Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Highly Conductive Off-Stoichiometric Zirconium Oxide Nanofibers with Controllable Crystalline Structures and Bandgaps and Improved Electrochemical Activities

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Na-Won-
dc.contributor.authorYoon, Ki Ro-
dc.contributor.authorLee, Jae-Yun-
dc.contributor.authorPark, Yoonsu-
dc.contributor.authorPyo, Seong-Ji-
dc.contributor.authorKim, Ga-Yoon-
dc.contributor.authorHa, Don-Hyung-
dc.contributor.authorRyu, Won-Hee-
dc.date.available2019-08-09T08:00:31Z-
dc.date.issued2019-05-
dc.identifier.issn2574-0962-
dc.identifier.urihttps://scholarworks.bwise.kr/cau/handle/2019.sw.cau/32792-
dc.description.abstractThe structural and morphological control of durable valve metal oxides with bandgaps over 5 eV (e.g., ZrO2) paves the way for the development of bifunctional electrochemical energy devices with both good stabilities and electronic conductivities. Herein, a tailored synthesis of highly conductive off-stoichiometric ZrO2-x nanofiber materials under a controlled reducing atmosphere is reported. The bandgap and corresponding charge conductivity of ZrO2-x are simultaneously tuned (in the range of visible colors (white, brown, and black)) by generating reduced Zr3+ and oxygen vacancies. The morphological and structural evolution of the ZrO2-x nanofibers obtained under different reducing atmospheres are investigated in detail. Electrochemical kinetics in aqueous and nonaqueous media are promoted by employing a darker ZrO2-x nanofiber electrode. The functionalizing valve metal oxides with a facile charge transfer inspire an advanced design for future electrochemical and electronic devices.-
dc.format.extent10-
dc.language영어-
dc.language.isoENG-
dc.publisherAMER CHEMICAL SOC-
dc.titleHighly Conductive Off-Stoichiometric Zirconium Oxide Nanofibers with Controllable Crystalline Structures and Bandgaps and Improved Electrochemical Activities-
dc.typeArticle-
dc.identifier.doi10.1021/acsaem.9b00283-
dc.identifier.bibliographicCitationACS APPLIED ENERGY MATERIALS, v.2, no.5, pp 3513 - 3522-
dc.description.isOpenAccessN-
dc.identifier.wosid000469885300059-
dc.identifier.scopusid2-s2.0-85065836701-
dc.citation.endPage3522-
dc.citation.number5-
dc.citation.startPage3513-
dc.citation.titleACS APPLIED ENERGY MATERIALS-
dc.citation.volume2-
dc.type.docTypeArticle-
dc.publisher.location미국-
dc.subject.keywordAuthorelectrospinning nanofiber-
dc.subject.keywordAuthorzirconium oxide-
dc.subject.keywordAuthorvalve metal oxide-
dc.subject.keywordAuthoroxygen deficiency-
dc.subject.keywordPlusOXYGEN REDUCTION-
dc.subject.keywordPlusOPTICAL-PROPERTIES-
dc.subject.keywordPlusTIO2-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusABSORPTION-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusBATTERIES-
dc.subject.keywordPlusCOBALT-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClassesci-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of ICT Engineering > School of Integrative Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ha, Don Hyung photo

Ha, Don Hyung
창의ICT공과대학 (융합공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE