Detailed Information

Cited 11 time in webofscience Cited 0 time in scopus
Metadata Downloads

Effects of (-) epigallocatechin-3-gallate on Na+ currents in rat dorsal root ganglion neurons

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Tae Hoon-
dc.contributor.authorLim, Jae-Min-
dc.contributor.authorKim, Sung Sul-
dc.contributor.authorKim, Jungho-
dc.contributor.authorPark, Mijung-
dc.contributor.authorSong, Jin-Ho-
dc.date.available2019-05-30T03:38:00Z-
dc.date.issued2009-02-
dc.identifier.issn0014-2999-
dc.identifier.issn1879-0712-
dc.identifier.urihttps://scholarworks.bwise.kr/cau/handle/2019.sw.cau/23317-
dc.description.abstractThe natural product(-) epigallocatechin-3-gallate (EGCG) is the major polyphenolic constituent found in green tea. Dorsal root ganglion neurons are primary sensory neurons, and express tetrodotoxin-sensitive and tetrodotoxin-resistant Na+ currents, which are both actively involved in the generation and propagation of nociceptive signals. Effects of EGCG on tetrodotoxin-sensitive and tetrodotoxin-resistant Na+ currents in rat dorsal root ganglion neurons were investigated using the whole-cell variation of the patch-clamp techniques. EGCG inhibited both types of Na+ currents potently and in a concentration-dependent manner. The apparent dissociation constant, K-d, was estimated to be 0.74 and 0.80 mu M for tetroclotoxin-sensitive and tetrodotoxin-resistant Na+ currents, respectively. (-) Epigallocatechin (EGC) was far less potent to inhibit Na+ currents than EGCG, suggesting that gallate moiety of EGCG is an important functional group to modulate Na+ currents. EGCG had little or no effect on the activation or steady-state inactivation voltage of either type of Na+ current. EGCG simply reduced the availability of Na+ channels for activation. Thus, EGCG appears to bind to resting Na+ channels to inhibit them. EGCG slowed the recovery of tetrodotoxin-sensitive Na+ current from inactivation. The property of EGCG to inhibit sensory Na+ currents can be utilized to develop an analgesic agent. (C) 2008 Elsevier B.V. All rights reserved.-
dc.format.extent7-
dc.language영어-
dc.language.isoENG-
dc.publisherELSEVIER SCIENCE BV-
dc.titleEffects of (-) epigallocatechin-3-gallate on Na+ currents in rat dorsal root ganglion neurons-
dc.typeArticle-
dc.identifier.doi10.1016/j.ejphar.2008.12.015-
dc.identifier.bibliographicCitationEUROPEAN JOURNAL OF PHARMACOLOGY, v.604, no.1-3, pp 20 - 26-
dc.description.isOpenAccessN-
dc.identifier.wosid000263756700003-
dc.identifier.scopusid2-s2.0-58949100096-
dc.citation.endPage26-
dc.citation.number1-3-
dc.citation.startPage20-
dc.citation.titleEUROPEAN JOURNAL OF PHARMACOLOGY-
dc.citation.volume604-
dc.type.docTypeArticle-
dc.publisher.location네델란드-
dc.subject.keywordAuthorCatechins-
dc.subject.keywordAuthorDorsal root ganglion-
dc.subject.keywordAuthor(-)Epigallocatechin-3-gallate-
dc.subject.keywordAuthorGreen tea-
dc.subject.keywordAuthorNa+ current-
dc.subject.keywordAuthorTetrodotoxin-resistant-
dc.subject.keywordAuthorTetrodotoxin-sensitive-
dc.subject.keywordPlusCHANNEL ALPHA-SUBUNIT-
dc.subject.keywordPlusGREEN TEA-
dc.subject.keywordPlus(-)-EPIGALLOCATECHIN GALLATE-
dc.subject.keywordPlusSODIUM-CHANNELS-
dc.subject.keywordPlusSENSORY NEURONS-
dc.subject.keywordPlusPOTASSIUM CHANNELS-
dc.subject.keywordPlusINFLAMMATORY PAIN-
dc.subject.keywordPlusGABA(A) RECEPTORS-
dc.subject.keywordPlusEGCG-
dc.subject.keywordPlusPOLYPHENOL-
dc.relation.journalResearchAreaPharmacology & Pharmacy-
dc.relation.journalWebOfScienceCategoryPharmacology & Pharmacy-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Medicine > College of Medicine > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Song, Jin Ho photo

Song, Jin Ho
의과대학 (의학부(기초))
Read more

Altmetrics

Total Views & Downloads

BROWSE