Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Triboelectric Nanogenerator for Harvesting Vibration Energy in Full Space and as Self- Powered Acceleration Sensor

Authors
Zhang, HulinYang, YaSu, YuanjieChen, JunAdams, KatherineLee, SangminHu, ChenguoWang, Zhong Lin
Issue Date
Mar-2014
Publisher
WILEY-V C H VERLAG GMBH
Keywords
triboelectric nanogenerator; vibrational energy; self-powered; acceleration sensors
Citation
ADVANCED FUNCTIONAL MATERIALS, v.24, no.10, pp 1401 - 1407
Pages
7
Journal Title
ADVANCED FUNCTIONAL MATERIALS
Volume
24
Number
10
Start Page
1401
End Page
1407
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/47923
DOI
10.1002/adfm.201302453
ISSN
1616-301X
1616-3028
Abstract
A spherical three-dimensional triboelectric nanogenerator (3D-TENG) with a single electrode is designed, consisting of an outer transparent shell and an inner polyfluoroalkoxy (PFA) ball. Based on the coupling of triboelectric effect and electrostatic effect, the rationally developed 3D-TENG can effectively scavenge ambient vibration energy in full space by working at a hybridization of both the contact-separation mode and the sliding mode, resulting in the electron transfer between the Al electrode and the ground. By systematically investigating the output performance of the device vibrating under different frequencies and along different directions, the TENG can deliver a maximal output voltage of 57 V, a maximal output current of 2.3 A, and a corresponding output power of 128 W on a load of 100 M, which can be used to directly drive tens of green light-emitting diodes. Moreover, the TENG is utilized to design the self-powered acceleration sensor with detection sensitivity of 15.56 V g(-1). This work opens up many potential applications of single-electrode based TENGs for ambient vibration energy harvesting techniques in full space and the self-powered vibration sensor systems.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Sangmin photo

Lee, Sangmin
공과대학 (기계공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE