Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Ultrathin sandwich-like MoS2@N-doped carbon nanosheets for anodes of lithium ion batteries

Full metadata record
DC Field Value Language
dc.contributor.authorJeong, Jae-Min-
dc.contributor.authorLee, Kyoung G.-
dc.contributor.authorChang, Sung-Jin-
dc.contributor.authorKim, Jung Won-
dc.contributor.authorHan, Young-Kyu-
dc.contributor.authorLee, Seok Jae-
dc.contributor.authorChoi, Bong Gill-
dc.date.accessioned2021-06-18T09:41:29Z-
dc.date.available2021-06-18T09:41:29Z-
dc.date.issued2015-01-
dc.identifier.issn2040-3364-
dc.identifier.issn2040-3372-
dc.identifier.urihttps://scholarworks.bwise.kr/cau/handle/2019.sw.cau/45768-
dc.description.abstractIn this work, we report on a simple and scalable process to synthesize the core-shell nanostructure of MoS2@N-doped carbon nanosheets (MoS2@C), in which polydopamine is coated on the MoS2 surface and is then carbonized. An intensive investigation using transmission electron microscopy and Raman spectroscopy reveals that the as-synthesized MoS2@C possesses a nanoscopic and ultrathin layer of MoS2 sheets with a thin and conformal coating of carbon layers (similar to 3 nm). The MoS2@C demonstrates a superior electrochemical performances as an anode material for lithium ion batteries compared to exfoliated MoS2 and bulk MoS2 samples. This unique core-shell structure is capable of delivering an excellent Li+ ion charging-discharging process as follows: a specific capacity as high as 1239 mA h g(-1), a high rate capability even at a high current rate of 10 A g(-1) while retaining 597 mA h g(-1), and a good cycle stability over 200 cycles at a high current rate of 2 A g(-1).-
dc.format.extent6-
dc.language영어-
dc.language.isoENG-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleUltrathin sandwich-like MoS2@N-doped carbon nanosheets for anodes of lithium ion batteries-
dc.typeArticle-
dc.identifier.doi10.1039/c4nr06215a-
dc.identifier.bibliographicCitationNANOSCALE, v.7, no.1, pp 324 - 329-
dc.description.isOpenAccessN-
dc.identifier.wosid000346919200035-
dc.identifier.scopusid2-s2.0-84920054389-
dc.citation.endPage329-
dc.citation.number1-
dc.citation.startPage324-
dc.citation.titleNANOSCALE-
dc.citation.volume7-
dc.type.docTypeArticle-
dc.publisher.location영국-
dc.subject.keywordPlusELECTROCHEMICAL PERFORMANCE-
dc.subject.keywordPlusASSISTED SYNTHESIS-
dc.subject.keywordPlusSURFACE-CHEMISTRY-
dc.subject.keywordPlusFACILE SYNTHESIS-
dc.subject.keywordPlusMOS2-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusNANOCOMPOSITES-
dc.subject.keywordPlusCOMPOSITES-
dc.subject.keywordPlusPOLYDOPAMINE-
dc.subject.keywordPlusFABRICATION-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Natural Sciences > Department of Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE