Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Oxidative Stress Causes Vacuolar Fragmentation in the Human Fungal Pathogen Cryptococcus neoformans

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Donghyeun-
dc.contributor.authorSong, Moonyong-
dc.contributor.authorDo, Eunsoo-
dc.contributor.authorChoi, Yoojeong-
dc.contributor.authorKronstad, James W.-
dc.contributor.authorJung, Won Hee-
dc.date.accessioned2021-09-23T08:40:09Z-
dc.date.available2021-09-23T08:40:09Z-
dc.date.issued2021-07-
dc.identifier.issn2309-608X-
dc.identifier.issn2309-608X-
dc.identifier.urihttps://scholarworks.bwise.kr/cau/handle/2019.sw.cau/49693-
dc.description.abstractVacuoles are dynamic cellular organelles, and their morphology is altered by various stimuli or stresses. Vacuoles play an important role in the physiology and virulence of many fungal pathogens. For example, a Cryptococcus neoformans mutant deficient in vacuolar functions showed significantly reduced expression of virulence factors such as capsule and melanin synthesis and was avirulent in a mouse model of cryptococcosis. In the current study, we found significantly increased vacuolar fragmentation in the C. neoformans mutants lacking SOD1 or SOD2, which respectively encode Zn, Cu-superoxide dismutase and Mn-superoxide dismutase. The sod2 mutant showed a greater level of vacuole fragmentation than the sod1 mutant. We also observed that the vacuoles were highly fragmented when wild-type cells were grown in a medium containing high concentrations of iron, copper, or zinc. Moreover, elevated temperature and treatment with the antifungal drug fluconazole caused increased vacuolar fragmentation. These conditions also commonly cause an increase in the levels of intracellular reactive oxygen species in the fungus, suggesting that vacuoles are fragmented in response to oxidative stress. Furthermore, we observed that Sod2 is not only localized in mitochondria but also in the cytoplasm within phagocytosed C. neoformans cells, possibly due to copper or iron limitation.-
dc.language영어-
dc.language.isoENG-
dc.publisherMDPI-
dc.titleOxidative Stress Causes Vacuolar Fragmentation in the Human Fungal Pathogen Cryptococcus neoformans-
dc.typeArticle-
dc.identifier.doi10.3390/jof7070523-
dc.identifier.bibliographicCitationJOURNAL OF FUNGI, v.7, no.7-
dc.description.isOpenAccessY-
dc.identifier.wosid000676523200001-
dc.identifier.scopusid2-s2.0-85109859319-
dc.citation.number7-
dc.citation.titleJOURNAL OF FUNGI-
dc.citation.volume7-
dc.type.docTypeArticle-
dc.publisher.location스위스-
dc.subject.keywordAuthorCryptococcus neoformans-
dc.subject.keywordAuthorfragmentation-
dc.subject.keywordAuthoroxidative stress-
dc.subject.keywordAuthorsuperoxide dismutase-
dc.subject.keywordAuthorvacuole-
dc.subject.keywordPlusSUPEROXIDE-DISMUTASE-
dc.subject.keywordPlusSACCHAROMYCES-CEREVISIAE-
dc.subject.keywordPlusIRON HOMEOSTASIS-
dc.subject.keywordPlusCAPSULE FORMATION-
dc.subject.keywordPlusCOPPER-
dc.subject.keywordPlusREVEALS-
dc.subject.keywordPlusYEAST-
dc.subject.keywordPlusGENE-
dc.subject.keywordPlusINACTIVATION-
dc.subject.keywordPlusTRANSPORTER-
dc.relation.journalResearchAreaMicrobiology-
dc.relation.journalResearchAreaMycology-
dc.relation.journalWebOfScienceCategoryMicrobiology-
dc.relation.journalWebOfScienceCategoryMycology-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
Appears in
Collections
College of Biotechnology & Natural Resource > Department of Systems Biotechnology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jung, Won Hee photo

Jung, Won Hee
생명공학대학 (시스템생명공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE