Detailed Information

Cited 3 time in webofscience Cited 1 time in scopus
Metadata Downloads

Regioregular- block-Regiorandom Poly(3-hexylthiophene) Copolymers for Mechanically Robust and High-Performance Thin-Film Transistors

Authors
Park, HyeonjungMa, Boo SooKim, Jin-SeongKim, YoungkwonKim, Hyeong JunKim, DongukYun, HongseokHan, JunghunKim, Felix SunjooKim, Taek-SooKim, Bumjoon J.
Issue Date
Oct-2019
Publisher
American Chemical Society
Citation
Macromolecules, v.52, no.20, pp 7721 - 7730
Pages
10
Journal Title
Macromolecules
Volume
52
Number
20
Start Page
7721
End Page
7730
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/37893
DOI
10.1021/acs.macromol.9b01540
ISSN
0024-9297
1520-5835
Abstract
In this work, we develop mechanically robust and high-performance organic thin-film transistors (OTFTs) based on poly(3-hexylthiophene) (P3HT) regioblock copolymers (block-P3HTs). These block-P3HTs consist of regioregular (rre) and regiorandom (rra) P3HTs, where the highly crystalline rre block allows efficient charge transport while the amorphous rra block provides mechanical robustness and interdomain connection. To examine the effects of the molecular architecture on the OTFT performance and stretchability, we prepare a series of block-P3HTs having different number-average molecular weight (Mn) values of rra blocks (from 0 to 32 kg mol-1) and a fixed Mn of rre blocks (11 kg mol-1). Thin films of all of the block-P3HTs exhibit a high charge-carrier mobility due to the formation of well-developed edge-on crystallites from the rre blocks confined within the rra domains, leading to a hole mobility of 1.5 × 10-1 cm2 V-1 s-1, which is superior to that of the rre P3HT homopolymer. In addition, the mechanical toughness of block-P3HT thin films is remarkably enhanced by the rra block. While the rre P3HT homopolymer thin film shows a brittle behavior with an elongation at break of only 0.3%, the elongation at break of the block-P3HT thin films increases by a factor of 100, yielding 30.2% with increasing Mn of the rra block, without sacrificing the electrical properties. In particular, a noticeable enhancement of both elongation at break and toughness is observed between Mn values of the rra block of 8 and 20 kg mol-1, indicating that the critical molecular weight of rra P3HT plays an important role in determining the mechanical response of the block-P3HT thin films. This study provides guidelines and strategies to improve the mechanical properties of organic electroactive materials without the disruption of optoelectrical properties, which is critical to fabricate high-performance soft electronics. © 2019 American Chemical Society.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Chemical Engineering and Material Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Felix Sunjoo photo

Kim, Felix Sunjoo
공과대학 (화학공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE