Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

The Tenet Architecture for Tiered Sensor Networks

Authors
Paek, JeongyeupGreenstein, BenGnawali, OmprakashJang, Ki-YoungJoki, AugustVieira, MarcosHicks, JohnEstrin, DeborahGovindan, RameshKohler, Eddie
Issue Date
Jul-2010
Publisher
ASSOC COMPUTING MACHINERY
Keywords
Design; Experimentation; Performance; Sensor networks; network architecture; tiered network; motes
Citation
ACM TRANSACTIONS ON SENSOR NETWORKS, v.6, no.4, pp 34:1 - 34:44
Journal Title
ACM TRANSACTIONS ON SENSOR NETWORKS
Volume
6
Number
4
Start Page
34:1
End Page
34:44
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/47689
DOI
10.1145/1777406.1777413
ISSN
1550-4859
1550-4867
Abstract
Most sensor network research and software design has been guided by an architectural principle that permits multinode data fusion on small-form-factor, resource-poor nodes, or motes. While we were among the earliest promoters of this approach, through experience we found that this principle leads to fragile and unmanageable systems and explore an alternative. The Tenet architecture is motivated by the observation that future large-scale sensor network deployments will be tiered, consisting of motes in the lower tier and masters, relatively unconstrained 32-bit platform nodes, in the upper tier. Tenet constrains multinode fusion to the master tier while allowing motes to process locally-generated sensor data. This simplifies application development and allows mote-tier software to be reused. Applications running on masters task motes by composing task descriptions from a novel tasklet library. Our Tenet implementation also contains a robust and scalable networking subsystem for disseminating tasks and reliably delivering responses. We show that a Tenet pursuit-evasion application exhibits performance comparable to a mote-native implementation while being considerably more compact. We also present two real-world deployments of Tenet system: a structural vibration monitoring application at Vincent Thomas Bridge and an imaging-based habitat monitoring application at James Reserve, and show that tiered architecture scales network capacity and allows reliable delivery of high rate data.(1)
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Software > School of Computer Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Paek, Jeong Yeup photo

Paek, Jeong Yeup
소프트웨어대학 (소프트웨어학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE