Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Computational Fluid Dynamics Based Optimal Design of Guiding Channel Geometry in U-Type Coolant Layer Manifold of Large-Scale Microchannel Fischer-Tropsch Reactor

Full metadata record
DC Field Value Language
dc.contributor.authorJung, Ikhwan-
dc.contributor.authorKshetrimayum, Krishnadash S.-
dc.contributor.authorPark, Seongho-
dc.contributor.authorNa, Jonggeol-
dc.contributor.authorLee, Yongkyu-
dc.contributor.authorAn, Jinjoo-
dc.contributor.authorPark, Seongeon-
dc.contributor.authorLee, Chul-Jin-
dc.contributor.authorHan, Chonghun-
dc.date.accessioned2021-08-20T04:40:14Z-
dc.date.available2021-08-20T04:40:14Z-
dc.date.issued2016-01-
dc.identifier.issn0888-5885-
dc.identifier.issn1520-5045-
dc.identifier.urihttps://scholarworks.bwise.kr/cau/handle/2019.sw.cau/48807-
dc.description.abstractA microchannel Fischer-Tropsch reactor retaining high heat and mass transfer performance requires uniform flow distribution on the coolant side to induce isothermal condition for controllable and sustainable operation. The present work improved the flow performance of a large-scale layer of over 100 channels by introducing an extremely simple guiding fin in the inlet and outlet rectangular manifolds. Case studies with three-dimensional computational fluid dynamics (CFD) were carried out where the upper and bottom lengths of the guiding fin were the main geometric variables. Then the optimization work was conducted to estimate the performance of the optimal design. The robustness for the proposed geometry was tested with varying the flow rate, fluid type, and temperature. The result showed that the proposed design can retain uniform distribution over a wide operation range (500 <= Re-GF <= 10800).-
dc.format.extent11-
dc.language영어-
dc.language.isoENG-
dc.publisherAMER CHEMICAL SOC-
dc.titleComputational Fluid Dynamics Based Optimal Design of Guiding Channel Geometry in U-Type Coolant Layer Manifold of Large-Scale Microchannel Fischer-Tropsch Reactor-
dc.typeArticle-
dc.identifier.doi10.1021/acs.iecr.5b03313-
dc.identifier.bibliographicCitationINDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, v.55, no.2, pp 505 - 515-
dc.description.isOpenAccessN-
dc.identifier.wosid000368747100012-
dc.identifier.scopusid2-s2.0-84955265228-
dc.citation.endPage515-
dc.citation.number2-
dc.citation.startPage505-
dc.citation.titleINDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH-
dc.citation.volume55-
dc.type.docTypeArticle-
dc.publisher.location미국-
dc.subject.keywordPlusFLOW DISTRIBUTION-
dc.subject.keywordPlusVELOCITY DISTRIBUTION-
dc.subject.keywordPlusPLATE-
dc.subject.keywordPlusMALDISTRIBUTION-
dc.subject.keywordPlusCONFIGURATION-
dc.subject.keywordPlusUNIFORMITY-
dc.subject.keywordPlusMETHANE-
dc.subject.keywordPlusHEADER-
dc.subject.keywordPlusSTEAM-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Chemical Engineering and Material Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Chul-Jin photo

Lee, Chul-Jin
대학원 (지능형에너지산업융합학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE