Detailed Information

Cited 28 time in webofscience Cited 30 time in scopus
Metadata Downloads

Si-Mn/Reduced Graphene Oxide Nanocomposite Anodes with Enhanced Capacity and Stability for Lithium-Ion Batteries

Full metadata record
DC Field Value Language
dc.contributor.authorPark, A Reum-
dc.contributor.authorKim, Jung Sub-
dc.contributor.authorKim, Kwang Su-
dc.contributor.authorZhang, Kan-
dc.contributor.authorPark, Juhyun-
dc.contributor.authorPark, Jong Hyeok-
dc.contributor.authorLee, Joong Kee-
dc.contributor.authorYoo, Pil J.-
dc.date.available2019-03-08T22:03:41Z-
dc.date.issued2014-02-
dc.identifier.issn1944-8244-
dc.identifier.issn1944-8252-
dc.identifier.urihttps://scholarworks.bwise.kr/cau/handle/2019.sw.cau/12482-
dc.description.abstractAlthough Si is a promising high-capacity anode material for Li-ion batteries (LIB), it suffers from capacity fading due to excessively large volumetric changes upon Li insertion. Nanocarbon materials have been used to enhance the cyclic stability of LIB anodes, but they have an inherently low specific capacity. To address these issues, we present a novel ternary nanocomposite of Si, Mn, and reduced graphene oxide (rGO) for LIB anodes, in which the Si Mn alloy offers high capacity characteristics and embedded rGO nanosheets confer structural stability. Si-Mn/rGO ternary nanocomposites were synthesized by mechanical complexation and subsequent thermal reduction of mixtures of Si nanoparticles, MnO2 nanorods, and rGO nanosheets. Resulting ternary nanocomposite anodes displayed a specific capacity of 600 mAh/g with similar to 90% capacity retention after 50 cycles at a current density of 100 mA/g. The enhanced performance is attributed to facilitated Li-ion reactions with the MnSi alloy phase and the formation of a structurally reinforced electroconductive matrix of rGO nanosheets. The ternary nanocomposite design paradigm presented in this study can be exploited for the development of high-capacity and long-life anode materials for versatile LIB applications.-
dc.format.extent7-
dc.language영어-
dc.language.isoENG-
dc.publisherAMER CHEMICAL SOC-
dc.titleSi-Mn/Reduced Graphene Oxide Nanocomposite Anodes with Enhanced Capacity and Stability for Lithium-Ion Batteries-
dc.typeArticle-
dc.identifier.doi10.1021/am404608d-
dc.identifier.bibliographicCitationACS APPLIED MATERIALS & INTERFACES, v.6, no.3, pp 1702 - 1708-
dc.description.isOpenAccessN-
dc.identifier.wosid000331493200050-
dc.identifier.scopusid2-s2.0-84894192374-
dc.citation.endPage1708-
dc.citation.number3-
dc.citation.startPage1702-
dc.citation.titleACS APPLIED MATERIALS & INTERFACES-
dc.citation.volume6-
dc.type.docTypeArticle-
dc.publisher.location미국-
dc.subject.keywordAuthorsilicon-
dc.subject.keywordAuthormanganese-
dc.subject.keywordAuthorreduced graphene oxide-
dc.subject.keywordAuthorlithium-ion batteries-
dc.subject.keywordAuthoranodes-
dc.subject.keywordPlusMANGANESE OXIDES-
dc.subject.keywordPlusSILICON-
dc.subject.keywordPlusGRAPHITE-
dc.subject.keywordPlusALLOY-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusCOMPOSITES-
dc.subject.keywordPlusSPECTROSCOPY-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusSHEETS-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Chemical Engineering and Material Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Juhyun photo

Park, Juhyun
대학원 (지능형에너지산업융합학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE