fields.-
dc.format.extent7-
dc.language영어-
dc.language.isoENG-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleA nano-frost array technique to prepare nanoporous PVDF membranes-
dc.typeArticle-
dc.identifier.doi10.1039/c4nr00951g-
dc.identifier.bibliographicCitationNANOSCALE, v.6, no.15, pp 8642 - 8648-
dc.description.isOpenAccessN-
dc.identifier.wosid000339861500032-
dc.identifier.scopusid2-s2.0-84904286811-
dc.citation.endPage8648-
dc.citation.number15-
dc.citation.startPage8642-
dc.citation.titleNANOSCALE-
dc.citation.volume6-
dc.type.docTypeArticle-
dc.publisher.location영국-
dc.subject.keywordPlusPOLY(VINYLIDENE FLUORIDE)-
dc.subject.keywordPlusBREATH FIGURES-
dc.subject.keywordPlusWATER WETTABILITY-
dc.subject.keywordPlusPOLYMER-FILMS-
dc.subject.keywordPlusMORPHOLOGY-
dc.subject.keywordPlusTEMPLATES-
dc.subject.keywordPlusSURFACES-
dc.subject.keywordPlusFORMS-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Chemical Engineering and Material Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Jonghwi photo

Lee, Jonghwi
공과대학 (화학공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE