Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Enhancing neurogenesis of neural stem cells using homogeneous nanohole pattern-modified conductive platform

Full metadata record
DC Field Value Language
dc.contributor.authorCho, Yeon-Woo-
dc.contributor.authorKim, Da-Seul-
dc.contributor.authorSuhito, Intan Rosalina-
dc.contributor.authorHan, Dong Keun-
dc.contributor.authorLee, Taek-
dc.contributor.authorKim, Tae-Hyung-
dc.date.available2020-04-17T03:21:29Z-
dc.date.issued2020-01-01-
dc.identifier.issn1661-6596-
dc.identifier.issn1422-0067-
dc.identifier.urihttps://scholarworks.bwise.kr/cau/handle/2019.sw.cau/38591-
dc.description.abstractBiocompatible platforms, wherein cells attach and grow, are important for controlling cytoskeletal dynamics and steering stem cell functions, including differentiation. Among various components, membrane integrins play a key role in focal adhesion of cells (18–20 nm in size) and are, thus, highly sensitive to the nanotopographical features of underlying substrates. Hence, it is necessary to develop a platform/technique that can provide high flexibility in controlling nanostructure sizes. We report a platform modified with homogeneous nanohole patterns, effective in guiding neurogenesis of mouse neural stem cells (mNSCs). Sizes of nanoholes were easily generated and varied using laser interference lithography (LIL), by changing the incident angles of light interference on substrates. Among three different nanohole patterns fabricated on conductive transparent electrodes, 500 nm-sized nanoholes showed the best performance for cell adhesion and spreading, based on F-actin and lamellipodia/filopodia expression. Enhanced biocompatibility and cell adhesion of these nanohole patterns ultimately resulted in the enhanced neurogenesis of mNSCs, based on the mRNAs expression level of the mNSCs marker and several neuronal markers. Therefore, platforms modified with homogeneous nanohole patterns fabricated by LIL are promising for the precise tuning of nanostructures in tissue culture platforms and useful for controlling various differentiation lineages of stem cells. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.-
dc.language영어-
dc.language.isoENG-
dc.publisherMDPI AG-
dc.titleEnhancing neurogenesis of neural stem cells using homogeneous nanohole pattern-modified conductive platform-
dc.typeArticle-
dc.identifier.doi10.3390/ijms21010191-
dc.identifier.bibliographicCitationInternational Journal of Molecular Sciences, v.21, no.1-
dc.description.isOpenAccessY-
dc.identifier.wosid000515378000191-
dc.identifier.scopusid2-s2.0-85077325008-
dc.citation.number1-
dc.citation.titleInternational Journal of Molecular Sciences-
dc.citation.volume21-
dc.type.docTypeArticle-
dc.publisher.location스위스-
dc.subject.keywordAuthorLaser interference lithography-
dc.subject.keywordAuthorNanotopography-
dc.subject.keywordAuthorNeural stem cell-
dc.subject.keywordAuthorNeuronal differentiation-
dc.subject.keywordPlusbeta tubulin-
dc.subject.keywordPlusF actin-
dc.subject.keywordPlusfilopodia-
dc.subject.keywordPlusglial fibrillary acidic protein-
dc.subject.keywordPlusmicrotubule associated protein 2-
dc.subject.keywordPlusnanomaterial-
dc.subject.keywordPlustranscription factor Sox2-
dc.subject.keywordPlusunclassified drug-
dc.subject.keywordPlusanimal cell-
dc.subject.keywordPlusArticle-
dc.subject.keywordPlusbiocompatibility-
dc.subject.keywordPluscell adhesion-
dc.subject.keywordPluscell contact-
dc.subject.keywordPluscell differentiation-
dc.subject.keywordPluscell function-
dc.subject.keywordPluscell growth-
dc.subject.keywordPluscell interaction-
dc.subject.keywordPluscell migration-
dc.subject.keywordPluscell proliferation-
dc.subject.keywordPluscell spreading-
dc.subject.keywordPluscell viability assay-
dc.subject.keywordPluscontact angle-
dc.subject.keywordPluscontrolled study-
dc.subject.keywordPlusfield emission scanning electron microscopy-
dc.subject.keywordPlusfocal adhesion-
dc.subject.keywordPlusimmunofluorescence microscopy-
dc.subject.keywordPluslaser interference photolithography-
dc.subject.keywordPluslight scattering-
dc.subject.keywordPlusmouse-
dc.subject.keywordPlusnanotechnology-
dc.subject.keywordPlusnerve cell culture-
dc.subject.keywordPlusnerve cell differentiation-
dc.subject.keywordPlusnervous system development-
dc.subject.keywordPlusneural stem cell-
dc.subject.keywordPlusneurite outgrowth-
dc.subject.keywordPlusneurosphere formation-
dc.subject.keywordPlusnonhuman-
dc.subject.keywordPlusprotein expression-
dc.subject.keywordPlusreverse transcription polymerase chain reaction-
dc.subject.keywordPlussurface property-
dc.subject.keywordPlusthree dimensional printing-
dc.relation.journalResearchAreaBiochemistry & Molecular Biology-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalWebOfScienceCategoryBiochemistry & Molecular Biology-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
Appears in
Collections
College of ICT Engineering > School of Integrative Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Tae-Hyung photo

Kim, Tae-Hyung
창의ICT공과대학 (융합공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE