Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Stretchable carbonyl iron powder/polydimethylsiloxane composites for noise suppression in gigahertz bandwidth

Full metadata record
DC Field Value Language
dc.contributor.authorSeo, Youngjae-
dc.contributor.authorKo, Seongchan-
dc.contributor.authorHa, Heebo-
dc.contributor.authorQaiser, Nadeem-
dc.contributor.authorLeem, Mirine-
dc.contributor.authorYoo, Seung Jo-
dc.contributor.authorJeong, Jong Hyeon-
dc.contributor.authorLee, Kyungsub-
dc.contributor.authorHwang, Byungil-
dc.date.accessioned2021-11-26T01:40:15Z-
dc.date.available2021-11-26T01:40:15Z-
dc.date.issued2022-02-
dc.identifier.issn0266-3538-
dc.identifier.issn1879-1050-
dc.identifier.urihttps://scholarworks.bwise.kr/cau/handle/2019.sw.cau/51859-
dc.description.abstractElectromagnetic (EM) noise interference in high-frequency communication systems has attracted considerable attention. Flake-shaped iron-based alloy powder–polymer composites are the conventionally used EM noise suppressors; however, they exhibit low stretchability and cannot effectively suppress EM noise in the range of several gigahertz. The present study demonstrated the application of carbonyl iron powder (CIP)/polydimethylsiloxane (PDMS) composites as EM noise suppressors at 1–18 GHz. The CIP/PDMS composites presented excellent mechanical properties (rupture strength 6.57 MPa, elongation 71%) even at the maximum CIP content of 40 vol%. The tensile test results and finite element method (FEM) simulations revealed a lowering of the elongation with CIP loading content, which was attributed to the localized stress at the agglomerated CIPs. The spherical CIPs exhibited multicore shell interface structures with 2–300 nm ring gaps that were larger than the skin depth of pure iron. EM absorption characterization revealed that the magnetic loss tangent at 10 GHz increased linearly with increasing CIP content. Furthermore, the power loss at 10 GHz for the 40 vol% CIP/PDMS composite was 2.25 times higher than that for the 20 vol% CIP/PDMS composite. This indicated the effective suppression of EM noise in the gigahertz bandwidth with the addition of CIP. © 2021 Elsevier Ltd-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier Ltd-
dc.titleStretchable carbonyl iron powder/polydimethylsiloxane composites for noise suppression in gigahertz bandwidth-
dc.typeArticle-
dc.identifier.doi10.1016/j.compscitech.2021.109150-
dc.identifier.bibliographicCitationComposites Science and Technology, v.218-
dc.description.isOpenAccessN-
dc.identifier.wosid000735582200005-
dc.identifier.scopusid2-s2.0-85119296177-
dc.citation.titleComposites Science and Technology-
dc.citation.volume218-
dc.type.docTypeArticle-
dc.publisher.location영국-
dc.subject.keywordAuthorCarbonyl iron powder-
dc.subject.keywordAuthorElectron microscopy-
dc.subject.keywordAuthorFinite element method-
dc.subject.keywordAuthorMechanical properties-
dc.subject.keywordAuthorPolymer–matrix composites-
dc.subject.keywordPlusMICROWAVE-ABSORPTION PROPERTIES-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusPOLYMER-COMPOSITES-
dc.subject.keywordPlusPARTICLE-SIZE-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryMaterials Science, Composites-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of ICT Engineering > School of Integrative Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hwang, Byungil photo

Hwang, Byungil
창의ICT공과대학 (융합공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE